
Server-Based Java Programming

Server-Based Java
Programming
TED NEWARD

M A N N I N G

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
32 Lafayette Place Fax: (203) 661-9018

Greenwich, CT 06830 email: orders@manning.com

©2000 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by means electronic, mechanical, photocopying, or
otherwise, without prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in the book,
and Manning Publications was aware of a trademark claim, the designations have
been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy
to have the books we publish printed on acid-free paper, and we exert our best efforts to
that end.

Manning Publications Co. Copyeditor: Elizabeth R. Martin
32 Lafayette Place Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – CM – 03 02 01 00

“To you, the reader—yes, you. A book without a reader is a pretty
pointless exercise. Thank you.”

brief contents

1 ✧ Enterprise Java 1

2 ✧ ClassLoaders 27
vii

3 ✧ Custom ClassLoaders 61

4 ✧ Extensions 93

5 ✧ Threads 126

6 ✧ Threading issues 149

7 ✧ Control 174

8 ✧ Remote control 208

9 ✧ Configuration 225

10 ✧ Sockets 237

11 ✧ Servlets 283

12 ✧ Persistence 300

13 ✧ Business objects 340

14 ✧ Business object models 372

15 ✧ Middleware 402

16 ✧ Java Native Interface 463

17 ✧ Monitoring 510

ix

contents

foreword xv

preface xvii

acknowledgments xxi

about this book xxiii

goals of this book xxix

about the author xxxi

about the cover illustration xxxiii

1 Enterprise Java 1
1.1 Enterprise development 1

What is enterprise development? 1 G Developing the enterprise
application 4 G Reinventing the wheel 7

1.2 Three zeroes 8
Zero development 9 G Zero deployment 11 G Zero administration 12

1.3 Java in the enterprise 14
Sun’s view 14 G Alternate views 14

1.4 Why Java? 15
Criticisms of Java as a server-side language 17

1.5 Summary 25

1.6 Additional reading 26

2 ClassLoaders 27
2.1 Dynamic linking 28

Run-time dynamic loading 28 G Reflection 31

2.2 ClassLoaders: rules and expectations 37
Java .class file format 37 G Using ClassLoader 39
java.lang.ClassLoader 41 G Java name spaces 48

x CONTENTS

2.3 Java’s built-in ClassLoaders 49
java.security.SecureClassLoader 49 G java.net.URLClassLoader 49
sun.applet.AppletClassLoader 57 G java.rmi.server.RMIClassLoader 57
Bootstrap ClassLoader 57 G sun.misc.Launcher$ExtClassLoader 58

2.4 Summary 58

2.5 Additional reading 59

3 Custom ClassLoaders 61
3.1 Extending ClassLoader 61

FileSystemClassLoader 62 G HashtableClassLoader 66
CompilerClassLoader 67 G StrategyClassLoader and
ClassLoaderStrategy 71 G CompositeClassLoader 75
Other ClassLoader tricks 79 G Other ClassLoaders 80

3.2 On-the-fly code upgrades 80

3.3 GJAS: first steps 85
Goals 85 G Service 86 G Server 88 G ServerManager 90

3.4 Summary 92

4 Extensions 93
4.1 Types of extensions 94

Installed extensions 94 G Building an installed extension 95
Download extensions 96 G Building a download extension 98

4.2 Implications of the extensions mechanism 100
Distributed libraries through download extensions 100
Java EXEs; relation to C++ static linking 101

4.3 Packaging extensions 102
The build-time vs. run-time dilemma 103

4.4 The plug-in 104
The plug-in concept 105 G Enter plug-ins 107 G Marking a .jar file as
a plug-in 110 G PluginClassLoader 111 G Example:
PluginApp 118 G Uses for plug-ins 124

4.5 Summary 125

5 Threads 126
5.1 Why threads? 127

Concurrent processing 127 G Scalability per machine 128
Encapsulation 129 G Design and implementation 130

5.2 Java threads 130
java.lang.Thread and java.lang.Runnable 131 G Starting threads 137
Stopping threads 139 G Daemon threads 142 G Threads and
ClassLoaders 143 G java.lang.ThreadGroup 144

C O N T E N T S xi

5.3 Thread implementations in Java 146
Green threads 147 G Native threads 147 G Hybrids 147
Implications 148

5.4 Summary 148

5.5 Additional reading 148

6 Threading issues 149
6.1 Synchronization 150

Thread-local storage 152

6.2 Exception-handling with multiple threads 153

6.3 Thread idioms and patterns 158
Client-Dispatcher-Server 158 G Fire-and-forget 159
Active Object 160 G SpinLoop 160
Polling (PeriodicThread) 161 G DelayedFire
(ScheduledThread) 163 G Futures 164

6.4 GJAS 166
Adding thread support to GJAS 167

6.5 Summary 173

6.6 Additional reading 173

7 Control 174
7.1 GJAS 175

Local implementation 175 G Example: HelloService 186

7.2 Testing the LocalServer implementation 187

7.3 ExecService 189

7.4 HelloAgainService 193
ThreadServer 196 G Example: ConsoleControlService 201

8 Remote control 208
8.1 RMI implementation 209

Analysis 217

8.2 Other implementations 218

8.3 Necessary improvements 219

8.4 Additional reading 224

9 Configuration 225
9.1 Java models 225

Interface: ConfigProperty and ConfigProperties 226 G Usage 233
Configuration front ends 235

9.2 Summary 236

xii CONTENTS

10 Sockets 237
10.1 Simple socket services 237

SocketClient 238 G EchoService 243 G TimeService 245
Analysis 246

10.2 Encapsulation and refactoring 247
SocketServer 247 G Example: Echo2Service 254

10.3 Connection and ConnectionManager 255
Example: EchoConnection 262 G Example: HTTPConnection 263
Servlets 272

10.4 Advanced Socket services 273
SocketClassLoader and SocketClassService 273
Concept: RedirectorService 279 G Concept: FilterService 280
Other types 281

10.5 Summary 281

10.6 Additional reading 282

11 Servlets 283
11.1 Relationship to sockets 283

CodeServlet: A filtering servlet 285 G HeaderFooter: a redirecting
servlet 287 G Server-side scripting capabilities 289 G Servlets: Not just
about HTML anymore 290

11.2 Servlets and the n-tier application 292
Separating logic from content 293

11.3 Servlets as a poor man’s RMI 293
Example: RemoteStorageServlet 295 G Concept: poor man’s RMI 297
Concept: SOAP 298

11.4 Summary 298

11.5 Additional reading 298

12 Persistence 300
12.1 Java Serialization 301

Serialization to other places 302 G Security and Serialization 303
Customized Serialization 306 G Serialization and evolution 309
Replacement 313

12.2 Beyond the specification 317
Remote storage of objects 317 G Example: RemoteStorageService and
RemoteStorageClient 318 G Remote construction of objects 323
Example: RemoteObjectFactory 325

C O N T E N T S xiii

12.3 JDBC 330
Transient data, state data, data that Isn’t data 332
Example: JDBCClassLoader 334

12.4 Summary 338

12.5 Additional reading 339

13 Business objects 340
13.1 Modeling data 340

Two-tier Systems vs. n-tier Systems 341 G One-tier systems 341
Two-tier systems 342 G n-tier systems 342 G Benefits of an n-tier
model 343 G Business objects, entity relationships 346 G Example:
employee directory 346 G Business objects layer interface layer 348

13.2 Using the Business Object layer 366
Classic Presentation Code: GUIs 366 G Example: OrgTree 366
Feeling cheated? 370

13.3 Summary 370

13.4 Additional reading 371

14 Business object models 372
14.1 Example: HashtableModel 372

Overview 373 G HashtablePerson, HashtableEmployee,
HashtableManager 374 G HashtableModel: Creating objects 375
HashtableModel: Finding objects 378 G HashtableModel: Removing
objects 379 G Conclusion 379

14.2 Example: RDBMSModel 380
RDBMSModel: Storing Business Objects in an RDBMS 381
Overview 382 G RDBMSPerson, RDBMSEmployee,
RDBMSManager 384 G RDBMSModel: Creating objects 391
RDBMSModel: Finding objects 394 G RDBMSModel: Removing
objects 395 G Conclusion 397

14.3 Summary 400

14.4 Additional reading 401

15 Middleware 402
15.1 Why distribute? 402

Communication 403 G Performance 404 G Economics (clustering/
fault-tolerance) 405 G Reliability (clustering/load-balancing) 406

15.2 Distributed object design vs. classic object design 406
Stateful vs. stateless 406

xiv CONTENTS

15.3 Technologies 410
Raw access: Sockets 411 G Java RPC: remote method invocation 412
Analysis 417 G RMI/JRMP 419 G Object Request Brokers:
CORBA 428 G Object Request Brokers: Distributed Component Object
Model 432 G Message-Oriented Middleware: JMS 433
Objects across the wire: Mobile objects 435 G Objects across
the wire: shared objects 441

15.4 Employee middleware models 448
RMI implementation 451 G JSDTModel: Shared-object
implementation 452 G Analysis 460

15.5 Additional reading 461

16 Java Native Interface 463
16.1 Java Native Interface 464

Native code on the server 465

16.2 JNI essentials 472
Java calling native 472 G Native calling Java 478
JNI invocation 484 G JNI changes in JDK 1.2 492

16.3 Other methods of Java-to-native interaction 494
Sockets 494 G CORBA 494

16.4 Integrating the server: GJAS goes native 495
Making GJAS an NT service 495 G Using NT IPC mechanisms:
Named pipe 496

16.5 Other JNI uses 506
Debugging support 506 G JVMDI 507 G JVMPI 508

16.6 Summary 508

16.7 Additional reading 508

17 Monitoring 510
17.1 Importance grows 510

Liveness 511 G Notification 523

17.2 Summary 533

epilogue 535

index 547

foreword

As you probably have noticed, Java has arrived. My bookstore’s shelves sag under the weight of
hundreds of books about the wonders of Java. Even given my full-time commitment to educat-

d on

ard’s
uage,
J2EE
 and

 your

zero
 soft-
esult,
n the
tood

va. I
 very

oway
entor
xv

ing people about server-side Java development, there’s no way I can read everything publishe
the subject.

You may feel the time pressure too, but you will be glad you made time for Ted New
Server-Based Java Programming and its fresh approach. Instead of presenting Java as a lang
he begins at the true beginning: with Java as a platform. This is not a book about the new
APIs; it is a book on the correct use of the platform features that make these APIs possible
valuable. Whether you plan to pay top dollar for a Java server product or dream of rolling
own, this is a good place to learn the right questions to ask.

The underlying theme of the book is the three zeroes goal for server-development—
development, zero administration, and zero deployment. This is laudable, because very few
ware developers (and fewer authors) like to talk about administration or deployment. As a r
these aspects of products are frequently built last, and designed never. Ted also starts you o
right path for writing those first lines of code, by demonstrating how to use oft-misunders
platform features such as ClassLoaders, Serialization, threads, and JNI.

I can’t tell you this is the only book you’ll ever need to develop server-side code in Ja
can tell you that very few software books surprise me, very few bring a new perspective, and
few feel different from the others. This one did.

Stuart Hall
DevelopM

preface

In September1999, Sun Microsystems Inc. released the first draft of the Java2 Enterprise Edition
specification, and Java changed forever.

de of
va is

l Java
 con-

oxes,
 pur-

 Java
 JNI,
erver
lease
k to
ative

 1.1.
 was
 API.
 as a
long
ping

 def-
ange
cces-
asses,
xvii

Since 1997, developers and vendors have increasingly pushed Java toward the server si
the client/server architecture map. Where its original focus was in applets and web pages, Ja
now more at home on the web server or database server. Chances are, if you’re a professiona
programmer, and your work environment is doing anything with Java, you’re in a position to
sider, if not write, Java-on-the-server.

By this point, the ubiquitous story about James Gosling and an oak tree, cable set-top b
and the HotJava web browser are pretty much standard fare for Java programmers. For our
poses, Java’s life on the server is what’s important, not what came before that.

Java’s emphasis toward the server began in 1997 with the release of the 1.1 version of the
Developer’s Kit (hereafter referred to as the JDK). In JDK 1.1, Sun introduced us to JDBC,
and RMI. Many vendors, such as NetDynamics, had already begun pushing Java on the s
side, using home-grown proprietary connections to RDBMSs, and so forth, but the 1.1 re
finally solidified access to these critical server-side resources. RMI gave us the ability to loo
other JVMs, JDBC let us peek inside the RDBMS, and JNI gave us the ability to call into n
code for anything that wasn’t covered in the first two.

A few other technologies, of lesser hype but equal importance, also made their debut in
(It must’ve been a busy couple of months at Sun!) The Object Serialization specification
released as part of 1.1, but was buried along with Reflection in the JavaBeans specification and
Granted, Serialization was also a key part of RMI, but most Java enthusiasts saw Serialization
part of the JavaBeans specification, and not much more. Java archives, or JAR files, also came a
with the 1.1 release. Unfortunately, 1.1 JARs were nothing more than a convenience for ship
plural files around—no compression support was available until the Java 2/JDK 1.2 release.

Some linguistic changes came with 1.1, as well. Inner classes, anonymous classes, and a
inition for the reserved word “transient” finally came into being, partly in response to the ch
in the AWT event-handling mechanism. Adapter classes (whose only role is to provide an a
sibility layer from one interface to another) became trivial to code using anonymous nested cl
where before, it was monotonous and error-prone.

ACE

In short, the 1.1 release did far more to establish Java on the server than any subsequent
release to date. So why is all the current excitement about server-side Java centered on the Java 2/
JDK 1.2 platform?

Java2 (a.k.a. JDK 1.2 and beyond)
When JDK 1.2 was released in early 1999, Sun renamed it Java2 release. Initially, it didn’t sport

reset,
nt in
 run-
 sim-
ment

cing
make
ation
ding

 year.
nent
rket-
ware
nd it
some
vers”
tion,

ribes
 and

nam-
m on
milar

three

Is for
hich
xviii PREF

too much in the way of new features—instead, it offered enhancements to the existing featu
and sneaked in a few new tidbits of technology when people weren’t looking. Predomina
this release was the bundling of Swing, a.k.a. Java Foundation Class (JFC), into the core Java
time libraries. Beyond that, however, and the introduction of a standard Collections library
ilar in concept to the C++ Standard Template library, most of JDK 1.2 was one enhance
after another regarding the technologies introduced in the prior version.

Realistically, JDK 1.2 was something of an iterative release of JDK 1.1. Instead of introdu
radical new technology, as 1.1 did, the 1.2 release focuses on enhancing the existing APIs to
them more reliable, robust, and secure. In a sense, the Java teams simply took another iter
on the features that came with 1.2, making them more useful, ironing out the bugs, and ad
the necessary parts that were missing from 1.1.

A few other technologies that began to redefine the Java2 platform came out during the
First and foremost was the Enterprise Java Beans specification, providing a black-box compo
model for the Java platform. EJB introduced an entirely new set of terminology into the ma
place, all of which centered around the somewhat radical idea that a vendor could create a soft
framework,1 into which I could plug my server-side application’s logic and components, a
would all run seamlessly. This holds two interesting premises: one, that I don’t have to code
of the more generic functionality common to all servers, and two, that these “application ser
can provide additional value-added behavior that I may not otherwise code into my applica
such as load-balancing, clustering, or fault-tolerance.

Other technologies came along, as well. The Servlet specification, released in 1998, desc
a standard API for writing Java code that is executed upon HTTP request. The Java Naming
Directory Interface, (JNDI), provides a single API layer on top of different directory and/or
ing services, such as LDAP, CORBA Naming Services, the RMI Registry, even the file syste
your hard drive. The Java Transaction Service and Java Transaction API provide support si
to that found within conventional RDBMS systems.

What wasn’t apparent initially was Sun’s intention, over the course of 1999, to release
separate versions of Java:

• Java2 Standard Edition
This is the JDK we all know and love—all the java.* packages, the Swing and AWT AP
GUI interaction, and so on. If you’re a Java programmer, this is the version with w
you’re familiar and comfortable.

1 In the sense of a series of services available at run time from an opaque system.

xix

• Java2 Micro Edition
This is Java-for-the-embedded-device. PDAs, cellular phones, control systems mounted on
heavy machinery, even the ubiquitous Java Ring from JavaOne a few years back, all would
now fall under the J2ME specification. In many ways, this is where Java was originally
intended to live—on embedded CPUs and hardware, using the JVM as an insulation layer to
permit portability between embedded systems. This book will cover nothing of the J2ME

since
ergo-
elop-

high-
est.
pects
 code
lass-
 will
P RE F AC E

specification or details.

• Java2 Enterprise Edition
This is, from the server-developer’s point of view, the most exciting thing to take place
the “invention” of the Internet. At the time of this writing, J2EE was still in beta, und
ing specification review and editing, but if J2EE’s promise holds true, server-side dev
ment may take on a whole new dimension.

These three editions of Java pretty much run the gamut—from microdevices through
end server systems. Sun’s promise of “Write Once, Run Anywhere” seems ripe for the harv

Unfortunately, the promise is something of a misleading marketing ploy. There are as
of the Java environment in which your code runs that will have an effect on how well your
executes, or whether it even executes. Issues such as the JVM’s actual threading model, the C
Loader partitioning used within the application server, or the JNI support within the system
all trip you up if you’re not aware of them and aware of what they mean.

That’s where this book comes in.

acknowledgments

Many authors will tell you that they couldn’t have written their book by themselves, and that
there are far too many people to thank to list on an acknowledgments page. No truer words have

e; to

o try
 that

e and
ubly
Eliz-
 Ted
ted a
ften-

r this
ndra
nch,

ions,
Brad
ften-
bout

ook,
deas,
folks
e put

ents,
 this
xxi

ever been penned. A work such as this cannot be accomplished by one person working alon
even attempt such a task would be the utmost folly.

A variety of people contributed to the creation and polishing of this manuscript, and t
to thank them all would take half of my allotted pages. This isn’t to say I shouldn’t try, only
it’s nearly impossible to accomplish the goal.

To begin, I again wish to thank the folks at Manning Publications Co. for their patienc
faith in me as an author. It’s flattering to have a publisher approach you to do a book—it’s do
so to have them do it again. Marjan Bace, Denis Dalinnik, Syd Brown, Mary Piergies, and
abeth Martin are some of the best folks in the industry with which to work. Thanks too to
Kennedy for coordinating the technical reviews of this book. The entire staff demonstra
wonderful willingness to bend over backward to deal with an exacting author and meet the o
conflicting goals of producing the book, and getting it right.

Of course, no author in his right mind ever attempts a book alone, and the reviewers fo
book were invaluable in their comments and criticisms: Adam Smith, Bruce Arbuckle, Cha
Sekhar, Chris Pratt, Curt Powell, David Williams, Jim Graham, Kito D. Mann, Robert Ly
Shawn Echols, Stephane Trouche, Thomas Kuehne, and Tim Leist.

In addition, I need to thank my fellow DM instructors, for their awesome contribut
simply by standing still long enough for all of us to “talk Java”: Stu Halloway, Brian Maso,
Needham, Kevin Jones, Owen Tallman, Tim Ewald, Keith Brown and, of course, the o
imitated, never-duplicated Don Box. My appreciation of Java (and COM, XML, and just a
anything else in the industry) is so much deeper, thanks to their insights.

I also wish to thank the people with whom I’ve worked during the development of this b
most notably the folks at Dorado Software, in El Dorado Hills, California. Many of my i
originally bounced off them, grew into whole segments in this book. The same goes to the
at EdFund, in Rancho Cordova, California, where many of the principles of this book wer
into place, with their blessing and encouragement.

Every author who’s ever written an acknowledgments section has also thanked his par
and I’m no exception. A more loving, supportive, wonderful couple simply doesn’t exist on
planet. Mom, Dad, all that I am, I am because you taught me to be this way.

NTS

I must thank my own family: Michael, who surrendered too many nights of Nintendo with
Dad, so that I could work; Matthew, whose birth firmly reminded me of what’s really important;
and most of all, Charlotte, who understood what writing another book meant, and gave me her
blessing, despite expecting our second child just a month before the book’s manuscript was due.
Other authors may claim it, but my wife is the most supportive, loving, wonderful woman in the
world. Without her, I would be lost.
xxii ACKNOWLEDGM E

Now, if you’ll excuse me, I have some Nintendo to catch up on.

about this book

With a book like this, there are bound to be a few questions the reader has before beginning.
This segment will explain what each chapter covers and attempt to answer questions that I think

w at
rrow

quir-

n an

tion.

min-
 find
 (and
Web
lient
king
f the

nter-
ware,
elop-
ent,
xxiii

the hypothetical reader might ask.

The ideal“three zeroes”?
There is an ancient (perhaps misattributed) Indian proverb that states, “If you aim your arro
the sun, you will not reach it. But your arrow will climb higher and go farther than the a
aimed at the ground.” In this book, I aim for three potentially unreachable goals:

• Zero Development—the idea that we can develop new features or additions without re
ing any additional programming,

• Zero Deployment—the idea that we can make those changes available to clients i
entirely invisible fashion, and

• Zero Administration—the idea that systems can run automatically without human interven

These are obviously lofty goals, perhaps worthy of ridicule. But examine any network ad
istration system, ask any system administrator, talk to any application developer, and you’ll
that these are the very goals we work toward in our software. Object-oriented programming
before it, modular decomposition) posited the idea of “Tinkertoy software,” and still does.
applications aim squarely at the zero deployment arena—the only client-side piece the c
needs is a web browser. And SNMP, DMTF, and a host of other acronyms are all about ma
the network easier to administer. So why not try to fold these concepts in at the beginning o
project, instead of shoehorning them in at the end?

What does this book cover?
Chapter 1 focuses on enterprise Java, using Java to develop applications for the corporate e
prise—that is, software that’s not intended to be sold as shrink-wrapped off-the-shelf soft
but custom-developed for in-house use. To understand Java’s applicability in enterprise dev
ment, I first have to explain what I mean by that term; then I can talk about zero developm
zero deployment, and zero administration.

OO K

ClassLoaders, which play a significant role toward meeting zero deployment, are covered in
chapter 2. We examine the basic nature of ClassLoaders, and how they can be used to update code
on the fly within a running server.

With the background and understanding of ClassLoaders, in chapter 3 we investigate how
far we can go with them. We go so far as to introduce ClassLoaders that can build code at run
time for execution within the same JVM.

xten-
(zero
evel-
ion).
cause
ently
early

 who

echa-
t and

ister
inis-
takes
ter 8.
own,

 sup-
oring
 and
 zero
ve as

serve

n the
s can
vide
evel-
 data
 well

fined
pters
xxiv AB OU T T H I S B

The Java 2 extension mechanism provides golden opportunities for the three zeroes. E
sions, covered in chapter 4, can be written to pull code from other locations when requested
deployment). Extensions are also the fundamental reusable code-library component (zero d
opment), and are trivial to install within a user’s Java run-time environment (zero administrat

Chapter 5 covers threads, which provide an important part of the server architecture, be
of their concurrency capabilities as well as performance benefits. While they may not inher
contribute to the three zeroes, many of the techniques described in this book would be n
impossible without threads.

Chapter 6 helps the reader through the pitfalls of using threads. The Java developer
doesn’t understand those issues runs serious risks of thread starvation, deadlock, or worse.

Creation of a generic server framework requires a consistent generic server control m
nism. A generic control mechanism, explained in chapter 7, provides both zero developmen
zero administrative benefits.

Control of an application (or application server) isn’t always about being able to admin
the application directly from the machine on which it sits. Too often, developers and adm
trators make mistakes that cost the corporate data center valuable up time, when those mis
could be prevented by accessing and controlling the application remotely, the subject of chap

Chapter 9 shows you how to configure an application on the fly without bringing it d
and how to deal with setting or tuning parameters during the lifetime of the application.

In chapter 10, we discuss the ubiquitous TCP/IP socket framework, and Java’s excellent
port for it. We start by implementing simple services, then pursue zero development by fact
out common code and building a generic multithreaded ConnectionService to handle any
all socket communication. As proof, we build an HTTPConnection service. In pursuit of
deployment, we build a SocketClassService and corresponding SocketClassLoader, to ser
server and client (respectively) for loading classes over a network.

Chapter 11 focuses on servlets, which represent an easy replacement for CGI scripts and
as the fundamental heart of the JSP technology.

Chapter 12 covers Serialization and JDBC. Serialization can play an important role o
server, not only as a means by which objects can be stored, but as a means by which object
be exchanged between processes. In addition, we look at how we can use Serialization to pro
both remote storage and remote object construction facilities. JDBC plays a key role in the d
opment of server applications, since most corporations and companies currently store their
inside of an RDBMS. Here, we discuss how to use the RDBMS to pursue zero deployment, as
as some of the new features of JDBC 2.0.

In chapter 13, we pursue zero development by creating a well-encapsulated, cleanly de
object model on top of enterprise systems. We set up a running example for the next several cha

xxv

by implementing a Business Object Interface layer representing a corporate employee-tracking sys-
tem. Because the actual implementation is hidden from clients, applications can be written without
needing to know the details of where or how data are stored, making it easier for developers to mod-
ify, enhance, or even completely replace the underlying data-storage layer(s). Two such applications
are demonstrated.

Once we’ve built the Business Object layer, we need implementation to back it. In chapter 14,
e the
, and
eral.

to be
e the
sock-
 and
men-

ative
Why
s and

their
l is it
arties

 the
 con-
 Java
ming

most
there
years

ight
 time
A BO U T T H I S B O O K

I present two such possibilities—one using an in-memory collection of Hashtables to stor
objects, the other using the ubiquitous RDBMS. We discuss the particular “quirks” of each
demonstrate how those quirks can be resolved without invalidating the n-tier approach in gen

Building object models that live entirely on one machine is not enough. Objects need
accessible from other workstations and systems across the network. In chapter 15, we examin
various ways of making our EmployeeModel business object system distributed, using plain
ets, RMI (both RMI/JRMP and RMI/IIOP), CORBA, JMS, JSDT, and even mobile objects
Microsoft’s DCOM. We discuss the advantages and drawbacks of each, and build two imple
tations as examples.

Chapter 16 looks at Java’s unique properties allowing it to call—and be called by—n
C/C++ code. This in turn offers opportunities for not only code, but entire system reuse.
tear down an existing system and rebuild it from scratch, when Java classes can directly acces
call the system in its native form?

Server applications don’t exist within a vacuum; people are interested in the details of
execution, ranging from the most basic of “Is it still running?” to more complex “How wel
working?” statistics. In chapter 17, we build a generic HeartbeatService to allow interested p
to know when the associated Service goes down.

Aren’t some topics ignored?
Yes, specifically, EJB and Java’s Security model. We talk briefly about CORBA and RMI in
chapter on middleware, but it is not intended as a tutorial. I don’t cover servlets except in
ceptual discussions. (For a thorough discussion of servlets, I recommend Alan Williamson’s
Servlets By Example from Manning Publications Co., or Jason Hunter’s Java Servlet Program
from O’Reilly.)

Why isn’t this a book on EJB?
Because we, as an industry, don’t know enough about EJB’s usefulness to write about it.

EJB, as a technology, has only been available as a standard since the middle of 1998;
vendor implementations have been out for a year or so, at the time of this writing. So what is
to write about other than the specification itself? Remember, it took us no less than three
of using Java to determine that its greatest application was not applets.

Why isn’t this a book on CORBA or RMI?
Because there’s more to server-side development than just distributed systems.

Not all systems require distributed objects. In fact, I’ve seen a couple of systems that m
have performed better had they not been designed with distribution as a core concept. Any

OO K

a system starts strewing objects across the network, performance takes a hit—why introduce that
latency if it’s not necessary?

Don’t misunderstand—I love distributed objects. But it’s also true that a number of server-
side applications never have to leave the server for any reason. In many cases, it is certainly possible
to design a distributed object system to do the same thing, but would anything concrete be gained
by it? Naturally, it depends on the actual application and its need to interact with the “outside

uted
with

p by
word
rma-
 user
f any
For a
igital
sley.

dard
 and
nted

cepts
ivity-
writ-
, the
back

ckets
quire
data-
ually
d-on

gies,
at all
xxvi AB OU T T H I S B

world” (that is, anything not on the box in which it lives). But it’s also possible to build distrib
object systems that have nothing to do with RMI or CORBA; these technologies (along
DCOM, for that matter) simply make it easier to do distributed objects.

Why isn’t this a book on security?
There simply isn’t room in one book to talk about the wide and deep implications opened u
security. Security in an enterprise application can range from the ubiquitous Username/Pass
dialog at the start of every application, through SSL sockets to send digitally encrypted info
tion from client to server, to a full-blown government-secure system with widely varying
roles, authentication tokens, and access control lists. What’s more, I don’t consider mysel
kind of security expert. We will discuss security in the context of enterprise applications.
detailed discussion of the Java 2 security model, or Java cryptography extensions, or even d
signatures in applets, I recommend Li Gong’s Inside Java2 Platform Security from Addison-We

What do I need to know to read this?
You need to know Java, obviously.

Specifically, you need to be comfortable with the technologies found in the Java2 Stan
Edition. This is not an entry-level text. I presume that you, the reader, are familiar with Java
its corresponding introductory topics. This book is about using Java to write server-orie
applications—I have to assume you “know” Java.

This also assumes that you have a rudimentary understanding of some of the basic con
of the technologies Java encompasses—sockets, SQL, RMI/CORBA/some-other-connect
tool, and so on. You should have an understanding of how sockets work in Java, how SQL is
ten, as well as the basic concept of RMI programming. If those concepts are a mystery to you
chapters on those topics won’t help you much. I am not suggesting that you put the book
or take it back for a refund—it just means the concepts may not sink in as quickly.

Why is this book on ClassLoaders, Threads, Sockets?
Another way to phrase this is, “Why do I need to learn about ClassLoaders, Threads, or So
instead of EJB?” The answer is in the form of an analogy: not all server applications will re
an EJB server; not all server applications will require servlets, or RMI, or even a relational
base. To use such technologies would be overkill, and would require far more work than act
necessary—think of how comfortable you’d feel if the carpenter you’ve hired to build an ad
to the garage showed up with dynamite and a blueprint for rebuilding your entire street.

By focusing on ClassLoaders, Threads, Sockets, and so on—as well as other technolo
such as RMI or CORBA, I’m trying to show how Java works to solve server-side problems

xxvii

levels: from the small-scale simple distributed application (did you know you can do dynamic
code download without RMI?) to the enterprise-wide n-tier system based on CORBA or EJB.

Why is all the code written for Java 2 (JDK 1.2)?
Around early 1999, Sun released JDK 1.2, which the company referred to as the Java 2 platform.
Despite Sun’s best efforts, there are some marked differences between JDK 1.1 and JDK 1.2, which

rcent
ween
 issue

1.2
an a

d for

2. As
ion.2

itera-
ound
scus-

point
rator
com-
 and
esign

esign
 pat-
both
vides

ham-

 File-
A BO U T T H I S B O O K

I felt necessitated a conscious decision to target this book at one or the other. Granted, 99 pe
of the book is applicable to both platforms. However, understanding the differences bet
them, the problems that will arise when porting code from JDK 1.1 to JDK 1.2, will be an
for many Java developers over the next year.

The code for all samples and applications was developed using the Windows release of JDK
(and later minor-version upgrades) from Sun, using nothing more sophisticated as an IDE th
text editor and a makefile. None of the code, except where specifically mentioned, was teste
JDK 1.1 or 1.0.

It’s my belief that, in time, more and more JDK 1.1 code will be brought over to Java
a result, this book spends little time as possible on JDK 1.1-specific code, concepts, or discuss

Why the constant reference to “patterns”?
I believe that design patterns (the concept) are becoming critical to design discussions and l
ture. In a study of heavy patterns usage by four corporations, James O. Coplien of AT&T f
that one of the major benefits of the patterns groups is a common vocabulary for design di
sions and architectural sessions.

I use the patterns from Design Patterns in much the same way—within the text, I will
out how “X is a classic Singleton pattern,” or that “this design is a slight variation on the Deco
pattern,” and so on. In this manner, I’m using the shared vocabulary of the design pattern to
municate not just the static class hierarchy one can expect, but also the run-time behavior
consequences and implications of this design. I can communicate an entire aspect about a d
by saying, “Z behaves as an Abstract Factory” that would otherwise take up entire pages.

If you’re not familiar with patterns, a good place to start is the “Gang Of Four” book (D
Patterns, by Gamma et al, from Addison-Wesley), or visit Brad Appleton’s introduction to
terns, available at http://www.enteract.com/~bradapp/docs/patterns-intro.html. Ideally,
should be read, but either one gives a good background on the patterns concept, and pro
working knowledge of the patterns described within this book.

What code conventions are used in this book?
This book uses some conventions to bring important messages to the reader’s attention or
mer home a certain point.

Command line examples, sample output, and code listings are set in a fixed-pitch font.
names, new words, and emphasized words are italicized.

2 With the release of the JDK 1.3 in May, this will only heighten the move over to the Java 2 platform.

OO K

In the code comments, the “/**” and “*/” pairs are javadoc comments; “//” comments are
“implementation” comments.

While not exactly a convention, much of the code in this book is presented incrementally
and in accordance with changing needs and/or requirements. In other words, the code is pre-
sented initially and a section or a chapter later, it may be changed to demonstrate how most
server development takes place. This ripple effect will show how this modification affects the rest

pub-
). I

il to
 to as
e its
hite

com/
xxviii AB OU T T H I S B

of the system.

Source code downloads, extensions, and errata
The source code for all of the examples presented in this book is available from both the
lisher’s website (www.manning.com/neward3) and my own website (www.javageeks.com
encourage you to send me your comments, opinions and (sigh) bug reports by ema
tneward@manning.com or tneward@javageeks.com. I will certainly do my best to respond
many comments as reasonable and possible. What’s more, I’d like for the book to continu
development as the Java platform continues to change and mature, initially by posting w
papers and/or corrections/errata on both the publisher’s website (www.manning.
Neward3), as well as my own (www.javageeks.com/SBJP).

goals of this book

By the end of this book, you should be able to write an application server, complete with every
feature you could possibly want out of a commercial application server system.

ions,
r will
n’t—

tions
 may
 fails.
f the

 own
 that
etter

r add

 new
harp

 least
xxix

I have four goals for you:

• Understand some of the basic concepts that go into an application server.
Application servers aren’t just about new technologies. Java is built on solid foundat
and understanding those foundations and how they’re used inside an application serve
give you a solid background for understanding what an application server can—and ca
do for you.

• Be able to incorporate some of those concepts into your own code.
Not everyone is going to use an application server for the code. In some cases, corpora
won’t want to pay what application server vendors are asking. In other cases, the project
be simply a proof of concept, with an emphasis on keeping costs low in case the proof
In still other cases, the application system simply may want to incorporate only a few o
features of a commercial application server.

• Use the code that comes with the book in your own systems.
The code in this book is a simple example of how these concepts can fit within your
systems. Most of the code is good enough to act as a starting point for developing code
best fits your own needs. Many of the examples and code samples are contrived to b
highlight my point. Feel free to rip out the parts of the sample code you don’t need, o
the parts you do.

• Prepare you for the coming changes in server development.
The release of the J2EE specification changes some of the rules. Understanding the
rules, the reasons for them, and what it all means is important if you want to remain s
as a Java developer.

This book isn’t the answer to all of your questions, but by the end of it, you should at
have a good idea of what questions to ask, if not how to answer them.

about the author

I’ve been a software developer, in the loosest sense of the term, since our family purchased its first
computer, an Apple II+, with a whopping 48K of RAM (which we soon upgraded to the flat-out

bler,
hine,
ay.

rking
akers
. I’ve
 Java
ment

 I am
n not
 sons,

se by
paq

obe’s
sing

.2.2)
built
f the

n.org
xxxi

maximum of 64K) back in 1978. I’ve written code in Applesoft BASIC, Apple 65C02 Assem
and even a few Logo programs, just for kicks. I think my parents still have that old mac
gathering dust somewhere in the basement but just too full of memories to simply throw aw

More recently, however, I’ve been a software architect, first in C++, then in Java, wo
in the Sacramento area for the past five years or so. I’ve worked for firms such as Intuit, m
of the Quicken personal finance software package, and large corporations like Pacific Bell
seen development teams of all sizes, shapes, and methodologies (or lack thereof), using both
and C++, building software ranging from consumer applications such as Quicken to develop
systems built in 100 percent pure Java to enterprise systems rolled out across the state.

I am an independent software consultant/contractor in the Sacramento, California, area.
also an instructor with DevelopMentor, teaching Java and RMI to anyone who’ll listen. Whe
teaching classes, or writing books, I enjoy spending time with my wife, Charlotte, and our two
Michael (age 6) and Matthew (age 8 months).

Readers often express an interest in the actual environment and hardware/software in u
an author when developing the text, code, or both, of a book. This text was written on a Com
Presario 1810 laptop using Microsoft Word 97 as the word-processing program, and Ad
Acrobat PDFWriter print driver to prepare drafts for reviewer perusal. Code was developed u
a text editor, the command-line, and Sun’s Java Development Kit 1.2 (and later, 1.2.1 and 1
on both the aforementioned laptop running Microsoft Windows98 as well as on a home-
PentiumII-350 workstation running Microsoft WindowsNT4.0 Service Pack 5. Portions o
code were also tested on a Pentium-90 RedHat 5.2 Linux server, running the Blackdow
Linux port of Java 1.2 (prerelease 2).

about the cover illustration

The cover illustration of this book is from the 1805 edition of Sylvain Maréchal’s four-volume
compendium of regional dress customs. This book was first published in Paris in 1788, one year

e par
than
lored

rld’s
rsity

inent
ainly
com-
puter
ught
 peo-
xxxiii

before the French Revolution. Its title alone required no fewer than 30 words.

Costumes Civils actuels de tous les peuples connus dessinés d’après nature gravés et
coloriés, accompagnés d’une notice historique sur leurs coutumes, moeurs, reli-
gions, etc., etc., redigés par M. Sylvain Maréchal

The four volumes include an annotation on the illustrations: “gravé à manière noir
Mixelle d’après Desrais et colorié.” Clearly, the engraver and illustrator deserved no more
to be listed by their last names—after all they were mere technicians. The workers who co
each illustration by hand remain nameless.

The colorful variety of this collection reminds us vividly of how culturally apart the wo
towns and regions were just 200 years ago. Dress codes have changed everywhere and the dive
by region, so rich at the time, has faded away. It is now hard to tell the inhabitant of one cont
from another. Perhaps we have traded cultural diversity for a more varied personal life—cert
a more varied and exciting technological environment. At a time when it is hard to tell one
puter book from another, Manning celebrates the inventiveness and initiative of the com
business with book covers based on the rich diversity of regional life of two centuries ago, bro
back to life by Maréchal’s pictures. Just think, Maréchal’s was a world so different from ours
ple would take the time to read a book title 30 words long.

C H A P T E R 1

Enterprise Java

 dive
blish
1.1 Enterprise development 1
1.2 Three zeroes 8
1.3 Java in the enterprise 14

1.4 Why Java? 15
1.5 Summary 25
1.6 Additional reading 26

Java is ready for prime-time in the enterprise development arena. Before we can
into reams and reams of code, concepts, ideas, and explanations, we need to esta
he three
se devel-
jump on
rprise.
a common lexicon, defining what I mean by enterprise development and t
zeroes. Next, we’ll briefly cover Sun’s perspective on what Java as an enterpri
opment language (and platform) means, and what alternatives exist. Last, I’ll
the soapbox and talk about the features of Java that make it ideal for the ente
hool,
has a
t not
 log-
 past
por-

bina-

et of
pany,
1

1.1 ENTERPRISE DEVELOPMENT

When an organization, from the largest corporation to the smallest church or sc
decides to acquire a software system to do X, it makes that decision because it
need. That need might be to make products available to customers who migh
otherwise know about them, to make data available to its internal employees in a
ical, consistent manner, or to be able to perform analysis on the organization’s
history and attempt to predict the future by that analysis. The need itself is unim
tant—but the fact that the organization has decided it wants to use some com
tion of computer hardware and software is pertinent.

1.1.1 What is enterprise development?

Enterprise development (ED) is any application, set of applications, utility, s
utilities, or systems and/or infrastructure developed for use by a particular com

JAVA

corporation, or collection of users. Enterprise applications can take many shapes and
forms, and can span different, and sometimes divergent, technologies. Relational
databases, legacy systems, the internal web server, even individual Microsoft Access
databases sitting on users’ desktops, are all part of the back-end of the enterprise
development arena.

ED is different from other forms of development (such as commercial product

e end
nical
on to
sales-
ppli-
users
now
e do

ment
tion.

 fire-
ating
here,
d are
mea-
orry

has a

often
on is
 cor-
ents,
This
sure

nfor-
more
nges

 than
veral
2 CHAPTER 1 ENTERPRISE

development), in that:

• ED applications are able to make better assumptions.
If the application is for internal use, then we have a better idea of not only th
user’s desktop computers and attached equipment, but also the average tech
level of the end users themselves. Because of this, we can tailor the applicati
better adjust for our users’ particular needs. If the application is for traveling
men using the Internet to access our inventory warehouse then we write the a
cation knowing that bandwidth is a critical concern. If the application is for
sitting in four separate locations in three different time zones, then we k
already that time synchronization (“If we use a time stamp, whose time zon
we use?”) will be an issue. If the application is a help-desk-ticket-manage
type, then we can assume the users have a certain level of technical sophistica

• ED applications are typically internal.
Most often, enterprise applications are executed on the inside of a corporate
wall; issues common to Internet applications, such as line-security (necessit
the need for secured sockets and signed certificates), are less of a concern
because it can be assumed that the users are known to the company an
authorized to use the application. This doesn’t remove a need for a certain
sure of security within the application, but at least we no longer have to w
about hackers sniffing the packets between the servers and the clients. This
number of related sub points.

• ED users are typically close by.
When the target users for the application are internal to the corporation,
the actual users are within close physical proximity. Even if the applicati
destined for a user group two continents and an ocean away, because the
poration typically doesn’t restrict communications between its departm
the end user of the application is just a phone call, email, or fax away.
means users can be pinged directly for feedback on the application, to en
that the application is, in fact, what they need to solve their problem. U
tunately, this is a two-edged sword—closer proximity can often mean
interference if this is not managed properly. It can also mean greater cha
in the application’s functionality and user interface.

• ED applications are typically shorter-cycled.
Because of the closer proximity of the users, which fuels greater feedback
commercial developers see, ED applications will typically undergo se

3

revisions in the same period that a commercial application undergoes a single
release. This is often referred to as taking an iterative approach during the
project’s development.

• ED applications often get less QA time.
When applications are written for internal use only, there seems to be a greater
willingness to release without doing a full test cycle. This means developers

hute,

r the
pon-
stem
 new
 walk
a the
l.

ome-
tion’s
ng to
orate
must
 ven-
ffer-

hem-
 that
age-

istra-

 time
 next
ntro-
(also
ue to
tion.

An ac-
ration.
ENTERPRISE DEVELOPMENT

need to be more cognizant of the fact that they’re flying without a parac
and need to code accordingly.

• ED applications cannot assume end-user responsibility.
Within the average corporation, the end users are not responsible fo
installation and maintenance of their desktop computers; instead, that res
sibility falls upon the information technology group, typically the sy
administrator or help desk section. In some cases, this means that every
release of an enterprise application requires an IT technician to physically
around to each and every user’s machine, install the application (either vi
internal network or SneakerNet), and verify the installation was successfu

• ED applications must be more user reactive.
If the end user has a problem, the call goes to the internal help desk, or s
times to the developers directly. Under no circumstances can the corpora
developers get away with taking the user’s name and number, and offeri
call back later. Such behavior will typically get escalated to whatever corp
officer needs to hear it to get the problem fixed. Instead, developers
jump onto every bug and determine what the problem is. Commercial
dors have more of an insulating layer between them and the users, thus o
ing a bit more of a cushion regarding immediate bug fixes.1

• ED applications typically require some degree of expert administration.
Enterprise applications, unlike commercial applications, don’t stand by t
selves. Typically, the enterprise application has a degree of administration
accompanies it, even if that administration is limited to user-security man
ment (adding users, removing users, and so forth). Who does that admin
tion, is, for purposes of this discussion, irrelevant.

• ED applications must work within the existing architecture.
After the corporation has sunk major money into an infrastructure is not the
for developers to be approaching the boss with suggestions about doing the
application in “<insert-the-latest-technology-here>.” The same is true of i
ducing new tools into the administrative arena—systems administrators
referred to as system administrators) will not be happy if developers contin
throw new tools and/or servers at them with each new enterprise applica

1 This is not to say that commercial software developers aren’t, or shouldn’t be, responsive to users.
ceptable 1-day turnaround for commercial help-desk responses is never acceptable inside the corpo

JAVA

Each new tool or system represents not only another step on the learning curve,
but an additional point-of-failure within the corporation’s infrastructure.

All of these items are pros and cons. Each provides its own unique challenges that
must be met and mastered by the corporation’s developers, or disaster awaits. Fortunately,
Java’s strengths can be leveraged, through the use of commercial application servers as

lems.

t has
se or
stem
rsus-
de in

ook,
osed

ses:

run-
n the
 try-

 JVM
, you
func-

ding
your
tions
JB or
e no
 the
lica-
der-

huge

ellular
hinery.
4 CHAPTER 1 ENTERPRISE

well as through the techniques described in this book, to solve many of these prob

1.1.2 Developing the enterprise application

Once the decision is made to develop the application, the organization nex
another choice: whether to construct the software from scratch using in-hou
contracted software development professionals, or to purchase an off-the-shelf sy
or suite of tools to solve the need. This is commonly referred to as the buy-ve
build decision, and can, depending on the size of the proposed project, be ma
fleeting seconds or over a course of months.

I bring this decision to the forefront of the reader’s awareness because this b
by its very nature, partly assumes that the decision being made is to build, as opp
to buy. I say partly, because learning this information serves two distinct purpo

• Not all applications require a full-fledged application server.
Some may be small-scale systems that are intended for low-end systems—
ning a full application server would be overkill and consume far too much i
way of resources. Some may be systems targeted for embedded systems,2 and
ing to run a full application server would simply tax the embedded device’s
to the limits. By learning the techniques and technologies described herein
can build your own miniapplication servers that provide much of the same
tionality at half the cost.

• Understand the application server’s environment.
Even if your application does make full use of the J2EE model, understan
what’s happening under the hood can be critical to understanding why
application behaves as it does. Without that knowledge, many of the restric
and requirements of the J2EE model (such as the restrictions within the E
Servlet API specifications) will simply make no sense. Restrictions that mak
sense in turn cause developers to start looking for ways to code around
restriction. This in turn can cause huge problems down the road as the app
tion is deployed, and performs poorly—or worse, simply fails entirely. Un
standing what’s happening in the scaffolding around your application is a
bonus for J2EE application developers.

2 Sun has also released the “Java2 Micro Edition,” targeting small systems like hand-held PDAs and c
phones; there is no reason to believe that J2ME won’t migrate over to embedded systems on larger mac

5

Building enterprise software offers the advantages of control, knowledge, and
domain familiarity.

Control

No off-the-shelf product will ever do everything an organization wants because ven-
dors want to remain as generic as possible, in order to remain appealing to a broader

more

 por-
p to

ndor
at in
time,
rsion
leads
 ven-
 with

cycle
osals.
es or
ill be
es no
5 (or
needs
.
fixed
t the
ment
ature
g the

 the-
make

pen
nity.

 soft-
e the
o the
ENTERPRISE DEVELOPMENT

range of potential customers, and organizations are demanding more and
domain-specific tasks of software and software systems.

The response time of the average vendor-to-customer demands drives a large
tion of this. If a customer finds a bug within a system, and reports it, it can be u
six months before a new version is released correcting the bug. In some cases, a ve
will make a patch available to the customer to correct the immediate flaw, but th
turn offers up versioning issues for the vendor. When the customer calls the next
with another problem, how can the vendor’s technical support staff know what ve
the customer is using? Is this bug due to the patch, or is it something else? This
to heartache on both sides of the relationship; the customer becomes angry at the
dor’s lack of concern for the customer’s needs, and the vendor grows frustrated
the incessant demands from its customer base.

As if that weren’t enough, customers’ needs change as time and the business
move forward. Vendors are flooded with feature requests and enhancement prop
Good capitalism demands that the vendor move immediately on those featur
enhancements that are demanded by many customers. However, no vendor w
able to respond to all feature or enhancement requests, if only because it mak
business sense to spend $100,000 to develop a feature for a customer paying $49
$5,000) for the next product version. This is scant comfort to the business that
that feature in order to move forward with its plan to capture the entire market

By building the software within the corporate boundaries, bugs can be
immediately and new features or enhancement requests can be implemented a
desire of the organization’s IT management staff. As with most software develop
vendors, no IT staff is so large or well-staffed as to be able to handle all fe
requests; however, this time, it is the organization’s management that is makin
need-versus-want decisions, and not an outside party with a different agenda.

The Open Source movement makes tremendous strides along these lines—in
ory. Since you have full access to the source, you can simply jump into the code,
the change, and move forward. If your organization is a real supporter of the O
Source movement, you’ll even make your change(s) available back to the commu
Unfortunately, this model fails on a few points:

• You must understand the source.
Few corporate enterprise developers have the time to fully comprehend the
ware they’re maintaining, much less an entirely new system that’s outsid
corporate domain. To tell your boss that you need six months to dive int

JAVA

Open Source project’s source base just to understand where to make your feature
enhancement is not going to make you popular.

• You must have a certain level of skill to understand the source.
Unfortunately, not everyone on the corporate development team is of a skill level
to even be able to dive into the Open Source project’s source base. Certainly,
with enough time, the most energetic newbie could do it—but does the corpora-

h an
ange,
 fails
ndor
exists

est—
urce
nefit
egan
ple-

ft for
l.

e as

s yet
: the
 only
p to
evel-
ent,

peri-

 one
tion.
logy
em-

o its
s to
6 CHAPTER 1 ENTERPRISE

tion have the time to spare?
• Open Source projects are noncorporate entities.

Bluntly put, you can’t throw corporate weight around when dealing wit
Open Source project group. Because there’s no contract, no monetary exch
there’s no leverage for the corporation to use when the Open Source project
in some manner. With a corporate product, the corporation can take the ve
to court, if necessary, to obtain the support it needs. No such mechanism
for corporations to use against Open Source projects.

• Open Source projects aren’t customer-centric; they’re developer-centric.
Eric Raymond, in his online work “From a Cathedral to a Bazaar,” states it b
Open Source projects are created because “the developer has an itch.” Open So
projects aren’t done for the benefit of the customer, they’re created for the be
of the programmers. In each and every case, a developer saw a need and b
work on it. If a feature request came in from outside the project, it gets im
mented only if a developer on the project feels like doing it; otherwise, it’s le
someone else to pick up. Unfortunately, that goes for documentation, as wel

Open Source projects are most definitely a useful resource from which w
developers can draw.

Knowledge

Software development is possibly the most complex act of creation mankind ha
attempted. Building bridges and vehicles is a relatively straightforward science
laws of physics are immutable. Even the most sophisticated combat aircraft has
70,000 or so moving parts. A software project, on the other hand, can contain u
several million executable lines of code, all of which can affect one another. As d
opers build the software, they learn lessons about the nature of software developm
which in turn makes them more efficient and effective for the next project. Ex
ence remains the best teacher.

Domain familiarity

No one better understands the organization’s needs than the organization. No
better understands the organization’s process and practices than the organiza
While software technologists may be able to describe how their software techno
can solve some of the organization’s needs or problems, only the organization’s m
bers can know the unique business rules and logic the organization applies t
data. The organization’s IT staff may be able to adapt the vendor-built system

7

the organization’s needs, but it will always remain that—a system adapted to the
organization’s needs, and not one grown from within the organization, with the
organization’s processes and business logic understood from the beginning.

Disadvantages

Unfortunately, building software within the organization carries with it three major
hen

s are
 code
tall it

edi-

t out
t on-
 mil-
esn’t

r sys-

tures
 like
reen.
ouse
efore

 is to

lica-
 off-
 and
, the

 buy
ality
ENTERPRISE DEVELOPMENT

disadvantages, which are typically the points on which a vendor will focus w
marketing a product:

• Time
To develop software takes time, no matter how many people or resource
thrown at the project. Analysis must be performed, design must be created,
must be written, the system must be tested, and the administrators must ins
when finished. For an organization that wishes to implement its project imm
ately, this sort of delay can be unacceptable.

• Money
To develop software also takes money, either through contracting the projec
to a third-party development house, or through hiring to build the projec
site. Either way, for nontrivial projects, this can represent thousands, if not
lions, of dollars the organization may not be able to afford. This also do
include the costs of the resources the developers will need, such as compute
tems, software tools, office space, and so on.

• Expertise
Building software itself is hard, but building software with advanced fea
such as scalability, fault-tolerance, or automated failover support can be
attempting to scale Mount Everest wearing only shorts, sandals, and sunsc
Vendors have had years to perfect their performance-tuned software; in-h
developers will often be lucky if they get a full month to test the software b
it ships to the rest of the organization.

Therefore, the goal of the organization driven to build enterprise software
minimize these three costs of custom software development.

1.1.3 Reinventing the wheel

I am not advocating that developers reinvent the wheel for each enterprise app
tion. I’m an avid advocate of reusability wherever and whenever possible. Buying
the-shelf software, including application servers, is one of the best forms of reuse
is certainly cost effective. Unfortunately, as with all other things in this industry
buy decision comes with its own costs and consequences.

Does that mean that this book is useless to you if your company decides to
the application server, rather than build some of the application server’s function
into the custom-developed enterprise application? Of course not.

JAVA

This book offers you several advantages in working with commercial (or Open
Source) application servers or engines:

• Greater familiarity with the concepts.
Application servers have a number of areas within which they’re going to need to
work, and these are discussed within these pages. ClassLoaders, for example,
constitute an area that every application server will need to consider—and such

inis-

nter,
uires
stem
ad of
hem.
let to

ati-
win-
 dur-
ry to

e dis-
 ven-
ava2.
 how

 with
urce
e the

lking
serve
 out,
’s an

roud.
8 CHAPTER 1 ENTERPRISE

decision is one that could easily affect the way your application, or the adm
tration of your application, behaves.

• Gain the ability to provide the features not provided by the app server.
Suppose you are working on developing servlets for your corporate data ce
which aspires to the five-nines concept, but the servlet engine you use req
the servlet engine to come down in order to reload a new servlet. Your sy
administrators are not going to be happy about accepting a fixed overhe
down time—even a few seconds—each time a new release is sent to t
Instead, use what you’ll learn in chapters two and three to build your serv
load code into individual ClassLoaders on each servlet request, and autom
cally pick up changes in code without restarting the servlet engine. It’s a
win: the system administrators are able to preserve the precious seconds lost
ing the servlet-engine cycling, and you get to release new code as necessa
keep the users happy.

• Gain the ability to work around vendor defects.
Once I was working for a company using a major vendor’s EJB product. W
covered, after many late nights of debugging and code disassembly, that the
dor failed to implement the new ClassLoader relationship introduced in J
We eventually had to code around it. Without a good understanding of
ClassLoaders worked in Java2, we’d have been at it for much, much longer.

• Gain the ability (within Open Source projects) to understand the internals.
Understanding these concepts is even more critical for those developers tasked
the responsibility for the maintenance of the corporation’s adopted Open So
projects. In some cases, some of the code within this book will help enhanc
Open Source project directly, providing for features not already present.

1.2 THREE ZEROES

IT administrators and data-center directors often speak of five-nines when ta
about server availability; in that, they mean that the servers (and the data they
to the enterprise) are up and running 99.999 percent of the time. Computed
that means those servers are down a total of about five minutes per year.3 It
ambitious goal, and any IT organization that achieves it should be justifiably p

3 31,536,000 seconds/year * .00001 = 315.36000, or about five minutes per year.

9

However, as with most goals of this nature, even that’s not the ideal; the ideal, of
course, is 100 percent up-time. And although 100 percent up-time (that is, servers
are never down for maintenance, fault-correction, or upgrade) may be an impossible
goal, the mere act of pursuing an impossible goal brings seekers closer to it than they
could be without it.

Which brings me to my proposal of a new standard for enterprise software devel-

thing
 refer
nges

s fea-
costs
com-
n the
ined
users
 the

trade
ment
ortu-
on—
r the
ment
n the
bility
wer.

 soft-
elop-
ower
 need
ether
 soft-

ers (or
 a user
THREE ZEROES

opers: three zeroes.

1.2.1 Zero development

Zero development, taken literally, is an oxymoron—how can you develop some
without spending any time developing it? Within this book, however, I use it to
to reusable code and/or components; it means that it costs nothing to make cha
or add features to software or systems, either as upgrades to existing systems, a
ture requests by users, or as new code for new systems. By this, I mean that it
developers nothing, not that no time is spent. Consider this example: before the
mercial product called Crystal Reports was available on the market, reports o
data within the corporate database had to be coded, tested, released, and mainta
by developers. With the advent of the ad hoc query/reporting tool market,
could now create their own reports, run them, view the results, and modify
reports as necessary, without requiring developer time or assistance.4

Of course, if you believe the marketing hype splashed across the industry
magazines, there are tools on the market to do this for you—cut your develop
costs to zero, or five minutes, or a few wizard-driven screens, or whatever. Unf
nately, there’s usually a hidden cost to this sort of Tinkertoy software constructi
the inability to extend the software beyond what the tool developers conceived, o
inability to call down to native OS APIs, and so on. Rapid application develop
(RAD) tools are useful to do the things for which they were designed; it’s whe
users want to do that extra something that the RAD tools demonstrate their ina
to be flexible. With power, comes complexity. With complexity, comes po
Remove the complexity, and you remove power.

This book isn’t about creating magical solutions; this book is about building
ware. As I will be saying over and over again throughout the book, software dev
ment (in fact, all of computer science) is about trade-offs: size against speed, p
against simplicity, development time against execution time. Software developers
to understand the context of their problem before they can apply a solution, wh
that solution is a prepackaged RAD product or painstaking from-the-ground-up
ware construction.

4 Some may argue that this is still development time, only it’s development time by nondevelop
by less-skilled developers). This may be true, but it’s a philosophical discussion at this point. If
uses the macro language of a tool to create a macro, is that programming?

JAVA

If all of this sounds familiar, it’s because you’ve been reading up on the pat-
terns movement. Patterns, as defined by Brad Appleton’s introduction to them,5

are not a solution to just a problem, but to a problem within a predefined con-
text. Because patterns offer so much in the way of prepared expertise, and because
they offer a useful vocabulary by which we can discuss design solutions, I use pat-
terns as part of the book’s vocabulary. Patterns are a form of design reuse, and

t the
loser

reus-
com-
ased

n the
ware
as, it

ence
ech-

, and
d the
blem
king
ding

artly
ition
 real-
reuse

ware
isual

ment
-box
s and

ly on
ed to
even
 the
10 CHAPTER 1 ENTERPRISE

any tool we can use to speed up the development of software, even if it’s jus
ability to refer to the organization of common-purpose objects, brings us c
to zero development.

Zero development is not just about design reuse. It’s also about building
able software that can be used as black-box components. Java builds on this
ponent concept from its very roots, choosing to favor shallow, broad-b
inheritance hierarchies instead of the deeply nested hierarchies built with C++ i
late 1980s and early 1990s. This approach was hailed as the ultimate in soft
design, allowing developers to create applications out of objects. Problem w
never happened.

Fundamentally, the problem with the deeply nested hierarchy is its depend
on inheritance as a reuse mechanism. The problem with inheritance as a reuse m
anism is simple: classes inheriting another must know details about the base class
effective reuse dictates that objects using one another do not need to understan
details of the object being used. Inheritance also led to the fragile base class pro
in which changes to a base class ripple throughout the rest of the system, wrea
havoc everywhere that classes extended the base class and made assumptions regar
its parent’s behavior.

Recently, the notion of reusable objects has undergone a revolution. Led p
by the development of the Java run-time libraries, but also by a growing recogn
within the C++ and other object-language communities, object developers have
ized that inheritance on its own doesn’t provide reuse. Instead, the emphasis on
is coming from componentry and Open Source advocates.

Componentry, as a reuse mechanism, first gained prominence within the soft
development community through the overwhelming success of Microsoft’s V
Basic. Regardless of object-oriented purists’ opinions of the language and develop
ideology, Visual Basic’s approach to reusable components, building black
dynamic-link libraries (DLLs) (first called VBXs, later migrated to 32-bit Window
COM as ActiveX controls) spawned an entire industry of components.

One of the key components was binary compatibility. Because VB ran on
Microsoft operating systems, multiplatform capability was not a factor, as oppos
C++, where portability could only be achieved at the source level, and poorly
then. Differences in compiler capabilities, differences in platforms underneath

5 Available at http://www.enteract.com/~bradapp/docs/patterns-intro.html

11

compiled code, even differences in the fundamental size of intrinsic types,6 all led to
break source code developed for one platform but compiled on another. Java, with its
portability, has no such concerns, at either the source or the binary level.

The Open Source movement has also contributed tremendously to the reuse of
components. With more and more individuals and companies making the source for
their components available, less and less time needs to be spent on a project. Now

nt of
p the

with-
roach
pend
e can
e for.

g the
e, or

by an
prise
 may
imal

 than
users,

n cli-
 Java
TTP
ppli-
 Java
 sys-

eased
esen-
more

 rec-

always
is sort
 fixed,
THREE ZEROES

organizations can have the best of both worlds—control of the source in the eve
a bug or problem that requires an immediate fix, but without having to develo
source independently.

Zero development, by its definition, is an unattainable goal; developing software
out incurring any development costs is a contradiction in terms. The closer we can app
that goal, however, the lower development costs will be, and the less time we have to s
on development of components that could otherwise be reused. Consequently, w
spend more time on what our users want. And that, above all else, is what we’re her

1.2.2 Zero deployment

Software is not only developed, it must be deployed. This is the act of installin
software on the target system, whether it is a stand-alone data-center server machin
end-user machines all across the organization. In consumer software, this is driven
installation application, either purchased from a vendor or home-grown. In enter
development, however, despite how capable the user of an installation application
be, the individuals installing the application are typically on their own, with min
support from the developers. Deployment to a centralized server is far less costly
deployment to end users systems. However, if the software in question is for end
that deployment would seem to be inherently necessary and unavoidable.

In fact, the attempt to avoid this cost is the entire driving force behind the thi
ent architecture, where a web browser is used to view HTML pages or interact with
applets as their contact with the system. Because HTML is loaded from a central H
server, and stores nothing on the end-users’ systems, deploying a new version of an a
cation to the organization merely requires modification of the HTML pages or
applet code on the server. Thin client systems aren’t limited to just HTML/HTTP
tems, however. Within the last two years, books, papers, and articles have been rel
describing stand-alone applications making use of distributed objects and a thin pr
tation layer on the end-users’ machine. It’s just that HTML/HTTP systems are
convenient, since almost everybody has a web browser installed on their system.

Part of the reason for this move toward zero deployment approaches is the
ognition of some simple facts:

6 C++ guarantees nothing about the size of an int within the C++ language, except that it will
be less than or equal to the size of a long, and greater than or equal to the size of a short. Th
of ambiguity is what led James Gosling to decide, up front, that Java’s intrinsic types would be
regardless of platform.

JAVA

• Users don’t want to install software themselves.
Some will not be qualified to do so, most simply won’t want to.

• Software systems aren’t completely independent anymore.
They’re built from preexisting components and libraries, which have their own
deployment costs. Connecting to a database using JDBC, for example, may
require the installation of additional drivers on the end-user’s system, to handle

 the
d on
teral
ade

takes

 per-
 staff
ming
takes
te of
tever
data-
rsion
e call
-by-7
on is
 will

e the
party
d for
ived.

once
oni-
inis-

his is
rs’—
gant

ere is
r dif-
12 CHAPTER 1 ENTERPRISE

the actual low-level communications between the client and the server. In
case of Java, the Java interpreter and environment (the JRE) must be installe
the end-user’s system in order to run Java code. What’s worse, these colla
deployment costs aren’t one-time costs; each time an upgrade or patch is m
available, it must be installed on the end-user’s machine all over again. This
time (IT staff man-hours) and money (licensing fees).

• It takes time to push these developments out.
Assuming an install is flawless and takes five minutes, an IT staff member can
form about ten installs an hour. For a 150-seat call center, that means two IT
members must spend an entire day each performing these installations, assu
no problems along the way. Additionally, from the moment the first install
place until the last install is finished, the entire call center will be in a sta
flux—half the users will be on system 1.1, the others on 1.2 or 2.0, or wha
is being installed. This could present serious problems to the production
base behind it, since what is perfectly and correctly formatted data in one ve
could seem corrupted to the other. Ideally, all work could stop within th
center until the install was complete, but this isn’t likely, especially for a 24
call center or corporation. The situation only gets worse if the organizati
worldwide. On top of this, there is always the possibility that the software
need to be recalled due to serious flaw, bug, or simple user resistance.

For these reasons, and more, software architects and developers can’t ignor
costs of deploying their software. This doesn’t mean trying to reduce the third-
components used or creating nifty installation scripts; this means reducing the nee
frequent updates, and designing for change from the moment the system is conce

1.2.3 Zero administration

The server application’s relevance to the development department doesn’t end
it’s been deployed to the server. Making the application easy to administer—to m
tor, to control, to adapt, or to use—makes those who have to do that more adm
tration friendly toward accepting the responsibility of keeping the server up. T
key for development staff, since it is the client’s or customer’s—not the develope
opinion of the software that ultimately decides its acceptability. The most ele
software ever written is no good if the users won’t touch it. More importantly, th
no need for development staff that produces software that’s unusable, unstable o
ficult to administer.

13

To developers who are accustomed to being the crown jewels within product-
development companies, the move to enterprise development will come as quite a
shock. Within the enterprise, the developers are no longer the raison d’être for the cor-
poration’s existence, but simply support staff to allow the corporation’s core employ-
ees to better accomplish their job. Within some corporations, this is the system
administrators, because the corporation is all about shuffling data; within others, this

ople,
ither
stem
e sys-

are.
hat-
.

ation

port-
port
e no

 may
g to

onis-

ation
fe at
stem
hem.
evel-
cess,

 goes
, and
n of

some-

 over
own,
akes,
 with
s not
THREE ZEROES

will be the corporation’s call center, or their field representatives, or their salespe
and the system administrators will be in the same support role as the developers. E
way, the development staff cannot afford to alienate or otherwise estrange the sy
administrators. Moreover, it is in the development staff’s best interest to make th
tem administrators’ jobs as easy as possible, for a variety of reasons:

• System administrators will often be the deciding factor as to the deployability of softw
If the system administrators don’t think the software is worth deploying, w
ever the reason, they won’t deploy it. Projects have died right at that point

• System administrators will often be the first-line help support for the applic
being developed.
The more the system administrators are in line with the application and sup
ing the development group, the less often the developers will be called to sup
the application after its delivery. If, however, the system administrators hav
faith in the application, or in the development group that created it, users
be told about each and every place the application fails. This does nothin
improve the development group’s reputation within the corporation.

• Developers and system administrators are, from the very beginning, in an antag
tic relationship.
System administrators must support what developers create. If the applic
fails, it’s the system administrators who get called. Developers typically cha
the restrictions system administrators place on network resources, while sy
administrators resent the constant barrage of requests developers bring to t
Developers desire complete access to the systems on which they are doing d
opment, while system administrators are reluctant to grant that complete ac
since they will be called upon to support that system when something
wrong. Developers must understand the system administrators’ concerns
meet them as best they can. Attempting to reduce the cost of administratio
applications developed for the server goes a long way toward that.

• System administrators and developers are part of the same IT division, which
times has a credibility problem.
Approximately half of all IT projects are canceled, and over three-fourths run
schedule, budget, or both. IT credibility suffers every time a system goes d
or an application fails. Neither side wants to be blamed for the other’s mist
so the IT department as a whole looks fractious and divided. By working
system administrators to make their job as smooth as possible, developer

JAVA

only earn loyalty points from the system administration group, they also earn
credibility points with the rest of the corporation.

Zero administration means making the applications easier to administer by pro-
viding clear GUIs instead of cryptic text files, by allowing configuration of the appli-
cation to occur while it is running instead of requiring the application to be taken
down and restarted, or by allowing system administrators to configure the application

lace.
ilure
g, at
rrent

ote-
urity
ics to
, but
eace

 me.
unch

ition
vides
using
or in

lients
ccess
ually
IIOP
s) for
data-

lient/
flow
14 CHAPTER 1 ENTERPRISE

from any machine throughout the corporation, with security restrictions still in p
It also means that system administrators can be assured that, in the event of a fa
of an application, they will be notified. Lastly, zero administration means havin
their fingertips, statistics regarding the application’s performance, load on the cu
machine, and/or resources consumed.

We will be pursuing zero administration in a variety of ways: by building rem
enabled GUI configuration of running applications, by building configuration sec
into the application automatically, and by providing application-specific statist
system administrators at any given moment in a generic manner. It’s a tall order
giving system administrators these capabilities will go a long way toward making p
between developers and system administrators.

1.3 JAVA IN THE ENTERPRISE

There are two views of Java in the enterprise—one from Sun, and one from
Although they conflict somewhat, it’s good to know what they are before we la
too deeply into them.

1.3.1 Sun’s view

Sun’s view of Java’s role is rather clearly stated within the Java 2 Enterprise Ed
overview document. Java, through its enterprise-centric APIs, such as EJB, pro
the usual buzzwords: robust, mission-critical support for n-tier applications
thin clients. At the same time, Java provides an elegant client platform, superi
every way to anything else on the market today.

Sun sees the enterprise system as a fundamentally distributed one, with c
using thin clients, either straight web browsers over HTTP or perhaps applets, to a
servlets or Java Server Pages (JSPs) running on a web server. The web server, act
a J2EE application server in disguise, in turn provides access to EJBs over RMI/
(which in turn allows for CORBA access, both to and from the EJB component
the actual business logic. The Beans themselves know how to access relational
bases, in which the data is actually stored.

All the world is a Java world, and Sun is content.

1.3.2 Alternate views

Unfortunately, not all applications support this fundamental model.
To start with, not all applications within an enterprise system are, at heart, c

server systems like the prototypical Sun J2EE application. Some will be work

15

applications, routing information between users, and requiring work to be done in
between users as data packets enter and leave various stations. Other applications will
be stand-alone daemon processes, polling over relational database tables as rows are
inserted, and acting upon the newly introduced entities. Other applications will be
triggered by calls inside the database (using Oracle 8i, for example, or using JNI/native
code attached to the database to be called from within a database trigger), to route data

iring
eeds.
ccess
J2EE

ccess

ple-
o the
ation
eft to
ation

an of
data/
And
f the

ppli-

es as

 as a
ages,
erver
xcels

oever
WHY JAVA?

through a sequence of filters and steps before storing it someplace else.
Under other situations, the heart will be a legacy mainframe system, requ

some sort of terminal session to the mainframe to carry out the necessary data-f
Numerous third-party toolkits and source codes have appeared, allowing Java to a
3270-emulation sessions, but these are all proprietary and nonstandard thus far.
makes no representation of this within it, except to make vague references about a
to legacy systems.

Worse, a number of enterprise systems are already partially (or completely) im
mented in C++ or C, and Java developers are asked to integrate new changes int
existing system. JNI is about the only way to go with this, yet the J2EE specific
makes no mention of this scenario except to say that it’s possible. Readers are l
their own devices to figure out where the native code should live, and what implic
that has for the model as a whole.

On the whole, Sun’s J2EE view of the world is a sin of omission, rather th
incorrection. Most systems will, to some degree, follow the classic client-needs-
server-feeds-data model, which the J2EE specification excels at providing.
granted, one can extend the notion of “client” to mean many things, but some o
things mentioned above would be difficult to do within J2EE.

1.4 WHY JAVA?

This isn’t about Java’s applicability as a programming language. It’s about Java’s a
cability as an enterprise development programming language.

I want to highlight those aspects of Java that I believe directly affect our liv
enterprise developers.

General purpose

Java is not restricted to any one medium, domain, or technology. This comes
great surprise to some, since Java’s hype is so closely tied to the Internet, web p
and applets. Java can be used to create applications, including those on the s
side, just as C++, C, or Pascal can. In fact, as the title of this book implies, Java e
at development of stand-alone server applications that have nothing to do whats
with the Internet, web pages, or applets.

JAVA

Concurrent

Java is the only popular7 language that contains direct, linguistic support for concur-
rent (multithreaded) application development. Rather than leaving the notion of
thread support to the platform upon which the language code is executed, as C++
does, Java contains direct support for threads via its synchronized keyword and its

lasses

po-
ond-
 with
, and
wing
 than
Ap-

arries
ping

 con-
as to

tech-
r.

n the
a dis-
urely
mak-
ntain
types
e an
e the
lp us

side of
16 CHAPTER 1 ENTERPRISE

run-time library (namely, the Thread, Runnable, ThreadGroup, and other c
from the java.lang package).

This inherent support for threads suddenly makes developing reusable com
nents for the Java environment much simpler—rather than having to try to sec
guess all the platforms and environments in which a component could be run (as
C++), Java component creators can always assume that threads will be present
must code (and architect) accordingly. For example, the creators of the JFC S
toolkit could handle all GUI event management inside of a separate thread, rather
the C++ approach, where users had to extend a particular class (usually called T
plication or CApp) which contains the event loop code. While this approach c
its own consequences, the ability to assume threads will be present when develo
code is a valuable asset. Throughout this book, we will be making use of Java’s
current nature in a variety of ways, both to obtain better performance as well
heighten the application’s robustness and security.

Class-based, object-oriented

I could launch into a lecture about the benefits of object-oriented programming
nology here, but you’re already on the OOP bandwagon if you’re a Java develope

Strongly typed

Because Java is a strongly typed language, we can put into place safeguards withi
code that prevent abuse and potential maintenance headaches. Java goes the extr
tance in this via its use of interfaces, as well—it’s trivial to introduce a new, p
contractual interface into the system that guarantees certain behavior, therefore
ing it easier to strongly type our own code. Want a particular collection to co
only objects that can be streamed out? Write the collection to take Serializable
instead of Object. Want to provide an event-based notification system? Defin
interface that clients must implement in order to receive those callbacks, and hav
clients register themselves with you. The strong typing allows the compiler to he
keep order imposed on the system, and that’s always a bonus.

7 Well-known outside of research circles, as opposed to languages unknown to programmers out
the academic world.

17

Automatic storage management

Most C++ programmers have a hard time buying the garbage collection argument.
Their loss. Java’s garbage collection mechanism frees us from one of the most onerous
parts of development—ownership semantics.

Within C++, or any other language in which I must explicitly manage memory,
ownership semantics take on a huge life of their own. I have to decide, either explicitly

 into
on of
 best.
ions.
yList
ined

 then

 C++
, but
se an

ation
fully
e-of-
-level

al at
ated,
ders,
eally
what

ently
uage,
, but

 Java
com-
ately,
WHY JAVA?

or implicitly, who owns the object. If, for example, I place a stack-allocated object
a container that assumes ownership of, and therefore responsibility for, destructi
objects placed within it, then I’m destined for disaster at worst, memory leaks at
Java’s management of memory removes the need for ownership semantic discuss
Now, I can just drop the Object into the ArrayList, and leave it at that—the Arra
doesn’t need to worry about whether or not it needs to destroy the objects conta
within it. If the objects are referenced elsewhere after the ArrayList is destroyed,
they stay alive. If not, they die. Straightforward, simple, elegant.

This isn’t to say that explicit memory management doesn’t offer advantages.
offers some powerful mechanisms for low-level control of memory-management
most enterprise applications have no need for that level of sophistication. Why u
artist’s paintbrush to paint your house?

Bytecode compilation

This is, of course, where Java finds the happy middle-ground between interpret
and full compilation. Its bytecode-compiled nature keeps us from having to
source-interpret the code each and every time the code is run. It’s a nice middl
the-road solution between C++ (native-code compilation) and Smalltalk (source
interpretation).

While we’re on this subject, however, let me heap praise upon the individu
Sun who conceived the notion of Java’s ClassLoaders. Brilliance. Sheer, unadulter
brilliance. By granting us, the developers, the ability to create custom ClassLoa
we have more control over how our system functions than most developers r
imagine. This, more than anything else within the language or the platform, is
gives us real power.

1.4.1 Criticisms of Java as a server-side language

The principal language of choice for developing server-side applications is curr
C++; therefore, if Java is to compete with C++ as a server-side development lang
it must answer the criticisms leveled at it by C++. It does so to some degree above
server-side application developers have their own concerns.

Too slow

This is, without a doubt, the most-often-used accusation against Java. Because
is an interpreted language, so the argument goes, it can’t possibly ever hope to
pete on the same scale as code compiled into natively executed code. Unfortun

JAVA

this is also the hardest argument to disprove, as C++ compiler manufacturers vie
with Java compiler/virtual-machine manufacturers, producing one benchmark after
another that proves one side or the other is right. In truth, the only thing these
incessant benchmark studies prove, is that marketing materials can skew bench-
marks to say anything.

Java is an interpreted language. However, it is interpreted in the same manner
s are
ayers
itself,
piles
ction
nter-
sym-
 file,
ava’s

 of a
com-
0-20
ative
rers,
, but
 own
 does
com-

stry,
levels
aver-
1998
have
ent,

b for
er be
ually
form
for a
 the

 of the
ent of
ava).
18 CHAPTER 1 ENTERPRISE

that a natively compiled application is interpreted—integer opcodes and operand
executed by a CPU, branching and calling down to the hardware through driver l
when necessary. In C++ code, the executing CPU is the actual hardware CPU
while in Java, it’s a software-driven CPU emulator. Whereas a C++ compiler com
to the x86 or Sparc instruction set, a Java compiler compiles to the Java instru
set. This means that Java does not suffer from the same speed penalties of other i
preted languages (such as Basic or Lisp); it doesn’t need to tokenize, parse, or
bolically link the source code. Instead, it only needs to find the compiled .class
load and link it from its binary form, and execute it from there. This reduces J
interpretation penalty significantly.

What also aids Java’s case against its speed deficiencies is the recent release
number of just-in-time (JIT) compilers, which examine (at run time) the most
monly called methods, and compile them into native code. Operating on the 8
rule,8 the JIT will, in theory, transform the interpreted bytecode into actual n
code, therefore reducing even further the interpretation penalty. JIT manufactu
naturally, claim performance equivalent to that of C++ code in their benchmarks
such announcements must be taken with a grain of salt. Sun has finally released its
JIT, the Hotspot engine, free for download from the Javasoft website. Hotspot
a good job of improving the Sun JVM engine’s execution speed, not, perhaps, to
parable levels to C++ code, but good enough for many (if not most) tasks.

Java promoters can also point to the realities of the computer hardware indu
in which CPU speeds double every eighteen months, and average core memory
follow similar exponential paths. It wasn’t much more than six years ago, that the
age desktop PC was an 80386/33 with 4 MB of RAM; the average desktop PC of
was a Pentium-II/266 with either 32 MB or 64 MB of RAM. Server machines
undergone a similar exponential climb in processing power and speed. The argum
then, is that execution speed is less critical, since hardware will continue to clim
the forseeable future. Even should current average levels of hardware on the serv
inadequate for acceptable Java performance, upgrading the server hardware is us
a far more cost-effective solution than attempting the man-hours necessary to per
accurate measurement and optimization efforts. Consider the math: $10,000
new multi-CPU, high-RAM level server machine, or $50/hour per man to perform

8 The 80-20 rule states that 80 percent of the time spent in an application is spent in 20 percent
code, and vice versa. Therefore, optimization strategies focus on identifying that critical 20 perc
the code, and making it as fast as possible, through in-line assembler code (C++) or JNI code (J

19

optimization effort, including regression testing to ensure that optimization didn’t
alter the actual behavior or introduce bugs. If the optimization effort takes more than
200 hours, it’s a complete wash—more than 200 hours (five people spending a full
week), and it would have been more cost-effective to upgrade the hardware.

The truth is that Java’s execution speed doesn’t matter. It’s the development speed
that decides Java’s final acceptance as a language. This may seem an odd argument to

g its
ance,
 rele-
ilable

n do
time,

atic
 type
k for
 C or

rfor-
 do.

ative
ple-
 the

bare-

ward
ldn’t
tive-
 turn
s and

king
tains
scus-
d its

nents

Java.
WHY JAVA?

make, but about five years ago the same arguments were leveled at C++ regardin
execution speed. Instead of these concerns weighing down C++’s eventual accept
hardware simply got faster, and C++’s execution overhead9 became less and less
vant. The same will become true for Java. As the hardware improves, and ava
memory on servers grows, Java’s execution overhead will become a moot point.

Bear in mind, too, that it’s because of Java’s interpreted nature that we ca
some of the meta-level things we’re going to discuss in chapters 2 and 3—at run
we can examine any arbitrary Java class, and know just about every programm
detail we’d ever need about that class. No additional information, no additional
library, is required. Natively compiled code can’t do that, because it needs to wor
more than just OO languages; trying to run Reflection on code compiled from
Pascal would require some very interesting fudging.

Alternatively, tell those C++ critics that if they’re really concerned about pe
mance, they’d code the thing in Assembler. In the meantime, we’ve got work to

Too high-level

This has never been true; even beginning with Java 1.0, Java has supported the n
keyword, allowing Java developers to declare methods in a Java class that are im
mented in C/C++ code. For most operating systems, C or C++ is as down to
metal as anybody wants to get. Still, even for those who want to get down to the
bones assembler level, most C/C++ compilers allow for inline assembly code.

Java 1.0’s native method integration, however, was a royal pain; it was awk
to use, it was nonportable between Java compilers, and chances were good it wou
work outside of the JVM compiler the vendor provided. For example, Sun’s na
method approach for its JVM was radically different from Microsoft’s, which in
was radically different from the approach Netscape used. This was the impetu
drive behind the release of the JNI specification when JDK 1.1 was released.

JNI in 1.1 (and later, Java 2) radically changed all this, for the first time ma
it standard to be able to call down to native C/C++ code. Currently, JNI only con
bindings to allow Java to call to C/C++ functions, but there’s been literally no di
sion of ever allowing JNI to call into anything else. Microsoft further extende
native-integration mechanism by allowing Java code to call into COM compo

9 Which turned out to be far lower than most people believed. The same, I believe, will hold for

JAVA

quickly and easily, but the Sun-Microsoft lawsuit brings the long-term viability of
Microsoft’s Java implementation into question.

Regardless of your feeling on Sun’s and/or Microsoft’s position on their native-
integration features for their respective JVMs (and whether it’s breaking “standard”
Java to do so), the basic fact remains that Java has the hooks necessary to get to the
metal. Typically, this argument is raised in conjunction with the follow-up comment

dy of
oring
 par-

. The
rys-

ram-

 API
ond-
llow
g all

 time
hen

antly
n the
 that
 pro-
g to

t for
 C++
strup
jects

e like
uilt-

o the
ling,
ough
 than
20 CHAPTER 1 ENTERPRISE

of, “We need to use ‘library X’ to get our work done.” For example, a large bo
C/C++ code exists to read data over a serial port from scientific or other monit
equipment; for years, Java had no capabilities to read or write to the PC’s serial or
allel ports from within Java code. One such situation arose in my own experience
company for whom I was working at the time wanted to produce reports via the C
tal Reports report-generation engine, but at that time Crystal Reports had prog
matic API only for C, C++ and Visual Basic.

The answer, of course, was to create a Java class API that wrappered the C++
somewhat closely, using native methods to create, call into, and destroy a corresp
ing C++ object within the Java object used from the Java code. Thanks to the sha
nature of the Java classes (they provided almost no behavior on their own, passin
arguments on to the C++ object they wrapped around), the total development
for this Java-wrapper library was about four days. Java can get down to the metal w
necessary, and we’ll see this demonstrated in a later chapter.

Doesn’t have feature X that C++ does

Java’s linguistic history very obviously comes from C++; as a result, it is const
held up against the extremely rich linguistic featureset of C++ and comes out o
short end of the stick. A brief, cursory examination reveals several C++ features
Java lacks: default parameter values, overloaded operators, and templates. C++
grammers, especially those accustomed to these features, feel as if they’re tryin
code with one hand bound behind their backs when moving to Java.

Remember, however, that Java never billed itself as a complete replacemen
C++, and that James Gosling deliberately left out some of these features from
because he felt they were too complex and confusing for developers. Bjarne Strou
and Gosling have different philosophies regarding the nature of user-defined ob
within the language: Stroustrup, in C++, wants C++ classes to act, feel, and behav
built-in types as much as possible;10 Gosling makes a clear differentiation from b
in types and user-defined ones.

Remember, too, that C++ lacked all of these features when it first broke ont
programming scene a decade ago. C++ 2.1 lacked templates, exception hand
RTTI, and namespaces. C++ has evolved into what it is today; Java is moving thr
that process now. As a result, the language is quickly becoming a different beast

10 Design and Evolution of C++

21

what Gosling introduced five years ago. Does this reduce its usefulness for program-
mers today? Not at all; default parameters can always be silently supported by provid-
ing additional overloaded method calls of the same name:

// C++ class with default parameters on method

class Foo

{

eces-
fault
uch

tiple-
WHY JAVA?

public:

 void Bar(int x1, int x2=12, int x3=24);

};

// Means I can call it like this:

Foo f;

f.Bar(6);

f.Bar(6, 66);

f.Bar(6, 66, 666);

/**

 * Java version of the above C++ class

 */

public class Foo

{

 public void Bar(int x1)

 { Bar(x1, 12, 24); }

 public void Bar(int x1, int x2)

 { Bar(x1, x2, 24); }

 public void Bar(int x1, int x2, int x3)

 {

 // Do something with x1, x2, and x3

 }

 /**

 * Duplication of the above call syntax:

 */

 public static void main(String[] args)

 {

 Foo f = new Foo();

 f.Bar(6);

 f.Bar(6, 66);

 f.Bar(6, 66, 666);
 }

}

It’s not quite as convenient as the C++ version, but the workaround is there, if n
sary, until Sun adds default parameters to the Java language. What’s more, de
parameters are somewhat overrated, even within C++; I never used them that m
in my C++ code. I found it cleaner and more understandable to use the mul
overloaded methods approach.

JAVA

Overloaded operators are definitely more of a problem within Java, especially in
mathematical code. Whereas in C++, a class can overload its + and/or += implemen-
tation to support the addition of two mathematical object types, such as this:

Matrix m1;

Matrix m2;

GUI_interface.getUserInput(m1, m2);

ssar-
rator
argu-
g can
ly an
e; as

 long
eful-
 pro-

ness,
 have
stan-
t also
, and
capa-

some
 C++
ck of
22 CHAPTER 1 ENTERPRISE

Matrix m3 = m1 + m2;

Java has no such facility, requiring developers to use the more ungainly form:

Matrix m1 = new Matrix();

Matrix m2 = new Matrix();

GUI_interface.getUserInput(m1, m2);

Matrix m3 = Matrix.add(m1, m2);

 // or could use something like:

 // Matrix m3 = new Matrix(m1);

 // m3.add(m2);

This is awkward, overly verbose, and makes formulaic expressions in Java unnece
ily long compared to C++ equivalents. There’s certainly no argument that ope
overloading was a great source of language abuse in C++ code, and there’s no
ment that trying to read C++ code that makes heavy use of operator overloadin
be difficult when the reader doesn’t realize the addition taking place is actual
overloaded operator. This is more of a developer issue than it is a language issu
Ian Malcolm says in Michael Crichton’s Jurassic Park, “You went out and did it
before you wondered if you should.” Fortunately Java appears to recognize the us
ness of operator overloading within the language—Sun is currently evaluating a
posal11 for adding it to the next release of Java.

Finally, there’s the matter of templates (generic types). In the interest of fair
I’ll make my biases clear: I really miss templates from C++. Templates in C++
gained some new popularity for generic componentization, as evidenced by the
dard template library’s ability to vary not only the type the container holds, bu
the method by which it allocates memory for that container, sorts the container
so on. Templates provide some very powerful abstraction and reuse mechanism
bility that Java simply cannot match at the moment.

Java’s new Collection classes, introduced as part of the JDK 1.2 release, offer
of this same flexibility, but the fundamental problem (the same one that plagued
until templates were widely implemented in C++ compilers) is still the same: la
type-safety. Consider the following code:

// C++

// This vector must contain *only* Foo types!

std::vector<Foo*> fooVector;

11 From James Gosling himself.

23

fooVector.insert(new Foo());

 // This is acceptable--fooVector stores “Foo” instances

fooVector.insert(new Bar());

 // The above line fails to compile, since fooVector’s insert()

 // method, by virtue of the template, *only* takes Foo

 // instances, and a Bar isn’t a Foo

other
n the
 Foo
 only
ed a

emo.

, but
rom-
ques-

eter
rede-
from
, and
g all
WHY JAVA?

/**

 * Java version

 */

// This Vector must contain *only* Foo types!

java.util.Vector fooVector = new java.util.Vector();

fooVector.addElement(new Foo());

 // Perfectly acceptable

fooVector.addElement(new Bar());

 // Unfortunately, *also* perfectly acceptable, since Vector’s

 // addElement() method takes an Object

As you can see, there is no programmatic way for Vector to screen out anything
than a Foo instance being placed within it. This in turn can cause problems dow
road, when fooVector returns an Enumeration, and each element is cast to a
instance, since the programmer explicitly stated that fooVector should contain
Foo instances. Unfortunately, the new guy on the team didn’t read that part, add
Bar, and caused a ClassCastException in front of the big boss on the day of the d
Type-safety is your friend; use it whenever possible.

There are certainly ways around this, to gain this sort of type-safety in Java
none of them are particularly elegant. The first is to create your own derived-f
Vector type that provides type-safe methods to add and remove the elements in
tion; however, this still contains several holes. First, the generic Object-param
methods on Vector are still present on your derived class, so unless you explicitly
fine those methods to screen out illegal types, you can’t prevent a programmer
adding the wrong type. This can be worked around by not extending Vector
instead containing a Vector within the type-safe container class and delegatin
work to the inner Vector:

public class StringVector

{

 // . . .

 public void addElement(String elem)

 {

 vector.addElement(elem);

 }

 private Vector vector = new Vector();

}

JAVA

Unfortunately, this means that because StringVector no longer extends Vector, it can-
not be passed in wherever a standard Vector is expected. While this may not present a
serious difficulty, it’s awkward enough to cause problems in those Java frameworks
that pass collections-of-things around as parameters to method calls. This, too, can be
worked around by providing a method to return the contained Vector, but this then
opens up the possibility that anybody wishing access to the guts can get them; this

vide
This
s out
can’t
these
ode),
write
ome-
phill

with-
m.
ea of
rious
ature
same
ilable
 hold

id of
re on
iron-
have
ional
 just
bish

c will
f the
 out,
n the
k on
n the
24 CHAPTER 1 ENTERPRISE

violates all the rules of encapsulation.
Several experimental Java compilers, such as Pizza or GJ (Generic Java), pro

extensions to the Java language that provide this sort of templatelike facility.
approach too has its drawbacks, most notably using one of these compilers wipe
the possibility of using any of the major IDEs or debuggers, since the debugger
understand the source to provide inline source-level debugging support. Some of
compilers can produce standard Java source as output (instead of compiled bytec
but even this sort of preprocessing has its problems. Not only is the code you
with one of these tools nonstandard, so any incoming Java developers will be s
what at a loss, but obtaining management support for using the tool can be an u
struggle. Since most of these utilities come from research institutions and come
out corporate facilities for support, IS and IT managers won’t want to touch the

The recent Sun Community Source Licensing policy has opened up the id
introducing generic types into Java, and I’m fervently hoping Sun gives it a se
look. As with operator overloading, templates turned out to be an easily abused fe
of C++, and so scared many developers away from using them; hopefully the
story won’t repeat itself within Java. Until the time that generic types become ava
within Java, however, we’ll just have to limp along without them, using Object to
generic-objects in non-type-safe fashion.

Lacks the tool support of C++

This may have been true in the days of Java 1.0 in 1995; it certainly cannot be sa
the Java 2 in 1999. No less than a half-dozen Java development environments a
the open market from the same companies that make C++ development env
ments: Borland-now-Inprise, IBM, Symantec, Metrowerks, even Microsoft, all
useful IDEs for the Java developer. Rational Software’s UML CASE tool, Rat
Rose, supports both C++ and Java code generation and reverse-engineering. And
as many database vendors have JDBC drivers as have ODBC drivers. It’s pure rub
to assert that Java lacks tool support.

Given that, it’s an almost certainty that a follow-up comment from the criti
be something along the lines of “Well, vendor X doesn’t have a Java version o
library or tool that I need, and they do have a C++ version.” Java still isn’t left
however—through JNI, or CORBA, C++ libraries and/or tools can be used withi
Java environment. Chances are more than likely that vendor X is already at wor
a Java port of its library or tool, if for no other reason than to try to capitalize o
Java hype-wave that’s sweeping the IT industry.

25

Too new; too unproven

The same was said of C++ a decade ago; that didn’t stop C++ from becoming the
overwhelming language of choice for system- and business-level development. This
argument is losing credibility every day, as Java gains acceptance in more and more
corporate development shops and organizations with every passing hour. While Java
may not command the same kinds of numbers of developers that C++ does today, it’s

irms,
 plat-
web-
 Sun
er of
rote

now,
o on

ralize
logy

ages/
unt a

ake
 Z80

port
rship
uces
s for
 (and

from
 such
must
stom
elop-
sable

 prob-
SUMMARY

getting closer and closer with every survey.
In addition, it doesn’t take much in the way of research to find a number of f

including some very large Fortune 500 companies, using Java as the development
form/language. In fact, the whole Y2K problem contributed to this—the Javasoft
site recently posted a transcript of an interview at JavaOne with a number of
personalities, including Gosling. During this interview, Gosling stated a “numb
people came up to me and said, ‘Since we had to fix the Y2K thing, we just rew
the whole thing in Java.’”

I believe this argument is simply corporate inertia at work: “We don’t use it
we’ve standardized on language ‘Z ’, we’ll have to train new people on it,” and s
and so forth. These points all have merit. Standardization is good—it helps cent
the corporation’s training and development efforts. Simply because a new techno
is there doesn’t mean a company should rush to embrace it—new tools/langu
environments can carry hidden and unknown costs that can come back and ha
firm later. But, while all of these points hold merit, without a conscious drive to m
use of new technologies where appropriate,12 corporations would still be using
Assembler for n-tier distributed object development.

1.5 SUMMARY

Java is an ideal language for development on the server. Its garbage collection sup
removes the tiresome need for developers to concern themselves with owne
semantics for objects, at the cost of some performance. Its simplistic syntax red
the learning curve for developers new to Java, and its similiarity to C++ allow
easy migration of C++ developers to Java, at the cost of some of C++’s advanced
extremely powerful) features, such as templates.

Enterprise development has its own unique forces and context, different
that of other types of development such as “vertical market” consumer products,
as word processors or personal-accounting applications. Enterprise developers
try to reduce the costs at the same time they maximize the benefits of building cu
software. Toward that end, we will work for the idealized three zeroes: zero dev
ment, zero deployment, and zero administration. As part of that, we will build reu
software components and a sample generic application system.

Welcome to Server-Based Java. I hope you enjoy the ride.

12 I cannot stress this enough. Java is not, nor ever will be, the silver bullet solution to any and all
lems. For it to succeed, it must be applied to problems it is capable of solving.

JAVA

1.6 ADDITIONAL READING

• Erich Gamma, Richard Helm, Richard Johnson, and John Vlissides, Design Pat-
terns: Elements of Reusable Object Design (Addison-Wesley, 1995).

This canonical patterns book, is also known as the “Gang of Four” or “GOF”
book in pattern circles. Just about every patterns book written builds off of these

iarity
terns
26 CHAPTER 1 ENTERPRISE

twenty-three. Readers are highly encouraged to at least have a passing famil
with this book, as Java itself makes use of most, if not all, of these pat
throughout its run-time library and core object model.

C H A P T E R 2

ClassLoaders

2.1 Dynamic linking 28
2.2 ClassLoaders: rules and expectations 37
2.3 Java’s built-in ClassLoaders 49
2.4 Summary 58
2.5 Additional reading 59
llowing
unicat-

over not
 used to
Java’s dynamic class loading mechanism is “unusual in supporting all of the fo
features: laziness, type-safe linkage, user-defined extensibility, and multiple comm
ing name spaces.”1 In this chapter, we will examine that mechanism and disc
only how it provides us with some powerful capabilities, but how they can be

achieve one Holy Grail of enterprise development: the ability to upgrade code on a
running server without taking the server down.

 (for
xecu-
Ven-
uage

e 13th

d Ap-
27

If you’re not familiar with the basics of Java’s dynamic linking capabilities
example, why your CLASSPATH needs to be set during both compilation and e
tion of your Java code), then I recommend Inside the Java Virtual Machine by Bill
ner. If you prefer, you can obtain much of the same material from the Java Lang
specification and/or the Java Virtual Machine specification.

1 Sheng Liang and Gilad Bracha, “Dynamic Class Loading in the Java Virtual Machine,” from th
Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages an
plications (OOPSLA ’98), Vancouver, BC, Canada, October 1998.

ERS

2.1 DYNAMIC LINKING

Java is a dynamically linked system. This means all code is linked into the executing
JVM at run time, instead of at compile time, as with C++.2 The means by which
this dynamic linking takes place is through Java’s ClassLoader system, which is
wrapped up in the java.lang.ClassLoader class, and works along with support

JVM
pon

 Java
m its

JVM
mine
tance
hout
oten-
 vice

f the
o the
-time

amic
rs:

r has
tem)
ore it
plic-

s that
, C++
28 CHAPTER 2 CLASSLOAD

within the JVM. There is no exception to this rule—all code loaded into the
must come through a ClassLoader, even the standard Java run-time library. U
JVM startup, a bootstrap ClassLoader subtype is created (within the JVM—no
code is present yet), and the first class—Object—is loaded into the system fro
corresponding .class representation.

This dynamic linking carries with it implicit assumptions. Because the
knows nothing about the code at the time of JVM startup, it has to be able to exa
each and every loaded class and verify its methods, parameters, fields, and inheri
relationships in order to verify that the code isn’t malicious or dangerous. Wit
this, it would be possible to accidentally mismatch versions of .class files, and p
tially trash the VM, which would not look good in front of a client or executive
president. Without this, type-safety within the VM would also be impossible.

Because the JVM already has to do this rather deep run-time introspection o
code, Sun chose (as of JDK 1.1) to make this introspection capability available t
users of the system. This is known as Java Reflection, and offers us unique, run
dynamic loading capabilities.

2.1.1 Run-time dynamic loading

Run-time dynamic loading, as I choose to call it, is different from load-time dyn
loading. The latter is the usual form of coding familiar to most Java programme

public class Hello

{

 public static void main(String[] args)

 {

 System.out.println(“Hello, world!”);

 }

}

In the above, when the JVM loads the Hello class, it notices that the compile
flagged Hello as using the System class. If System (more accurately, java.lang.Sys
hasn’t been loaded by this point, the JVM must run off and load System in bef
can finish loading Hello. The same is true of String and Object (which Hello im
itly extends, remember), and any classes used in turn by those two classes.

2 Excluding, of course, dynamic linking with C++. Even then, however, the linker brings in stub
are capable of performing the actual dynamic linking step; from a purely technical perspective
does not support dynamic linking implicitly.

29

Run-time dynamic linking, however, looks and feels different from standard
compile-time dynamic linking. In this approach, we defer until run time the name of
the class to load, instead of coding it directly into the source code.

public class DynamicCode

{

 public static void main(String[] args)

d

);

hout
ns to
 new

hod

ject,
Run-
his is
ce—

esent
lass)

 that,
 class

d, any
DYNAMIC LINKING

 throws Exception// a lazy way to not deal with Exceptions

 {

 // Get the name of the class to load and execute off the comman

 // line’s first argument (after "java DynamicCode")

 if (args.length < 1)

 {

 System.out.println("Usage: java DynamicCode <class to run>"

 System.exit(-1);

 }

 Class cls = Class.forName(args[0]); // ***

 Object obj = cls.newInstance(); // ***

The above two lines are the interesting ones—we are constructing an object wit
knowing (or, for that matter, caring) what its actual type is. Class.forName retur
us a java.lang.Class object, and in the next line, we ask the Class object for a
instance of an object whose type is represented by that Class.

 // Cast the Object to a Runnable so we can invoke the run() met

 // on it

 Runnable r = (Runnable) obj;

 r.run();

 }

}

The rest of the application simply casts the returned object to a Runnable ob
then executes its run method. Naturally, if the object’s type doesn’t implement
nable, we’ll get a ClassCastException at run time, and the application will fail. T
one of the things we surrender in doing this kind of compile-time type ignoran
compile-time type-safety is pretty much thrown out the window.

Note that the Class class represents the type of an object. In Java we can repr
(at run time) the nature of the type system as actual Object instances (of type C
within the system.

Class cls = Class.forName(“java.lang.String”);

Object obj = cls.newInstance();

String s = (String)obj;

In the above code, the instance cls3 represents the Java class String. This means
using Java’s Reflection mechanism we can examine all sorts of things about the

3 One thing to remember when working with the Class type in Java—because “class” is a keywor
attempt to use it as a variable name will yield all sorts of compile errors.

ERS

java.lang.String, and through the use of the newInstance method, create new
instances of String, and so forth. The key to remember is that cls is not a String;
cls is a Class. The next line, where we create an instance of the object whose type is
represented by cls, is where we finally end up with a String object—obj is a String.
We guarantee that by doing the cast on the next line.

If cls in the above case represents the String class, why can’t we get String back
ve to
com-
 The
cause
tem-
later.
xam-

time

to us
te an
t, we
e are
more

 it to
hese,
 Java
30 CHAPTER 2 CLASSLOAD

from newInstance? Why does it have to return an Object, which we then ha
downcast? The reason, of course, has to do with the fact that the Java compiler, at
pile time, has no idea of the type you’re creating when you call newInstance.
argument to Class.forName could be anything, even an invalid class name. Be
Java lacks any sort of “parameterized” type facility (such as that found in C++
plates), we can’t code the return type to do the compile-time check for type-safety

This is just one example where templates in Java would be really useful; for e
ple, we could write, instead:

Class<String> cls = Class.forName(“java.lang.String”);

String str = cls.newInstance();

Unfortunately, doing this would break too many other Java linguistic and run-
rules, so I think we’ll just have to do without templates in Java.

Going back to the original code snippet, we take the first argument given
on the command line. We create a Class around that argument, and we crea
instance of an object from that Class, all without knowing what it really is. In fac
don’t care about its actual type. We’re effectively writing a statement where w
new-ing an object, without needing the object’s name. To prove it, let’s write
code, and try running it:

public class First

 implements Runnable

{

 public void run()

 {

 System.out.println("First!");

 }

}

public class Second

 implements Runnable

{

 public void run()

 {

 System.out.println("Second!");

 }

}

Remember, DynamicCode.java knows nothing about these two classes. Prove
yourself by deleting the files from the working directory when you compile t
and notice how DynamicCode.java compiles without a hitch. (Remember, the

31

compiler automatically compiles classes that are referenced in source code if they’re
not already compiled, so any dependencies between code modules are immediately
resolved, unlike in C++ or C.) It’ll even run (albeit with an exception if you specify
an argument)—no dependency is present.

Now, if you run DynamicCode, passing in First or Second:

C:\projects\ssj\cd\src\chap02> java DynamicCode First

 the
ll of

loper

 kill
hout
nol-

jects,
d so

ment
capa-
. We
nce,
 con-
rface
neric

ce in
ction

ctical
d call
ng to
DYNAMIC LINKING

First!
C:\projects\ssj\cd\src\chap02> java DynamicCode Second
Second!

Notice that in each case, the appropriate string was printed. Java loaded
First.class, found its run() method, and executed it; the same for Second.class. A
this happened flawlessly, without knowing about either class at the time the deve
compiled the DynamicCode.java code.

In fact, we’ve achieved something a number of C++ programmers would
for—the ability to create code that can be loaded at run time and executed, wit
having to know its type at the time the project was compiled. A number of tech
ogies have arisen from this concept: Netscape plug-ins, Microsoft ActiveX ob
CORBA (through its Dynamic Invocation and Dynamic Skeleton interfaces), an
forth. This is powerful technology at our fingertips.

Some of you may be curious to know why First and Second have to imple
Runnable; others of you may be curious to know if this dynamic instantiation
bility violates Java’s type-safety guarantee. The answer to both questions is related
need to have some interface to cast the Object returned from Class.newInsta
so we can call on it without violating type safety. Runnable happens to provide a
venient interface to do that. It doesn’t have to be Runnable; it could be any inte
we define, which is precisely what we’ll do when we build the first cut of our Ge
Java Application Server system later in the book.

It’s not necessary to require that all classes implement a particular interfa
order to be called through run-time dynamic linking; we can also use Java’s Refle
API to accomplish the same task.

2.1.2 Reflection

Reflection is the ability to examine the type of an object at run time. Put in pra
terms, Reflection allows us to do away with compile-time type requirements, an
any arbitrary method at any arbitrary time on any arbitrary object without havi
know that object’s type at compile time (listing 2.1).

public class ReflectingDynamicCode
{
 public static void main(String[] args)
 throws Exception// a lazy way to not deal with Exceptions
 {

Listing 2.1 Coding DynamicCode for Reflection

ERS

 // Get the name of the class to load and execute off the command

 // line’s first argument (after "java DynamicCode")

 //

 if (args.length < 1)

 {

 System.out.println("Usage: java DynamicCode <class to run>");

 System.exit(-1);

) &&

 " +

oved
32 CHAPTER 2 CLASSLOAD

 }

 Class cls = Class.forName(args[0]);

 Object obj = cls.newInstance();

 // Reflect on the Class; find the method named "run" that takes

 // no arguments and returns no return value

 //

 java.lang.reflect.Method[] methods = cls.getMethods();

 for (int i=0; i<methods.length; i++)

 {

 System.out.println("Checking name of " + cls.getName()

 + "." + methods[i].getName());

 if (methods[i].getName().equals("run"))

 {

 if (methods[i].getReturnType().equals(java.lang.Void.TYPE

 methods[i].getParameterTypes().length == 0)

 {

 // methods[i] is the Method that corresponds to the

 // method "void run()". Call it.

 //

 Object ret = methods[i].invoke(obj, null);

 if (ret != null)

 System.out.println("??? run()’s not supposed to

 "return me something!");

 }

 }

 }

 }

}

Loading and running it with First and Second (this time with Runnable rem
from the class declaration) yields the following results:

C:\Projects\SSJ\cd\src\chap2> java ReflectingDynamicCode ReflectedFirst

Checking name of ReflectedFirst.equals

Checking name of ReflectedFirst.getClass

Checking name of ReflectedFirst.hashCode

Checking name of ReflectedFirst.notify

Checking name of ReflectedFirst.notifyAll

Checking name of ReflectedFirst.toString

Checking name of ReflectedFirst.wait

Checking name of ReflectedFirst.wait

Checking name of ReflectedFirst.wait

33

Checking name of ReflectedFirst.run

First!

C:\Projects\SSJ\cd\src\chap2>

Notice that in the code for ReflectedFirst, there’s no longer the Runnable interface, just to
make sure we’re not somehow casting it back to a Runnable to make the run call work.

What’s going on in this new version is a bit interesting, so let’s take it step by step.

) &&

 " +

f the
pe is
e on

stEx-

tead,
 This
 this

 even
we’re
e just

 find
es to
-args
DYNAMIC LINKING

The first difference is listed below.

 // Reflect on the Class; find the method named "run" that takes

 // no arguments and returns no return value

 //

 java.lang.reflect.Method[] methods = cls.getMethods();

 for (int i=0; i<methods.length; i++)

 {

 System.out.println("Checking name of " + cls.getName()

 + "." + methods[i].getName());

 if (methods[i].getName().equals("run"))

 {

 if (methods[i].getReturnType().equals(java.lang.Void.TYPE

 methods[i].getParameterTypes().length == 0)

 {

 // methods[i] is the Method that corresponds to the

 // method "void run()". Call it.

 //

 Object ret = methods[i].invoke(obj, null);

 if (ret != null)

 System.out.println("??? run()’s not supposed to

 "return me something!");

 }

 }

 }

In DynamicCode.java, the code simply cast the returned Object to a Runnable. I
cast succeeded, then it called run on it. It can do this because the Runnable ty
known at the time the code is compiled. If we happen to try to run DynamicCod
a class file that doesn’t implement Runnable, then we’ll get a java.lang.ClassCa
ception at the point we make the cast. This is simple Java.

In this second version, ReflectingDynamicCode doesn’t attempt the cast. Ins
it asks the Class object for all of its methods, via the Class.getMethods call.
API call returns an array of java.lang.reflect.Method objects. We could have asked
Class for a list of all the interfaces it supports (via the getInterfaces call), or
a list of all the fields of this Class (via getFields) had we desired. But since
only interested in knowing whether or not we can call run on this class, the cod
pulls back all the Methods on this Class.

Once we have the array of Methods, we simply iterate through them until we
a Method with the name “run.” Because Java allows us to overload parameter typ
methods with the same name, we need to make sure we have the void-return, no

ERS

version. This is accomplished by asking the Method object what its return type is, and
comparing it against the Class object java.lang.Void.TYPE. We then check to make sure
that its parameter types count is zero, that is, it’s not expecting any arguments, and we
know we’ve found the right one.

Method provides a singularly powerful API call, called invoke. This method
allows us to fill in the parameters (if there were any), hand it an Object on which to

 way
 back
 case
u’ve

ted a
stuff!
uto-

 that
tion,
xten-
s and
port

elves
 have
ond,

d out
tion,
tring
ite to
n the
? It’s
 that
 can

 with
adata
e the
plex)
 you
34 CHAPTER 2 CLASSLOAD

make the call (which in this case will be the Object we got from newInstance
back when), and then makes the call. If there’s a return value, it will be handed
as an Object (which will be null if the return type is declared as void, as is the
here). C/C++ programmers can think of it as a generic function pointer—once yo
got it, you just call through it without caring where it came from.

We have, without knowing anything about a type at compile time, execu
method, fulfilling all the rules of type-safety while we were at it. This is powerful
This is precisely the same technology Microsoft created when it created the OLE A
mation API—the ability to call methods on an object without knowing about
object ahead of time. Visual Basic (up through version 4) was built on this founda
and was (is) wildly successful. The JavaBeans technology system uses Reflection e
sively, as well, for much the same purpose. Most of your upcoming EJB server
environments will also use it to discover what code they need to generate to sup
your Enterprise JavaBeans.

So why don’t we make use of this in the first version, instead of limiting ours
to the Runnable interface? Two reasons: Reflection is slow. Granted, you’ll only
to do it once, when you first load the Class, but it will still take time to do. Sec
our server needs to know precisely how to call all these methods. Yes, we can fin
what parameters are expected in a method call, but we can’t (not through Reflec
anyway) find out what those parameters are supposed to mean. Does that S
parameter mean a person’s name, or a textual representation of a number to wr
disk? Is that boolean for indicating the object should display an OK button i
window, or for indicating that the object needs to persist itself to disk, right now
a far better design decision (and maintenance decision) to have a single interface
all objects subscribe to if they want to participate in your system. Still, Reflection
sometimes get you out of situations that would otherwise be untenable.

Reflection and the metamodel

One of the most powerful features of the Reflection model is the ability to work
the metamodel of a class system. The metamodel is to an object system what met
is to a database—a description of the model itself. Just as being able to influenc
metadata of a database system can lead to powerful (and potentially very com
capabilities, so too can being able to use the metamodel of an object system give
some important capabilities.

35

Consider the following code in listing 2.2:

import java.lang.reflect.*;

public class TestSuite
{

)

 the

Listing 2.2 Source code for using the metamodel
DYNAMIC LINKING

 public TestSuite(String classname)
 {

 try
 {
 // Load the Class given by classname

 //
 Class cls = Class.forName(classname);

 // See if it exposes a "void test()" method; if so, call it
 //

 java.lang.reflect.Method[] methods = cls.getMethods();
 for (int i=0; i<methods.length; i++)
 {

 //System.out.println("Checking name of " + cls.getName(
 // + "." + methods[i].getName());

 if (methods[i].getName().equals("test"))
 {
 if (methods[i].getReturnType().equals(

 java.lang.Void.TYPE) &&
 methods[i].getParameterTypes().length == 0)

 {
 // methods[i] is the Method that corresponds to

 // method "void test()". Call it.
 //
 Object ret = methods[i].invoke(null, null);

 if (ret != null)
 System.out.println("??? test()’s

 not supposed to " +
 "return me something!");
 }

 }
 }

 }
 catch (Exception ex)
 {

 ex.printStackTrace();
 }

 }

 public static void main(String[] args)

 {
 // Iterate through each arg, attempting to load that class
 // and execute its test() method

 //
 for (int i=0; i<args.length; i++)

ERS

 {

 new TestSuite(args[i]);

 }

 }

 public static void test ()

 {

efine
com-
s and
ne.
 class
 the

 Java
 You
 Java
cular
t EJB
ainst
ain a
write
hod),

ple-
That
age.

eck-
and I
hing,
all—
time
hod.

l into
 true
36 CHAPTER 2 CLASSLOAD

 System.out.println("Running test....");

 // . . .

 System.out.println("Test complete!");

 }

}

The foregoing code can effectively act as your regression testing system—simply d
a test method in each class you want to test, place the name of the class on the
mand line to TestSuite, and execute the TestSuite class. TestSuite will load the clas
call its static test method. If no method is found, it just moves on to the next o

So what? We could do the same thing, just by defining main and calling the
directly from the command line. What real advantage does this offer us? Aside from
practical advantage of having a single class to run in order to test any class in your
system, there’s the more important realization of what you can do with Reflection.
could create SQL schema based on a class’s fields, in order to be able to store any
type within an RDBMS. You could use it as JavaBeans does, to introspect a parti
class and determine what operations it supports. You could generate code (as mos
servers/containers do) to wrap an externally created class, in order to help ensure ag
poorly written code crashing your system. You could also use Reflection to obt
flexibility that interfaces can’t offer—simply tell your clients that they have to
methods that conform to a given signature (as we do above with the test met
and they will be able to plug into your system. This way, clients don’t have to im
ment or extend any particular class in order to hook in to your server framework.
offers a measure of flexibility that simply can’t be met in any other popular langu

Reflection considerations

There is one drawback: Reflection carries with it the loss of compile-time error ch
ing. Assume that I use the above TestSuite as my regression-testing mechanism,
accidentally misspell the method test as tset. What happens? Absolutely not
at least at compile time. Because the compiler can’t realize the intent of the c
Reflection takes place at run time, remember, not compile time, so compile-
information isn’t available—it can’t tell you that you’ve misspelled the met
Unfortunately, you won’t get a run-time error, either, except that you’ll never fal
the code block that calls Method.invoke to invoke the test. The same will be
if you get the name right, but accidentally give it a parameter to the call.

37

Reflection is a powerful feature of Java. By offering us the ability to inspect a
loaded class at run time, we gain the ability to program generically and at the meta
object level. In fact, several systems have been built by researchers toward that exact
purpose—providing meta-object support at run time via Java’s Reflection model.
Here are some possibilities (some of which we’ll explore later in this book):

• Using Reflection to determine if a loaded class supports a given interface (such as
w if

para-
JAS)

roxy

lica-

 class
les is
 cre-

to as
sm, a
stom

hile
com-
thod.

urce.
 two

sting

reter
load-
CLASSLOADERS: RULES AND EXPECTATIONS

Runnable, to know if it can be multithreaded, or Serializable, to kno
instances of it can be serialized safely).

• Using Reflection to determine if a loaded class follows a certain design
digm (such as the Service interface built later in this chapter to support G
or pattern.

• Using Reflection to build, at run time or as part of a compile-time system, P
classes to provide location-transparency of user code.

• Using Reflection to build metadata representations of object types.

Reflection can be a powerful mechansim; just be aware of the costs and imp
tions of using it within your own systems.

2.2 CLASSLOADERS: RULES AND EXPECTATIONS

Java has specific rules regarding the use of ClassLoaders and how (and when)
files are loaded, reloaded, or unloaded from the JVM. Understanding these ru
crucial to unlocking the power of ClassLoaders, both in using them as well as in
ating your own custom versions.

2.2.1 Java .class file format

While understanding the Java compiled bytecode format (commonly referred
the .class file format) is not critical to understanding Java’s ClassLoader mechani
good working knowledge of its layout is useful to have for discussion of the cu
ClassLoaders we’ll get into later.

In truth, this format really isn’t a format for how the bytes must lay out w
residing on disk; this format only describes how the bytecode making up a given
piled Java class must exist when handed to the ClassLoader defineClass me
This means that:

• Java doesn’t care if the bytecode comes from the local disk or from some other reso
In fact, Java doesn’t care if the bytecode didn’t exist more than a second or
ago, a fact which makes technologies like JSP possible.

• Java doesn’t care in what format within a file the bytecode is stored while it is re
on disk.
Although it wouldn’t be Sun-certifiable 100 percent pure Java, a Java interp
could even require its bytecode to be in an entirely different format when
ing from disk.

ERS

• Java doesn’t care where the bytecode came from before it was bytecode.
Several programming languages have already been ported to compile into the
Java bytecode format, for execution in any standard Java virtual machine, such as
Ada95, BASIC, and Logo.

Despite the flexibility of being able to load Java bytecode from customized for-
mats, 99.9 percent of the Java developers in the world will make use of the standard

code

s the
ture:
38 CHAPTER 2 CLASSLOAD

Java .class file format, varying only in the way the code is stored or the way the
is generated/compiled.

Java Virtual Machine Specification by Tim Lindholm and Frank Yellin define
Java .class file format as a single instance of the following ClassFile pseudostruc

ClassFile

{

 u4 magic;

 u2 minorVersion;

 u2 majorVersion;

 u2 constantPoolCount;

 constantPoolInfo

 {

 u1 tag;

 u1 info[];

 } constantPool[constantPoolCount-1];

 u2 accessFlags;

 u2 thisClass;

 u2 superClass;

 u2 interfacesCount;

 u2 interfaces[interfacesCount];

 u2 fieldsCount;

 fieldInfo

 {

 u2 accessFlags;

 u2 nameIndex;

 u2 descriptorIndex;

 u2 attributesCount;

 attributeInfo { … } attributes[]; // see below for attributeInfo

 } fields[fieldsCount];

 u2 methodsCount;

 methodInfo

 {

 u2 accessFlags;

 u2 nameIndex;

 u2 descriptorIndex;

 u2 attributesCount;

 attributeInfo { … } attributes[]; // see below for attributeInfo

 } methods[methodsCount];

Listing 2.3 A ClassFile pseudostructure

39

 u2 attributesCount;
 attributeInfo
 {
 u2 attributeNameIndex;
 u4 attributeLength;
 u1 info[attributeLength];
 } attributes[attributesCount];
}

u4 is

, val-
pes,4

here
pear
um-

ls on
tored
 this

, and
n the
orces
byte-

e the
eSys-
a file.
ique

 that
used,

.class
ABE.
rmat

t of
for a
 not,

on, or
ellin.
CLASSLOADERS: RULES AND EXPECTATIONS

(where u1 is an unsigned single-byte type, u2 is an unsigned two-byte type, and
an unsigned four-byte type).

While I won’t go into deep details regarding the .class layout, the constants
ues, and various specification-mandated attribute types or constant pool entry ty
I do want to draw attention to a peculiar quirk of the format. Notice that places w
one might expect strings or character arrays to appear, name index values ap
instead. This is because within the Java bytecode format, all constants, strings, n
bers, method names and signatures (both defined within this method and cal
other classes), field names, even this class’s name and its parent’s name, are all s
within a single table called the constant pool. All name indexes, then, are offset into
constant pool, which stores both the actual type of the constant in the tag field
the data of the constant (numeric value, UTF-8 string for names, and so forth) i
info field. Note that there are no fixed-lengths in any part of the format; this f
any code that wants to parse and pick apart the compiled bytecode to do it in a
by-byte fashion.

Also notice that there is no field for package within the format; this is becaus
class is stored in its fully qualified classname, a la com.javageeks.classloader.Fil
temClassLoader, instead of as FileSystemClassLoader, as specified within the .jav
In fact, the name stored won’t be the dot-separated name at all, but in Java’s un
mangling signature: Lcom/javageeks/classloader/FileSystemClassLoader; (note
the semicolon is part of the name). Any place where a class name is expected or
the full mangled name is used instead.

A quick and easy way to identify if a particular bytecode stream is a valid
format stream is to check the first four bytes of the stream for the value 0xCAFEB
This is the official magic number for Java class files, and any conformant .class fo
stream has to follow along if it wants to play in the JVM.

2.2.2 Using ClassLoader

Using a ClassLoader is actually relatively simple, from the client’s poin
view—instantiate a ClassLoader with the appropriate information, ask it
Class by name, and if the ClassLoader can comply, one will be provided; if

4 See Bill Venners’ Inside the Java Virtual Machine (McGraw-Hill, 1998) for an excellent descripti
the Java Virtual Machine Specification (Addison-Wesley, 1997), by Tim Lindholm and Frank Y

ERS

a ClassNotFoundException will be thrown. Boiled down to code, it looks
like this:
ClassLoader cl = . . .;

Class classString;

// Create an instance of the class “java.lang.String”

try

 that
nted

wIn-

ructor
40 CHAPTER 2 CLASSLOAD

{

 classString = cl.loadClass(“java.lang.String”);

}

catch (ClassNotFoundException cnfEx)

{

 cnfEx.printStackTrace();

}

Once the Class is retrieved, typically the next step is to instantiate an object of
type. The Class.newInstance method creates an instance of the type represe
by the Class, calling the class’ default constructor as in listing 2.4:5

Class classString; // from above

try

{

 Object obj = classString.newInstance();

}

catch (InstantiationException instEx)

{

 // Instantiation of an object of that type cannot occur; this is

 // usually due to an attempt by the programmer to instantiate a

 // nonconcrete type, like an interface, an abstract class, etc.

 instEx.printStackTrace();

}

catch (IllegalAccessException illAccEx)

{

 // The JVM cannot access the necessary constructor to initialize

 // an instance of this class; this is usually because the

 // class’s default constructor is private or otherwise

 // unavailable

 illAccEx.printStackTrace();

}

catch (ExceptionInInitializerError exInInitErr)

{

 // An initializer block within the class threw an exception,

 // which terminated the initialization of the object; because

 // Java forbids objects remaining in an indeterminate state,

5 It’s impossible to invoke a constructor other than the default constructor through Class.ne
stance. This is why, when a class is compiled, the Java compiler will synthesize a default const
for you if the code does not provide one.

Listing 2.4 Calling Class.newInstance

41

 // the exception killed the object and came back here
 exInInitErr.printStackTrace();
}
catch (SecurityException secEx)
{
 // A Java Security policy prevents the instantiation of objects
 // from a Class in this codebase
 secEx.printStackTrace();

what
g to

truly

 Cre-
 (cli-
le to
hich
rn as

ntics
class-
code
iron-
eim-

ip of
er to
lass-
 pre-

va 2.
ers is
s due
CLASSLOADERS: RULES AND EXPECTATIONS

}

The above code is functionally equivalent to

String str = new String();

“All that work, just to get a lousy String?” Don’t underestimate the power of
we’ve done here; we’ve effectively created an instance of a class, without needin
know anything of that type at run time. This sort of loose coupling can do some
amazing things.

2.2.3 java.lang.ClassLoader

ClassLoader’s design is an almost perfect Factory Method6 pattern: an abstract
ator (ClassLoader) defines an interface by which a Product is returned to callers
ent code or the JVM itself, depending on the situation). Users are then ab
subclass the Creator to create ConcreteCreator (custom ClassLoader) classes w
return ConcreteProduct (again, Class objects, the only deviation from the patte
defined by the Gang of Four) instances.

With the release of the Java 2 platform, ClassLoader’s interface and sema
were redefined somewhat to make it easier for developers to extend the Java
loading mechanism quickly and easily. As a result, some existing ClassLoader
written for 1.1 or 1.0 may not function properly within the Java 2 platform env
ment; unfortunately, there’s no trivial way to know except to visit the code and r
plement the ClassLoader-derived class.

The most signficant change between Java 1.x and Java 2 is the relationsh
ClassLoaders to one another. In Java 2, all ClassLoaders have a parent ClassLoad
whom they will give first shot at class-loading. This is known as the delegating C
Loader model, and marks a significant change from how ClassLoaders operated in
vious versions of Java.

ClassLoader delegation

Java has changed the way ClassLoaders were meant to be written from Java 1.0 to Ja
As a result, much of the existing literature regarding the creation of ClassLoad
flat-out wrong, and (hopefully) will be corrected soon. Most of this wrongness i

6 Design Patterns, p 107

ERS

to Java’s changing the intent of the Factory Methods within the ClassLoader API; spe-
cifically, the intent of the loadClass method changed, and from that one change
stems most (if not all) of the problems.

In Java 1.x, the approach to creating a custom ClassLoader was to override the
loadClass method and provide an implementation there that located and loaded the
bytecode, then called defineClass to return the actual Class instance. For example,

set:

rn in

a ref-
nces,
til all
 into
thus,
e any
ithin

ader,
 load
42 CHAPTER 2 CLASSLOAD

this description and example come straight from the JDK 1.1.7 documentation

The loadClass method, then, serves as the Factory Method within the patte
the JDK 1.x ClassLoader.

Note, also, that the Java 1.x ClassLoader required that derived types hold
erence to loaded Class instances. This was not to support caching of Class insta
as some surmised, but to ensure that the Class couldn’t be garbage-collected un
objects using it were also released. Java already knows if a Class has been loaded
the JVM or not, so it will not ask the ClassLoader to load a class already loaded;
caching was wasted. Instead, because the Class instance is a normal Java object lik
other, it could be garbage-collected unless a reference was held to it somewhere w
the system.

The Java 1.1 ClassLoader system pictorially resembles figure 2.1.
As you can see, if a request for a new Class comes in to a particular ClassLo

the ClassLoader must check with the system ClassLoader first, then attempt to
the Class itself.

The network class loader subclass must define the method loadClass to
load a class from the network. Once it has downloaded the bytes that make
up the class, it should use the method defineClass to create a class instance.
A sample implementation is:

 class NetworkClassLoader {
 String host;
 int port;
 Hashtable cache = new Hashtable();

 private byte loadClassData(String name)[] {
 // load the class data from the connection
 . . .
 }

 public synchronized Class loadClass(String name,
 boolean resolve) {
 Class c = cache.get(name);
 if (c == null) {
 byte data[] = loadClassData(name);
 c = defineClass(data, 0, data.length);
 cache.put(name, c);
 }
 if (resolve)
 resolveClass(c);
 return c;
 }
 }

43

g an
ever,
lass-
 this
plex
Java
ever,
 sec-

ire to
class,
se it
at to
 and
2).

ader,
bout
lass-
pts,
CLASSLOADERS: RULES AND EXPECTATIONS

This approach worked for single-level ClassLoader hierarchies (runnin
AppletClassLoader to download code from an HTTP server, for example). How
when Java developers began to examine more complex relationships (loading a C
Loader from within customClassLoader, for example), it became obvious that
design would fail hideously over time—the 1.1 model couldn’t track the com
Loader-within-a-Loader relationships. Consider this concept: normally, the
bookstrap ClassLoaders are used to load Java code from disk or extension. How
for a given project, a ClassLoader is written to load Java code from a database. A
ond custom ClassLoader is deployed within that database, to reach across the w
find classes running on a server. When the bootstrap ClassLoader loads the client
the client creates an instance of the custom database ClassLoader (which, becau
must be found by the primordial ClassLoaders, must reside on disk), and uses th
load a series of classes. As part of that, the socket-based ClassLoader is loaded
instantiated, and used to pull more code across the wire for execution (figure 2.

Now, when a class, stored in the database, is requested of the socket ClassLo
under the 1.1 rules, it will fail completely; the 1.1 ClassLoader scheme knows only a
itself (the socket ClassLoader, in this case) and the bootstrap (a.k.a. the system) C
Loader. Because the class requested comes from the database ClassLoader, both attem
one by the socket ClassLoader, the other by the system ClassLoader, will fail.

Figure 2.1

Java 1.1 ClassLoader relationships

Figure 2.2

Socket ClassLoader and database-

ClassLoader working together

ERS

Thus was the concept of parent ClassLoaders born: instead of automatically
deferring the request to the system ClassLoader, under Java 2, a ClassLoader should
instead ask the ClassLoader that loaded it. This allows for the mentioned sort of chain-
ing all the way back to the root, the system ClassLoader, which, for purposes of our
discussion, has no parent (figure 2.3).

nsion
ew of
lass-

vides
don’t
44 CHAPTER 2 CLASSLOAD

When Java 2 revamped the ClassLoader mechanism (to allow for the cool Exte
system, which we’ll explore in detail in chapter 4), unfortunately it had to break a f
its Java 1.x rules. To start, loadClass is no longer the method to override within C
Loader; instead, that task falls to findClass. In the new system, loadClass pro
the necessary delegate-to-your-parent-first behavior, so derived ClassLoader types
have to worry about their parent ClassLoader:

// From src/java/lang directory in the JDK 1.2

public class ClassLoader

{

 protected synchronized Class loadClass(String name,

 boolean resolve)

 throws ClassNotFoundException

 {

 // First, check if the class has already been loaded

 Class c = findLoadedClass(name);

 if (c == null) {

 try {

 if (parent != null) {

 c = parent.loadClass(name, false);

 } else {

 c = findBootstrapClass(name);

 }

 } catch (ClassNotFoundException e) {

 // If still not found, then call findClass in order

 // to find the class.

 c = findClass(name);

 }

 }

 if (resolve) {

 resolveClass(c);

 }

 return c;

 }

}

Figure 2.3 The Java2 ClassLoader Delegation model—parents and children

45

As you can see, ClassLoader.loadClass is first going to check to see if the class has
already been loaded. If not, it will call its parent’s loadClass method to see if the
parent knows where to find the class. This is important. It’s going to have ramifica-
tions on the way GJAS (and any other dynamic-class-loading system built using Java 2)
will be loaded and stored. If the parent fails to load the class, only then does the
derived ClassLoader type get a crack at loading the Class via its findClass method.

K 1.x
er, as
ting-
eated
oader
 load

 than
 one

 the
ation
eme

e the
ise).

ader-
 con-
CLASSLOADERS: RULES AND EXPECTATIONS

That’s the way it’s supposed to work. But as you can see, comparing the JD
example with the Java 2 approach reveals a serious hole. If NetworkClassLoad
defined by the Java 1.x documentation set, is compiled and executed, the whole delega
ClassLoader paradigm is broken. This means that if the NetworkClassLoader is cr
by a class which in turn was loaded from a different ClassLoader, NetworkClassL
will not defer loading of classes to its parent when asked to; instead, it will attempt to
the code via its own methods, fail, and throw a ClassNotFoundException.

In point of fact, it’s much easier to break this parent-ClassLoader scheme
you might first imagine. Consider this ClassLoader constructor—the default
invoked if no parentClassLoader is specified as a constructor parameter:

// From src/java/lang directory in the JDK 1.2

protected ClassLoader()

{

 SecurityManager security = System.getSecurityManager();

 if (security != null) {

 security.checkCreateClassLoader();

 }

 this.parent = getSystemClassLoader(); // *** line 7

 initialized = true;

}

The relevant line is line 7 which calls getSystemClassLoader() to obtain
system ClassLoader as this ClassLoader’s parent. This is a dangerous implement
because it makes the same fundamental assumption that the 1.1 ClassLoader sch
did, that your parent, by default, will always be the system ClassLoader.

In fact, the default assumption should be that your parent ClassLoader will b
one that loaded you, regardless of which ClassLoader it actually is (system or otherw
JavaSoft may not call this a bug, per se, but in order to properly support ClassLo
chaining, derived ClassLoaders must now ensure that they pass their parent to the
structor, as in:

public class DerivedClassLoader extends ClassLoader

{

 public DerivedClassLoader()

 {

 super(DerivedClassLoader.class.getClassLoader());

 // . . . Other initialization . . .

 }

}

ERS

The use of .class within the call to the ClassLoader constructor may seem awkward
and unusual here; unfortunately, it’s necessary, since Java disallows calling getClass on
an object within its constructor, since the object may not be fully formed or initial-
ized yet. The .class keyword, on the other hand, refers explicitly to the Class for the
class DerivedClassLoader, which is statically resolvable, and so doesn’t require com-
pleted initialization of this DerivedClassLoader instance. The drawback is that any

ticu-

o use
 Java
ation
ook),
 their
if the
ay by
 case
dbox
omes

e’ve
plet-
lass-
und-
riers)

Class
sked
, and
g to
ass.
ue to
 syn-

strap
This
exist-
hain,
time
ders.
46 CHAPTER 2 CLASSLOAD

class name might be accidentally used here, which makes this code sequence par
larly vulnerable to cut-and-paste errors.

You might find this all a bit esoteric; after all, most Java code isn’t written t
multiple custom ClassLoaders, or even to use one. Unfortunately, this concerns
programmers more than they might expect. With the increase of generic applic
servers (EJB or otherwise, such as the GJAS system we’re building within this b
multiple ClassLoaders are on the way. For example, most EJB servers will define
own ClassLoader to control the loading and unloading of EJBs within the server;
Beans in turn attempt to use a custom ClassLoader, then everybody’s got to pl
the rules of the Java 2 system, or else things will break very quickly. Another such
is the ubiquitous applet—with the relaxation of constraints on the applet san
(assuming verification of the applet code, of course, on the client machine), it bec
possible for applets to do some custom ClassLoading. However, applets, as w
already discussed, are already using AppletClassLoader to pull down their Ap
derived class and any supporting code required by the applet. Toss in a RMIC
Loader, or any other form, and if everybody’s not playing by the rules, ClassNotFo
Exceptions (or ClassCastExceptions, as classes attempt to cross name space bar
rule the day.

A few other rules changed in Java 2, as well. Java 1.x required that the load
method be synchronized, in case multiple Threads using the same ClassLoader a
for a class at the same time. Unfortunately, this wasn’t a very well-popularized fact
several ClassLoaders were written without the synchronized keyword, leadin
the possibility of multiple Threads inside the same ClassLoader instance’s loadCl
Java 2 takes care of this, since loadClass is synchronized (and will contin
hold the lock while findClass is called within it) and thus requires no explicit
chronization on the part of its derived types.

The only ClassLoader in the system without a parent ClassLoader is the boot
ClassLoader, which is responsible for the loading of the Java run-time classes.
(implemented entirely within the JVM, so details regarding its behavior and/or
ence are not standard across JVMs) will always be the first in any ClassLoader c
and will be responsible for the loading of all classes within the Java run-
library.7We’ll cover the changes this made when we talk about custom ClassLoa

7 Basically all the classes stored in the rt.jar file in the JRE\lib directory, plus some others.

47

ClassLoader API

In keeping with the Factory Method pattern, the designers of Java provide three
abstract methods which subclasses of ClassLoader must implement in order to provide
all ClassLoader operations. However, because not all ClassLoaders will want to provide
all operations, ClassLoader also provides a no-op definition of each method. This way,
if a ClassLoader doesn’t want to provide class-loading, resource-loading and/or native-

ce/
s an
ance.
e files
xt or
alues
et-
 ver-
urces
 used

e the
 APIs
em-
nd-

ite its

array
ssary
thod,
 JVM
lease.
hich
ader;
iles,8

d/or

dbox,
 as the
CLASSLOADERS: RULES AND EXPECTATIONS

library-loading support, no additional code need be written to indicate that.
ClassLoader’s API can be broken into the following groups:

• The public API
getParent returns the parent ClassLoader to this one. getResour
getResourceAsStream/getResources returns a single resource, a
InputStream, or an Enumeration of all resources available within this inst
“Resources” is a deliberately vague term, and can include such things as imag
(.GIF or .JPEG, for example), audio or other multimedia files, or even plain te
other data. One such type resource could be Serialized data of initial data v
within the class. getSystemClassLoader/getSystemResource/g
SystemResourceAsStream/getSystemResources return the system
sions of the above: the system (or bootstrap, or root) ClassLoader, or the reso
loadable from within the system ClassLoader. Finally, loadClass is the API
to load, link, and initialize Java classes.

• The FactoryMethod APIs
findClass, findLibrary, findResource, and findResources ar
factory methods as described by the Factory Method pattern. These will be the
overridden in derived classes, and as such, will be covered later. findSyst
Class is effectively a wrapper around getSystemClassLoader().fi
Class(), and will not need to be overridden by derived ClassLoaders, desp
seemingly related name.

• The base APIs
defineClass provides a convenience method for translating a bytecode
to a Class object, performing all the loading, linking, and initialization nece
on the class. Internally, defineClass defaults to the use of a native me
defineClass0, so the actual work necessary to define a class within the
remains hidden from prying eyes unless you have the Java 2 Source Re
definePackage provides the ability to define a new Package instance (w
represents all packages loaded by this ClassLoader) within this ClassLo
frankly, unless your ClassLoader is dealing explicitly with signed/sealed .jar f
this method won’t be of much use. The same goes for getPackage an

8 This sort of security is more intended toward relaxing some of the restrictions on the applet san
and more than likely won’t be applicable within a server application. This may change, however,
Java Security model changes to accommodate more server-side idioms and needs.

ERS

getPackages; in fact, I’m not entirely sure of the reason for these methods to
be here, marked protected. That sort of information would seem to be of more
use to external clients than to derived ClassLoader types. loadClass comes in
two versions, one for public view (described earlier), and one for internal use.
Both provide the delegating behavior of the new JDK 1.2 ClassLoader model, so
avoid overriding them unless you have a very good idea of what you’re doing.

 ear-
since
e the
gners

n be
ils of

refer-
same
lasses
ser’s
 as it
aded
t just

ame.
ge is
ader
ader

lated
t if a
static

ed to
/class
 cast

 array
48 CHAPTER 2 CLASSLOAD

resolveClass is used to resolve all symbolic representations, as described
lier; fortunately, custom ClassLoaders never need to call this method,
defineClass and native JVM behavior take care of all the details onc
bytecode has been obtained. Lastly, setSigners is used to establish the si
of a class, again, in relation to the relaxation of the applet sandbox.

More details on the methods’ parameters and exception-declarations ca
found in the Java documentation set. Later in chapter 3, we’ll go over the deta
creating a custom ClassLoader to be fully Java 2-compliant.

A Class always remembers the ClassLoader that loaded it,9 and any classes
enced by that Class that haven’t been loaded will be loaded (if possible) by that
ClassLoader. This is how, in fact, AppletClassLoader manages to know to load C
from the web server’s loaded page instead of trying to load it from the web brow
Java libraries. Thus, when the applet is first loaded into the client web browser,
executes, any classes it uses will also be loaded by the AppletClassLoader that lo
the applet in the first place. The same will hold true for any ClassLoader, no
AppletClassLoader.

2.2.4 Java name spaces

In Java, a class’s name is not just its class name, or its package name plus class n
When identifying classes already loaded by a JVM, a particular bytecode ima
identified by its package name, its class name, and the instance of the ClassLo
used to define it. That is, for any Class (c) in a package (p) loaded by a ClassLo
instance (cl), the JVM class name key for that Class is

 (c, p, cl)

In this manner, each ClassLoader forms a unique name space. Everything re
directly to classes, including static data, is contained within it. This means tha
class with static data is loaded into two separate name spaces, then two sets of
data are maintained for that class, one within each name space.

Classes are also unrecognizable across name spaces. While a class is permitt
extend a class from another name space, two classes of the same package name
name are not identical if loaded within separate name spaces, and any attempt to

9 Specifically, the ClassLoader instance that called ClassLoader.defineClass to turn the
of bytes into a verified, executable Class.

49

from one to the other will generate ClassCastExceptions. We’ll see an example of this
concept in action when we start examining custom ClassLoaders in chapter 3.

2.3 JAVA’S BUILT-IN CLASSLOADERS

As mentioned, Java comes with several ClassLoaders within the standard Java JDK
ack-

n the
all of
tion.

ped
ding

ovide
ovide
Java’s
aders

cure-
ssible
der is
on of

ithin
m or
n the
d its

urce
n the
 then
t for
ate a
ins a
JAVA’S BUILT-IN CLASSLOADERS

run-time library. Some of these are openly available (those within the java.* p
ages), while others aren’t visible unless a Java decompiler is used on the rt.jar file i
Java 2 jre/lib directory, or the Java 2 source download is examined. Regardless,
the listed ClassLoaders that follow are available with any Java 2-compliant installa

2.3.1 java.security.SecureClassLoader

SecureClassLoader is new to Java, coming as part of the Java 2 platform’s revam
security emphasis. Its primary purpose is to provide secure control over the loa
and using of compiled bytecode within the JVM. As such, its intent is not to pr
a secure means by which class code can be loaded, as you might expect, but to pr
a base class which other ClassLoader types can extend and use to hook into
security system. As such, it is the base class to a number of the other ClassLo
within the Java run-time library, most notably URLClassLoader.

Because it is intended as an abstract base class, and not to be used directly, Se
ClassLoader’s two constructor methods are both marked protected, making it impo
for developers to instantiate one directly. Full details on using the SecureClassLoa
beyond the scope of this book, since getting into that leads directly into discussi
Java’s Security system.

2.3.2 java.net.URLClassLoader

The URLClassLoader is, in fact, just about the only implemented ClassLoader w
the Java 1.2 run-time library. All other ClassLoaders extend this class in some for
another, providing additional functionality around the URLClassLoader class i
form of the Decorator pattern.10 If readers understand the URLClassLoader an
capabilities, and nothing else, they will already be ahead of the game.

Using URLClassLoader to load from disk

The most common type of URL used with URLClassLoader (within the JDK so
code, if not user code) is to load classes from local disk. The code below looks i
subdirectory “subdir” under the current directory for a “Hello.class” class file. It
uses the loadClass method of URLClassLoader to retrieve the Class objec
“Hello”, and in the same line calls the newInstance method of Class to cre
new instance of the Hello class. Because the Hello class (in this example) conta

10 Design Patterns, p. 175

ERS

System.out.println call to write “Hello!”, we can visually see that the class was
loaded, verified, and linked.

The code is as follows:

public class FileURLClient

{

 /**

g File
 path
lly.11

o the
btain
ctors.
well:

bility.
tories,
ple, a

“Hard
.

50 CHAPTER 2 CLASSLOAD

 * Attempt to instantiate an instance of the class

 * Hello, found in the subdirectory "subdir" from the

 * chap02 directory

 */

 public static void main(String[] args)

 throws Exception

 {

 URL[] urlArray =

 {

 new java.io.File("subdir/").toURL()

 };

 URLClassLoader ucl = new URLClassLoader(urlArray);

 Object obj =

 ucl.loadClass("Hello").newInstance();

 // Hello should print "Hello" to the System.out stream

 }

}

In this example, I use the File.toURL method to create a URL from an existin
object, so as to be able to deal with operating-system-specific path issues (such as
separator characters, or absolute versus relative path names, and so forth) generica
I strongly suggest to anyone looking to use, build, or work with file URLs to d
immediate work using java.io.File objects, then use the toURL method of File to o
the actual URL, rather than trying to build the URL using the java.net.URL constru

URLClassLoader also silently deals with Java libraries, .jar and .zip files, as
import java.net.URL;

import java.net.URLClassLoader;

public class FileURLClient

{

 /**

 * Attempt to instantiate an instance of the class

 * Hello, found in the subdirectory "subdir" from the

 * chap02 directory

 */

11 The whole file name/path name issue is probably one of Java’s weakest areas in terms of its porta
Because different operating systems use differing characters and syntax to represent files and direc
trying to represent a file in an absolute path is nearly impossible to do in a generic way. For exam
subdirectory “temp” off of the root directory is “/temp” in UNIX, “C:\temp” in Windows, and
Drive:temp” in the MacOS; things get even more convoluted when dealing with multiple drives

51

 public static void main(String[] args)

 throws Exception

 {

 URL[] urlArray =

 {

 new java.io.File("subdir.jar").toURL()

 };

r file
n the
e .jar
dir”.

lasses

more
plets
from
 user
ppli-
 step

erver:
JAVA’S BUILT-IN CLASSLOADERS

 URLClassLoader ucl = new URLClassLoader(urlArray);

 Object obj =

 ucl.loadClass("Hello").newInstance();

 // Hello should print "Hello" to the System.out stream

 }

}

By simply adding .jar to the end of the URL, the URL will look to open the .ja
and extract the classes (and resources) from there, instead of via the file system. I
example above, using .jar told URLClassLoader to look for Hello.class within th
file, instead of looking for “Hello.class” as a file within the subdirectory “sub
This holds true for any use of URLClassLoader, including using it to retrieve c
via an HTTP server and/or FTP server.

Using URLClassLoader to load from a HTTP server

Using URLClassLoader to pull class code from an HTTP server is usually of far
interest to most Java developers. It is, in fact, the basic means by which ap
exist—the applet code (which must extend Applet, of course) is pulled down
the HTTP server into the browser’s process space, started, and stopped when the
moves on to another page. If we can harness this mechanism for use in our own a
cations, we can gain a tremendous amount of flexibility and make a significant
toward zero deployment.

First, let’s examine how to use URLClassLoader to load a class from an HTTP s

// imports not shown

public class HTTPURLClient

{

 /**

 * Attempt to instantiate an instance of the class

 * com.javageeks.util.Hello, found only on the javageeks.com

 * HTTP server in the "/SSJ/examples" directory.

 */

 public static void main(String[] args)

 throws Exception

 {

 URL[] urlArray =

 {

 new URL("http", "www.javageeks.com",

 "/SSJ/examples/")

 };

ERS

 URLClassLoader ucl = new URLClassLoader(urlArray);

 Object obj =

 ucl.loadClass("chap02.Hello").newInstance();

 // Hello should print "Hello from JavaGeeks.com!" to the

 // System.out stream

 }

/SSJ/
 did,

.java-
ssage
ctive
 on a
tion

own-
java-
k by

ume,
 on a
sted,
iness
 that
, this
ctive

ll the

part-
strib-
TTP
users
telli-
finds
user.
ging

ment

eems
nters
52 CHAPTER 2 CLASSLOAD

}

The example creates a URL representing the URL http://www.javageeks.com
examples, hands it into a URLClassLoader instance, just as the prior file example
and asks URLClassLoader to instantiate an instance of the class “com
geeks.util.Hello”. That class, whose code is not shown here, in turn writes a me
to the System.out stream from its constructor. This application has one distin
difference, however, from the earlier file://-based version; if this class is executed
machine without a working connection to the Internet, a ClassNotFoundExcep
will be thrown. Any attempt to look for the source code to “Hello.java” in the d
load bundle from the web site will fail; this compiled class file exists only on the
geeks.com server, to prove that the code cannot be loaded from local dis
accident. The class file can only come from the web site.

The zero deployment advantages to using URLClassLoader are myriad. Ass
for a moment, that we have a department that performs routine report-analysis
corporate database or data warehouse. New reports are constantly being reque
existing reports are being modified, and old reports are being removed as the bus
needs change. The development team could attempt to build a complex menu
allows users to select the reports from within the application. Unfortunately
would require recoding each time the list of reports changed, eating into produ
development time, and would require the application to be redistributed to a
department’s users, eating into productive system administrator time.

Instead, if the code can be centralized to load from a single source (the de
ment’s internal HTTP server, for example), then a thin bootstrap client can be di
uted (once) to the department’s users. This thin boostrap client then uses the H
server to load the actual client code and its supporting classes, from which the
select the report they’d like to run. Or, if the bootstrap client is slightly more in
gent, it can open the URL as a standard URL and walk across the .class files it
there, looking for those that meet a particular mask and displaying those to the
Regardless, we’ve now reduced the deployment costs of these constantly chan
reports to almost nothing, since developers now only need focus on the develop
of the reports themselves, and not the front-end GUIs to support them.

Using URLClassLoader to load from an FTP server

Having demonstrated that we can easily load code from an HTTP server, which s
to be all the rage these days, it might seem curious that the next demonstration ce

53

on loading code from an FTP server. Let’s first demonstrate that it can be done, then
discuss why we might care about it.

The actual act of using an FTP server to access the code is remarkably similar to
that code using an HTTP server, except that the URLs used to access the FTP server
are more complex:

// imports not shown

 that
ange.
tp://”
 sub-
st no

icat-
eDir.
 con-
tion.
user-
 The
(spe-
 will

nfor-
name
JAVA’S BUILT-IN CLASSLOADERS

public class FTPURLClient

{

 /**

 * Attempt to instantiate an instance of the class

 * com.javageeks.util.Hello, found only on the javageeks.com

 * FTP server in the "examples" directory.

 */

 public static void main(String[] args)

 throws Exception

 {

 URL[] urlArray =

 {

 new URL("ftp", "reader:password@www.javageeks.com:",

 "/") // using ’reader’ account

 };

 URLClassLoader ucl = new URLClassLoader(urlArray);

 Object obj =

 ucl.loadClass("Hello").newInstance();

 // Hello should print "Hello from JavaGeeks.com!" to the

 // System.out stream

 }

}

This code is almost identical to the HTTPURLClient code from earlier, except
the URL specified in the urlArray array is different; in fact, it’s downright str
The first argument, "ftp", is understandable, indicating the URL is to use the “f
prefix to the URL, and the third argument, "/SSJ/examples/" indicates the
directory to which the URL refers. The second argument, however, makes almo
sense, unless the reader is intimately familiar with the URL specification.

Normally, an FTP URL looks like ftp://www.javageeks.com/SomeDir, ind
ing the FTP protocol, on the server www.javageeks.com, in the directory Som
However, FTP isn’t a user-less protocol like HTTP; in order to utilize an FTP
nection, a username and password must be given to the FTP server for authentica
This is what the reader:password@ in front of the server name is for, to pass the
name (reader) and password (password) to the FTP server as login information.
trailing colon on the URL is to work around a bug in the Java run-time libraries
cifically, in the URLConnection class) which assumes that any colon in the URL
be a port designator, and so uses String.lastIndexOf(":") to find it. U
tunately, if the trailing colon isn’t there, it assumes that reader is the full server

ERS

and password@ftp.javageeks.com is the port number to use, which generates an
InvalidPortRangeException.

Once the strangeness of the FTP URL is hurdled, the rest of FTPURLClient is
straightforward—pass the URL array into an instance of URLClassLoader, then ask
the URLClassLoader to instantiate an instance of “Hello”. As with the HTTPURL-
Client, when this class is executed on a machine with a connection to the Internet

 wel-

over-
cept-
an be
. For
pass-
tho-

. The
 that
hin a
erent

lse
table
 dif-

iness
 user
rules
ain-

ntire
o the
ing,

from
s.
54 CHAPTER 2 CLASSLOAD

(the code is coming from the JavaGeeks site), the Hello constructor displays its
coming message.

Principally, there are two reasons to go through the exercise of showing how
the-wire ClassLoading can be done with an FTP server. First, because FTP is an ac
able URL protocol, we should at least verify that it can be done. Secondly, if it c
done, there’s likely to be some organization or development team looking to do it
example, an FTP server provides enhanced security (requiring a user account and
word on the FTP server, if anonymous access isn’t allowed), thus preventing unau
rized use of the classes, or perhaps providing per-user code access.

This second reason contains more merit than might be immediately obvious
notion of user roles is ubiquitous within server-side applications, so much so
numerous patterns have been written describing it.12 It’s not uncommon wit
variety of enterprise systems to see code such as the following, which displays diff
dialogs based on whether or not the user is an “Administrator”:

if (getUser().getRole().equals(“Administrator”))

 new AdministratorDialog().execute();

else

 new UserDialog().execute();

Or worse, the developer will try to save a few lines of code and do these if-e
statements within the dialog itself, to determine if certain fields should be edi
versus read-only, visible versus hidden, or even labeled differently or containing
ferent data, based on these sorts of decisions.

What’s wrong with that? Everything. Principally, you are now encoding bus
rules into the dialog presentation code; your dialog now needs to worry about
roles, and how to obtain the current user ID, and so forth. The more of these
that make it into your presentation-layer code, the more difficult that code is to m
tain, enhance, and support.

Worse yet, adding a new role into the system requires changes across the e
system—every place this sort of “can a user role do X?” is made, a new branch t
if/else logic must be added to accommodate the new role. This is time-consum
tedious, and very bug-prone. If, instead, user roles can be restricted as a group
certain classes, it simplifies the addition (removal, or modification) of those role

12 See “Additional reading” for a list of pattern resources.

55

Using the FTPClassLoader allows the developer to make use of the security mea-
sures built into the FTP server (which, on UNIX systems, in turn relies on the security
measures built into the UNIX operating system on which the FTP server is running)
to discriminate between users, and, implicitly, their roles within the system by speci-
fying the URL by just its username and password. Then, the preceding dialog-execu-
tion can be written as:

roles;
 out
ffect

ckier,
user-
es on
some

lized
base)

which
ts will
JAVA’S BUILT-IN CLASSLOADERS

public static void main(String[] args)

{

 String username;

 String password;

 // obtain username/password from user

 new LoginDialog(username, password).execute();

 URL ftpURL = new URL(“ftp”, username + “:” + password +

 “@ftp.javageeks.com”, “/Classes/”);

 urlClassLoader = new URLClassLoader(ftpURL);

 // urlClassLoader is stored within this class instance

 // . . .

}

public void displayDialog()

{

 SomeRoleSensitiveDialog srsd =

 (SomeRoleSensitiveDialog)urlClassLoader.loadClass(

 “Dialog”).newInstance();

 srsd.execute();

 // Note that this assumes that the bytecode itself thinks its name

 // is “Dialog.class” (that is, it was compiled from a file called

 // “Dialog.java”); if it was compiled from any other .java filename,

 // the bytecode will fail verification by the JVM!

}

What’s the advantage? The fact that the dialog now knows nothing about user
that knowledge is now incorporated into the FTP system itself,13 and is broken
into separate dialogs. More importantly, changes to one user-role’s dialog won’t a
the other, so testing will be easier and more isolated. Development might be tri
because developers will be forced to maintain separate directory trees for each
role set of classes (one for admins, one for users, and so on), since the class nam
the local disk will all be identical, but this is usually fairly manageable and in
cases, it is preferable.

In many cases, however, the majority of code that best belongs in a centra
fashion like this (either through the FTP server, HTTP server or even SQL data

13 This presumes that the FTP system will drop users into different directories based on user IDs,
may not be standard features on all FTP systems. It’s far more likely that different departmen
maintain their own FTP servers.

ERS

encompasses the various business rules and objects for a given system, since these are
the ones that typically change the most from version to version.

Placing this code into the centralized server means that these rules can be dif-
ferentiated from one client to another, even within the same system, substituting the
client name in place of user-role, as in the foregoing example.14 A sample of this
would be a data-entry system for customer information—different departments

 and
rket-
 hav-
 code
tiate

his is
itten
ly be
inis-
ain-

tever
 FTP
hich

helps
their
er to

s the
RL-

orted

lass-
 read
er-

an-

ory

tocol
other
56 CHAPTER 2 CLASSLOAD

within the enterprise will have different “rules” for which fields are required
which are optional. Marketing, for example, may insist on obtaining some ma
segment data (such as age group), while technical/product support will insist on
ing detailed records about the product in the system’s database. By placing this
on separate FTP servers, based on department name, we can silently differen
between departments without requiring any modification to the client code. T
a significant step toward both zero development (client code need not be rewr
for different departments) and zero deployment (since changed code needs on
copied up to the appropriate place on the FTP server). It even aids in zero adm
tration, since now a new security system specific to the application needn’t be m
tained by the system administrators; once users are added to the UNIX (or wha
hosts the FTP server) user database, they are automatically (again, assuming the
server uses the underlying operating system’s user database for authentication, w
most do) added to the list of authorized users of the client code. This in turn
the system administrator—the fewer passwords users have to memorize to get
work done, the more likely they are to use nontrivial passwords that are hard
break using password-generating tools.

Using URLClassLoader for custom URL types

URLClassLoader isn’t restricted to just file, http or ftp URL types. In fact, just a
URL syntax is intended to be open and flexible to new protocol types, so too is U
ClassLoader intended to be open and flexible for loading classes from any supp
URL type.

While the details are too long to get into here, the basic idea is simple: URLC
Loader obtains its URL objects (from which it in turn obtains objects to open and
the URL resource) from a URLStreamHandlerFactory. URLStreamHandl
Factory is a simple interface, sporting a single method, createURLStreamH
dler. By creating a custom class that implements URLStreamHandlerFact
that in turn creates URLStreamHandler-derived classes (as appropriate to the pro
passed in), you can create a custom protocol to support loading classes and/or
resources from any other source imaginable.

14 The Strategy or Façade patterns fit in well here.

57

2.3.3 sun.applet.AppletClassLoader

The AppletClassLoader, as its name implies, is the ClassLoader intended for use by
web browsers to download and start execution of Applet bytecode on a web page.
Because each web browser may provide its own implementation of a ClassLoader that
downloads the bytecode, this ClassLoader may not be the one used within your
favorite web browser. Moreover, its use would only be of interest to those who are

urity

esult,
bility
SE>
n of

wsers
opers
pplet

esn’t
 data
ech-

arted
lient

static
 can,

rap-
. In

ndler
ctual

er, as
ook,

RMI-
to its
r the
lity.
more

ative
ject)
JAVA’S BUILT-IN CLASSLOADERS

seeking to exactly duplicate applet-download semantics, including the full sec
restrictions placed on applets.

AppletClassLoader extends URLClassLoader, as might be expected. As a r
any web browser written to use AppletClassLoader automatically picks up its a
to load code via more than one .jar file or subdirectory, via the HTML <CODEBA
directive. In fact, it’s fairly easy to discover which Web browsers use this versio
Sun’s AppletClassLoader, and which don’t, because several popular Web bro
won’t accept more than one .jar file as a source for an applet. As a result, if devel
create nontrivial applets, test their execution under more than just the Sun a
viewer or HotJava Web browser, they may be unpleasantly surprised.

Aside from its support for Java’s security model, AppletClassLoader do
hold any surprises but there is a bit of trivia involved. Applets can share static
across applet instances, and so can use that as an inter-applet communication m
anism. Once you realize that, at least historically, a new AppletClassLoader is st
for each web page loaded, and is then used to load the applet code into the c
browser, you understand how applets can share static data across instances, since
data is on a per-ClassLoader basis. This is neither mandated, nor required, and
in fact, represent a security hole.

2.3.4 java.rmi.server.RMIClassLoader

RMIClassLoader, contrary to what you might believe, isn’t a ClassLoader, but a w
per class around the marshaling and loading of classes in the RMI run-time system
fact, RMIClassLoader is a simple bridge around the sun.rmi.server.LoaderHa
class, which in turn maintains a map of inner Loader classes, which are the a
classes extending URLClassLoader.

Given URLClassLoader’s ability to download code from an HTTP or FTP serv
well as the customized ClassLoaders we’ll be developing throughout the rest of the b
the usefulness of RMIClassLoader wanes somewhat, except for RMI itself. Even then,
ClassLoader isn’t the interesting part of the mechanism, since it defers all behavior
concrete implementation, LoaderHandler, which in turn provides the support fo
java.rmi.server.codebase property and other RMI-classloading functiona

RMI plays a key role in the pursuit of zero deployment; however, we’ll get
into the capabilities of RMI later.

2.3.5 Bootstrap ClassLoader

This is technically not a ClassLoader, either, since it exists solely within the n
code boundaries of the JVM, and is used to load the key core Java classes (like Ob

ERS

into the virtual machine. It relies on the sun.boot.class.path property to find
the Java run-time library (rt.jar, in JDK 1.2, under the jre/lib directory), meaning that
it is possible for us to change this value to point to another location, although it’s cer-
tainly not recommended for the faint of heart.

2.3.6 sun.misc.Launcher$ExtClassLoader

le for
. For
tores
arate

er, is
ed in
ASS-

-class

lass-
 own
 As a
ns—
rent;
de.
 that
ppli-
, any
l run

ithin
e can
 This

for a
ithin
tasks
g on
58 CHAPTER 2 CLASSLOAD

The ExtClassLoader, also referred to as the extensions ClassLoader, is responsib
the loading of Java Extensions classes, which we cover in more detail in chapter 4
now, it’s enough to state that ExtClassLoader, which extends URLClassLoader, s
the .jar files in the directories specified in the java.ext.dirs property as sep
URLs, each of which is passed into its URLClassLoader base-class constructor.

sun.misc.Launcher$AppClassLoader

The AppClassLoader, also referred to as the system or application ClassLoad
another URLClassLoader-derivative class that handles the loading of code specifi
the java.class.path property. Each directory or .jar file found along the CL
PATH is transformed into a URL, which is passed to the URLClassLoader base
constructor on construction of the AppClassLoader.

This ClassLoader is also the returned instance when ClassLoader.getSystemC
Loader is called; as a result, this will typically (unless your code runs under its
ClassLoader, as do applets or servlets) be the ClassLoader that loads your code.
result, it’s fairly easy to see why your code has access to all installed Java Extensio
because AppClassLoader uses the Extensions ClassLoader as its delegating pa
everything in the Extensions directory or directories is now available to your co

The implication here is that your code is not loaded by the same ClassLoader
loads the Java run-time classes. This won’t have serious effects on most normal a
cation code, but advanced use of ClassLoaders can lead to problems. For example
code stored as an extension, attempting to load code off of the CLASSPATH, wil
into problems related to the Java ClassLoader name space separation.

2.4 SUMMARY

ClassLoaders are, without a doubt, one of the most powerful technologies w
Java; by allowing us, as developers, to control from where code can be loaded, w
now distribute applications in ways that we couldn’t dream about five years ago.
concept extends to more than just zero deployment.

Consider a system in which customized behavior needs to be developed
series of clients, varying not only on a per-client basis, but on a per-entity basis w
the client. For example, an insurance company may want to perform different
on the call-center representative’s PC during an insurance sales call, dependin
what data is entered. Some sample ideas might be:

59

• Pop up a message box reminding the rep to suggestive-sell life-insurance policies
to callers over the age of 30

• Introduce new specials on various policies, but only if the candidate fits a partic-
ular criteria

• Remind the call-center rep of the month’s current internal promotional program,
reminding him/her to undertake particular actions based on the rep’s proximity

 new

code,
 dur-
from
lica-
hout

ders.
 late
pter,
lessly

ation
er 5
 with
rking
 lan-
 this
enta-
 also

 lan-
 the

rtual
ject-
’98),
ADDITIONAL READING

to the promotional target

Realistically, these sorts of monthly changes could drive a developer mad—a
release, every month? Recoding, retesting, everything, every month?

Instead of coding these sorts of mutable rules directly within the application
set up a custom ClassLoader. Create the custom ClassLoader at a particular point
ing the call and load code associated with this call directly from the database, or
a socket, so long as the code is coming from a code source separate from the app
tion’s. This allows the developers to change code associated with the databse wit
having to modify the existing code base.

Of course, this is dependent on knowing how to create your own ClassLoa
Unfortunately, creating them seems to be something of a mystic art—even in
1999, books and articles are being published that get it wrong. In the next cha
I’ll show you how Sun wants you to build ClassLoaders, so that they’ll fit flaw
within the Java ClassLoader hierarchy.

2.5 ADDITIONAL READING

• Java Virtual Machine Specification (2nd Edition) (Addison-Wesley).

This is the new-and-improved version of the Java Virtual Machine Specific
with the latest enhancements and changes made for JDK 1.2. Chapt
describes the ClassLoader mechanism in detail. If you plan to do any work
custom ClassLoaders, you will want to read this text; ditto for anyone wo
with the ClassFile API, as you’ll need some knowledge of Java’s assembly
guage opcodes and operands. It’s also good to know, just in general, since
forms the reference for those wishing to provide compliant JVM implem
tions. If it’s not in here, the JVM doesn’t have to provide it. The JVMS is
available online, at http://java.sun.com/docs/books.

• Java Language Specification (2nd Edition) (Addison-Wesley).

This, like the Java Virtual Machine Specification, is the definition of the Java
guage and all that it offers. In particular, it contains a description of how
ClassLoader mechanism works from the perspective of the language itself.
Sheng Liang and Gilad Bracha, “Dynamic Class Loading in the Java Vi
Machine” (presented at 13th Annual ACM SIGPLAN Conference on Ob
Oriented Programming Systems, Languages, and Applications (OOPSLA
Vancouver, BC, Canada, October, 1998).

ERS

Sheng Liang presented this paper to the OOPSLA ’98 conference on the new
JDK 1.2 ClassLoader mechanism, and it remains the finest description of the
ClassLoader mechanism to date.
60 CHAPTER 2 CLASSLOAD

C H A P T E R 3

Custom ClassLoaders

ome
3.1 Extending ClassLoader 61
3.2 On-the-fly code upgrades 80
3.3 GJAS: first steps 85
3.4 Summary 92

If the Internet has taught the world anything about information, it’s that it can c

of ways.
, now—
 to read,
fered by
l—same
from a variety of places, in a variety of formats, accessible in a variety
Nobody had any concept of the e-zine before the web craze. They make sense
same concept as a printed magazine with authors writing articles for readers
but a different delivery system. The same holds true for e-newspaper sites of
Yahoo or Pointcast. We can apply that precept to our Java bytecode, as wel
ms.

uali-
rived
code
r the
 the
e, a

e, or
s the
61

concept, finding bytecode for execution by the JVM, just different delivery syste

3.1 EXTENDING CLASSLOADER

A Java 2 ClassLoader needs to override one of three of the find methods:

• findClass: This method is expected to obtain the bytecode for the fully q
fied class name given in its sole parameter. Once the bytecode is found, a de
ClassLoader must call defineClass, passing in the name of the class, the byte
array, the offset at which to start, and the length of the array. The reason fo
offset and length as parameters is an attempt to allow for optimization on
part of derived ClassLoaders. Instead of loading bytecode one class at a tim
ClassLoader can load/download/compile a set of classes, an entire packag
perhaps the entire .jar file (or more) once. Then, when asked, it provide

ERS

same bytecode array over and over again, using different offsets and lengths to
indicate the position of each class within the master array.

• findResource: This method is expected to obtain the bytes for a given arbi-
trary name. Although most common usage has this name being a filename,
nothing within the ClassLoader specification requires that this be the case.
Instead, ClassLoader implementations are free to use the “/”-separated names as

nd-
thod,
ce to
milar

thod,
need
 class
eth-

brary

it, so
t (for

;

om a
 The
 that
ds to
enta-

prac-

picks
 any-
an be
der
62 CHAPTER 3 CUSTOM CLASSLOAD

any sort of naming convention protocol they deem practical. As with fi
Class, findResource is called from the ClassLoader’s public me
getResource, which also delegates the first attempt at finding the resour
its parent ClassLoader. If you implement this method, be sure to provide si
semantics for the findResources method, as well.

• findLibrary: This method will likely be the least-often overridden me
because only developers who use JNI to write native-code libraries for Java
worry about it. This method is called when a ClassLoader is told to load a
which uses a native library. Unlike the findClass or findResource m
ods, findLibrary need only return an absolute pathname to the native li
in question, rather than the actual binary data itself.

Note that every class holds a reference back to the ClassLoader that loaded
any class code that requires the use of an external resource shouldn’t reference i
loading, playing, unloading, whatever) any other way than by calling

URL urlToResource = this.getClass().getClassLoader().getResource(. . .)

Why? If the class is ever moved from being loaded from disk to being loaded fr
customized ClassLoader, then any references to load anything from disk will fail.
foregoing code sequence works in all cases, presuming that the same ClassLoader
loaded the class also knows how to retrieve the needed resource. This in turn lea
the suggestion that if you create a custom ClassLoader, at least provide implem
tions for findClass and findResource.

Having said all that, let’s examine some custom ClassLoaders in a more
tical fashion.

3.1.1 FileSystemClassLoader

Let’s start by duplicating existing functionality by building a ClassLoader that
up class bytecode from the local file system. (Listing 3.1) We’re not going to try
thing tricky here, so we’ll not worry about .jar/.zip files or resources. The code c
found on the publisher's web site (as part of the com.javageeks.classloa
package, in the Lib subdirectory), reproduced here for convenience:

import java.io.*;
import java.net.*;
import java.util.*;

Listing 3.1 Code for a FileSystemClassLoader

63

public class FileSystemClassLoader extends ClassLoader

{

 /**

 * Default constructor uses the home directory of the JDK as its

 * root in the file system.

 */

 public FileSystemClassLoader()

e>

tory

y

,

EXTENDING CLASSLOADER

 throws FileNotFoundException

 {

 this(System.getProperties().getProperty("java.home"));

 }

 /**

 * Constructor taking a String indicating the point on the local

 * file system to take as the root in the file system.

 */

 public FileSystemClassLoader(String root)

 throws FileNotFoundException

 {

 super(FileSystemClassLoader.class.getClassLoader());

 // Test to make sure root is a legitimate directory on the

 // local file system

 //

 File f = new File(root);

 if (f.isDirectory())

 m_root = root;

 else

 throw new FileNotFoundException();

 }

 /**

 * Attempt to find the bytecode given for the class <code>name</cod

 * from a file on disk. Will not look along CLASSPATH, nor in .jar

 * files

 */

 public Class findClass(String name)

 throws ClassNotFoundException

 {

 try

 {

 // Assume that ’name’ follows standard Java package-to-direc

 // naming conventions, where each "." represents a director

 // separator character (backslash on Windows, slash on Unix

 // colon on MacOS).

 //

 String pathName = m_root + File.separatorChar +

 name.replace(’.’, File.separatorChar) + ".class";

 // Try to open the file and read in its contents

 //

 FileInputStream inFile =

 new FileInputStream(pathName);

 byte[] classBytes = new byte[inFile.available()];

ERS

 inFile.read(classBytes);

 // Now we’ve got the bytecode, but we still need to turn it

 // into a verified class; that’s what the method

 // ClassLoader.defineClass is for.

 //

 return defineClass(name, classBytes, 0, classBytes.length);

 }

;

;

d

64 CHAPTER 3 CUSTOM CLASSLOAD

 catch (java.io.IOException ioEx)

 {

 ioEx.printStackTrace();

 throw new ClassNotFoundException();

 }

 }

 private String m_root = null;

 // Test driver

 //

 public static void main(String[] args)

 throws Exception

 {

 String userDir = System.getProperties().getProperty("user.dir")

 FileSystemClassLoader fscl = new FileSystemClassLoader(userDir)

 // Test the ClassLoader by trying to load itself! (I first foun

 // the idea in "Java Virtual Machine", by Troy Downing and Jon

 // Meyer (O’Reilly), who in turn credit

 // http://magma.Mines.edu/students/d/drferrin/Cool_Beans.)

 //

 Class c = fscl.loadClass("FileSystemClassLoader");

 // Instantiate an instance of the FileSystemClassLoader as an

 // Object; leave it like this for the moment

 //

 Object o = c.newInstance();

 // Verify that it is, in fact, a FileSystemClassLoader

 //

 System.out.println(o.getClass().getName());

 // Note--because of the Java name space’s mechanism, this cast will

 // fail! This is because FileSystemClassLoader was first loaded by

 // the primordial ClassLoader, and the attempt to cast the new

 // Object (which was returned by the FileSystemClassLoader we

 // created a few lines ago) will fail, because you cannot cast

 // across ClassLoader lines.

 //

 FileSystemClassLoader fscl2 = (FileSystemClassLoader)c.newInstance();

 }

}

65

This isn’t all that tricky—two constructors, one which takes a String, the other which
takes nothing, define the root of our FileSystemClassLoader’s search path. The meat
of the action occurs in findClass. This method is the one responsible for attempt-
ing to locate the bytecode represented by the passed-in name (given in the parameter
name). We convert the package name to a path, the class name to a file name, tack
.class on the end, and attempt to load it in. If it succeeds, we use the base class’

Class
ion,
 pro-

ain?

lasses
roba-
own

lass-
 Java
lasses

#1")

M:

tend
n we
elf as
eSys-

ys-
em-

e any
est.
EXTENDING CLASSLOADER

defineClass method to turn the bytes into verified class bytecode, and a
instance results. If it fails, we throw a java.lang.ClassNotFoundExcept
as per the standard ClassLoader documentation. It’s all pretty simple—we even
vide a main method, so we can test the component.

So why do we get a java.lang.ClassCastException on the last line of m

C:\Projects\SSJ\cd\src\chap2>java FileSystemClassLoader

FileSystemClassLoader

Exception in thread "main" java.lang.ClassCastException:

 FileSystemClassLoader

 at FileSystemClassLoader.main(FileSystemClassLoader.java:105)

C:\Projects\SSJ\cd\src\chap2>

The answer brings us back to Java’s name space concept, and the notion that c
loaded into separate name spaces are independent and unrelated types. This is p
bly the trickiest part of Java’s classloading scheme, and the hardest one to track d
when an error occurs.

When we first started up the FileSystemClassLoader, the Application C
Loader (the one used by the JVM to load the classes necessary to even execute a
class) loads in the FileSystemClassLoader image. That is, given the discussion of c
being unique on class name/package name/classloader instance.

 "FileSystemClassLoader" = ("FileSystemClassLoader", "", "AppClassLoader

Later, however, we use the FileSystemClassLoader to load a new Class into the JV

 "FileSystemClassLoader" = ("FileSystemClassLoader", "",

 "FileSystemClassLoader #1")

The JVM sees these two as separate, distinct class types, both of which ex
java.lang.Object (loaded by the Application ClassLoader, of course). Whe
ask the Object obj to return its Class, it hands back a Class that identifies its
“FileSystemClassLoader”, which is right. However, it’s the version loaded by Fil
temClassLoader #1, not bootstrap ClassLoader #1; that is,

o.getClass().getClassLoader() != fscl.getClass().getClassLoader();

Thus, when we try to cast obj("FileSystemClassLoader", "", "FileS
temClassLoader #1") from Object to FileSystemClassLoader("FileSyst
ClassLoader", "", "AppClassLoader #1"), the JVM is not going to se
relationship between these two classes, and throws a ClassCastException in prot

ERS

Although this may seem like an overly restrictive arrangement on the surface, it
has its benefits. Because each ClassLoader forms a unique name space, any static mem-
ber data for a given class must be partitioned within a name space; that is, if a class
having a static member is loaded via two separate ClassLoaders, the JVM has two sep-
arate instances of the static data for that class. This in turns leads us to completely par-
tition classes away from one another, even to the point of loading different versions

 load

mply
pt to
ance,
66 CHAPTER 3 CUSTOM CLASSLOAD

of the same class into the JVM. This will in turn form the core of our ability to
new code into a running server without affecting existing clients.

3.1.2 HashtableClassLoader

Another simple ClassLoader is the HashtableClassLoader (listing 3.2), which si
returns class instances from a Map of class names to byte arrays. It doesn’t attem
find the class bytecode from any other location other than its stored Map inst
making it extremely fast in lookup:

import java.io.*;
import java.net.*;
import java.util.*;

class ByteArray
 implements java.io.Serializable
{
 public ByteArray(byte[] bytes)
 {
 m_bytes = bytes;
 }

 public byte[] getBytes()
 {
 return m_bytes;
 }

 private byte[] m_bytes;
}

public class HashtableClassLoader extends java.lang.ClassLoader
{
 public HashtableClassLoader()
 {
 this(new HashMap());
 }
 public HashtableClassLoader(Map table)
 {
 super(HashtableClassLoader.class.getClassLoader());
 m_classtable = table;
 }

 public void putClass(String className, byte[] bytes)
 {

Listing 3.2 Code for a HashtableClassLoader

67

 m_classtable.put(className, new ByteArray(bytes));
 }

 public Class findClass(String className)
 throws ClassNotFoundException
 {
 try
 {

);

ass
er is
ash-
avel-

hing
e the
EXTENDING CLASSLOADER

 ByteArray byteArray = (ByteArray)m_classtable.get(className
 byte[] bytes = byteArray.getBytes();
 return defineClass(className, bytes, 0, bytes.length);
 }
 catch (Exception ex)
 {
 throw new ClassNotFoundException(className, ex);
 }
 }

 // Internal members
 //
 private Map m_classtable;

 // Driver
 //
 public static void main(String[] args)
 throws Exception
 {
 // Try the HashtableClassLoader
 HashtableClassLoader hcl = new HashtableClassLoader();

 // Load "Hello.class" from root dir into the Hashtable
 FileInputStream fis = new FileInputStream("/Hello.class");
 int ct = fis.available();
 byte[] Hello_bytes = new byte[ct];
 fis.read(Hello_bytes);

 hcl.putClass("Hello", Hello_bytes);

 // Try the loadClass
 Object obj = hcl.loadClass("Hello").newInstance();
 }
}

As you can see, HashtableClassLoader does nothing other than call defineCl
on the byte array stored within the Map instance. Because HashtableClassLoad
Serializable, and most Map-implementing classes are likewise (most notably, H
Map and Hashtable), HashtableClassLoader offers interesting possibilities as a tr
ing ClassLoader when serialized and sent to another JVM.

3.1.3 CompilerClassLoader

Now that we’ve examined the basics of customized ClassLoaders, let’s try somet
trickier. Instead of simply loading a bytecode image from disk, we will generat

ERS

bytecode at run time via a CompilerClassLoader. This is only possible because several
Java compilers, including the JDK “jcvcc” compiler, are themselves written in Java
and are available as Java packages for use, as opposed to native executables.

The CompilerClassLoader offers a number of advantages, not the least of which
is that the compilation step can now be removed from development, another move
toward both zero deployment and zero administration. Additionally, Java can now be

e fly
dy—

r this
st be
e, so
oach
code,
ASS-

;

68 CHAPTER 3 CUSTOM CLASSLOAD

embedded within user objects, perhaps as a macro language and compiled on th
for use within user applications. In fact, this idea has proven to be popular alrea
it forms the basis for the JSP specification.

Listing 3.3 shows the code for CompilerClassLoader. Note that in order fo
to run successfully, the classes underneath the sun.tools package hierarchy mu
available at run time. Technically, this is a violation of the JDK’s licensing schem
be sure to check with JavaSoft or Sun representatives if you plan to use this appr
to develop software for commercial resale. In the meantime, in order to run this
ensure that the tools.jar from the JDK 1.2 lib directory is somewhere on the CL
PATH or is installed as an Extension on the target system.

import java.io.*;
import java.net.*;
import java.util.*;

public class CompilerClassLoader extends java.lang.ClassLoader
{
 /**
 * Uses "user.home" as root dir to work from
 */
 public CompilerClassLoader()
 {
 try
 {
 m_sourceDirRoot = new File(System.getProperty("user.home"))
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 m_sourceDirRoot = null;
 }
 }
 /**
 *
 */
 public CompilerClassLoader(File sourceDirRoot)
 {
 m_sourceDirRoot = sourceDirRoot;
 }

 public String getClasspath()
 {

Listing 3.3 Code for a CompilerClassLoader

69

 return m_classpath;

 }

 public void setClasspath(String classpath)

 {

 m_classpath = classpath;

 }

 /**

ere,
tion:

ctory

an it
.class
lmost
ith a
llo in
er in
with,
 right
 .java

ple-
ay in
hich
EXTENDING CLASSLOADER

 * Retrieve compiled code

 */

 protected Class findClass(String name)

 throws ClassNotFoundException

 {

As with any ClassLoader-extending class, the heart is in its findClass method. H
we go through an x-step process to find (that is, compile) the class bytecode in ques

 if (m_sourceDirRoot == null)
 throw new ClassNotFoundException("No root dir specified!");

This is a simple sanity-check to make certain CompilerClassLoader has a dire
from which to load.

 // Translate the Java-canonical name into an equivalent

 // file name; anything after a "$" is removed, since "$"

 // only shows up in anonymous/inner classes, which are

 // from the "$"-prefixed file. Tack a .java on it, and

 // look for the file

 String javaName = name;

 if (javaName.indexOf("$") > 0)

 javaName = javaName.substring(0, javaName.indexOf("$"));
 // Replace "." with File.fileSeparatorChar’s

 javaName = javaName.replace(’.’, File.separatorChar);

 javaName += ".java";

 File javaFile = new File(m_sourceDirRoot, javaName);

 System.out.println("Looking for " + javaFile.toString());

The first step is to find the .java file we need to compile. This is more difficult th
might seem. Under normal circumstances, a .java file will translate directly into a
file; for example, “Hello.java” will become “Hello.class”. Three exceptions kick in a
immediately, however. Anonymous classes and inner classes will both compile w
"$" embedded after the .java file name, so an inner class Foo inside of the class He
Hello.java will compile to Hello$Foo.class, and an anonymous class will put a numb
place of the inner-class name (Hello-$1.class). Each of these situations can be dealt
since the .java file name that produced them is available (strip off everything to the
of "$" in the class name). What really kills this implementation is the fact that a
file can contain more than one distinct class; in fact, the HashtableClassLoader im
mentation in listing 3.2 does precisely this, defining a package-access class ByteArr
the HashtableClassLoader.java file. This in turn produces the ByteArray.class file, w

ERS

contains no hint that it is actually available through another .java file. Unfortunately,
aside from trying to perform some kind of caching mechanism for those classes already
compiled, there is no way around this, and it represents a hole in this implementation.

 // Attempt to compile it down to bytecode

 String[] javacArgs = new String[]

 {

con-
e, we
here

rcises
e, we

ile
avac;
e of

d by
ight
 way
, but
70 CHAPTER 3 CUSTOM CLASSLOAD

 //"-classpath",

 //m_classpath,

 "-deprecation",

 javaFile.getPath()

 };

 ByteArrayOutputStream javacOut = new ByteArrayOutputStream();

 sun.tools.javac.Main javaCompiler =

 new sun.tools.javac.Main(

 new PrintStream(javacOut, true), "javac");

Next, we create an instance of the sun.tools.javac.Main class, passing into the
structor the PrintStream instance to use for output messages (which, in this cas
want written to a ByteArrayOutputStream, since we don’t necessarily know w
these messages will ultimately go. It could easily be a GUI application that exe
this ClassLoader). We also need the name to use for the application’s name; her
use "javac" for consistency. No other initialization is necessary.

 if(!javaCompiler.compile(javacArgs))

 {

 throw new ClassNotFoundException(javacOut.toString());

 }

Next, we need to do the actual compilation. This is as simple as calling comp
with the array of Strings containing the normal command-line arguments to j
we specify the "-classpath" and "-deprecation" options, hand the nam
the .java file to compile, and if compile returns true, the .class files produce
that .java file now reside on disk. A more sophisticated CompilerClassLoader m
control the directory to which the .class files are written, or provide more in the
of the command-line options (optimization, dependency-tracking, and so forth)
this implementation doesn’t for sake of simplicity.

 // If we got here, the file compiled just fine; load its

 // bytecode into the byte array

 String className = null;

 if (name.lastIndexOf("$") > -1)

 {

 className = name.replace(’.’, File.separatorChar)

 + ".class";

 }

 else

 {

 className = javaName.substring(0,

 javaName.lastIndexOf(".")) + ".class";

71

 }

 try
 {
 File inFile =
 new File(m_sourceDirRoot, className);
 FileInputStream in =
 new FileInputStream(inFile);

plest
ame

 disk
files,
 class
, and
esn’t

Javac
mate
, and

 each
ently
EXTENDING CLASSLOADER

 byte[] bytecode = new byte[(int)inFile.length()];
 in.read(bytecode, 0, (int)inFile.length());

 // Hand the bytecode to ClassLoader.defineClass
 // and return
 return defineClass(name, bytecode, 0, bytecode.length);

Lastly, we need to get the compiled bytecode into the JVM. This part is the sim
of the steps—simply find the .class file on the disk (corresponding to the class n
requested), call defineClass on it, and hand it back.

 }
 catch (java.io.IOException ioEx)
 {
 throw new ClassNotFoundException(ioEx.toString());
 }
 }

 // Internal members
 private File m_sourceDirRoot;
 private String m_classpath;

 // Test driver
 public static void main(String[] args)
 throws Exception
 {
 PCClassLoader cl = new PCClassLoader(new File("C:\\"));
 cl.loadClass("Test.PkgHello").newInstance();
 }
}

One drawback to this implementation is the fact that it produces .class files on
that must then be loaded by CompilerClassLoader; for a large number of Java
this could get costly in terms of performance and disk space. Ideally, the Javac
interface would be written to accept any sort of stream as the source code input
produce ByteArrayOutputStream instances as output, but the Javac interface do
provide this. While it might be possible to create classes that fit in with the
framework that provided this stream-based behavior, it would require an inti
knowledge of the source code. The same, unfortunately, is also true of Pizza, GJ
other Java compilers.

3.1.4 StrategyClassLoader and ClassLoaderStrategy

The Strategy pattern allows you to “Define a family of algorithms, encapsulate
one, and make them interchangeable. Strategy lets the algorithm vary independ

ERS

from the clients that use it.”1 This is precisely what we want out of the ClassLoader
scheme—vary the implementation without changing the scaffolding around it.
Unfortunately, the ClassLoader implementation, as it stands, provides a severe
impediment to effective reuse and encapsulation of ClassLoaders.

The ClassLoader API, despite its redesign to delegate all class-bytecode loading to
the findClass method, still expects findClass to call defineClass with the

Had
alue,
rn to
 con-
code
ader

avior
ass

rated
tion.
ends
m of
rface

e the
uires
 call
tegy-

 the
ior a
72 CHAPTER 3 CUSTOM CLASSLOAD

loaded bytecode, because it requires findClass to return a Class instance.
findClass been required to return only the bytecode (as a byte[] return v
instead of a Class), then derived classes could use the Decorator or Strategy patte
enhance, modify, or provide alternative means of loading bytecode. For example,
sider the (very real) desire of silently adding debugging messages to compiled byte
when running the server in debug mode; instead of having to extend URLClassLo
and reimplement its findClass method with our particular extended beh
thrown in, we could take a ClassLoader instance as a parameter, call its findCl
method to find the bytecode (without caring how the ClassLoader loaded or gene
it), and instrument the bytecode before passing it back to ClassLoader for defini

StrategyClassLoader is an attempt to work around this limitation; it ext
ClassLoader, but expects the guts of the loading behavior to come in the for
a ClassLoaderStrategy-implementing instance. ClassLoaderStrategy is an inte
that factors out the heart of the ClassLoader interface for derived classes:

public interface ClassLoaderStrategy

{

 public byte[] findClassBytes(String className);

 public URL findResourceURL(String resourceName);

 public Enumeration findResourcesEnum(String resourceName);

 public String findLibraryPath(String libraryName);

}

As you can see, it’s not a particularly large interface. However, it does provid
basic change to the ClassLoader interface that I complained about earlier—it req
implementors to only return the bytecode for the Class, and not to have to
defineClass to obtain a Class instance. That behavior in turn falls to the Stra
ClassLoader class.

StrategyClassLoader uses the ClassLoaderStrategy instance only to obtain
bytecode, resource, or native library; it otherwise provides all the standard behav
good Java 2 ClassLoader should. The abbreviated code looks like this:

public class StrategyClassLoader extends ClassLoader

{

 public StrategyClassLoader(ClassLoaderStrategy strategy)

 {

1 Design Patterns, p. 315

73

 this(strategy, StrategyClassLoader.class.getClassLoader());

 }

 public StrategyClassLoader(ClassLoaderStrategy strategy,

 ClassLoader parent)

 {

 super(parent);

 m_strategy = strategy;

ed to

ader
se it

 time
bina-
EXTENDING CLASSLOADER

 }

 protected Class findClass(String name)

 throws ClassNotFoundException

 {

 byte[] classBytes = m_strategy.findClassBytes(name);

 if (classBytes == null)

 {

 throw new ClassNotFoundException();

 }

 return defineClass(name, classBytes, 0, classBytes.length);

 }

 // . . . Other methods omitted for brevity . . .

 // Internal members

 //

 private ClassLoaderStrategy m_strategy;

}

Check the full code listing for the complete version; this snippet is only intend
demonstrate StrategyClassLoader’s implementation for classes.

With judicious use of the ClassLoaderStrategy interface, StrategyClassLo
could become the last ClassLoader you ever have to write (listing 3.4). Becau
implements all the necessary rules for extending ClassLoader, while at the same
allowing flexibility in the actual loading of code, we get precisely the right com
tion of flexibility and reuse for which we are looking.

 public static void main(String[] args)

 throws Exception

 {

 // Create an anonymous Strategy to use for this

 // test alone

 ClassLoaderStrategy strat = new ClassLoaderStrategy()

 {

 public byte[] findClassBytes(String className)

 {

 // Load "Hello.class" from root dir

 try

 {

 java.io.FileInputStream fis =

Listing 3.4 Code for the StrategyClassLoader

ERS

 new java.io.FileInputStream("/Hello.class");

 int ct = fis.available();

 byte[] Hello_bytes = new byte[ct];

 fis.read(Hello_bytes);

 return Hello_bytes;

 }

 catch (Exception ex)

n the
 class
hand

 each
 each
m or
ility;
lass-

 disal-
 inter-
ss to
74 CHAPTER 3 CUSTOM CLASSLOAD

 {

 return null;

 }

 }

 public java.net.URL

 findResourceURL(String resourceName)

 {

 return null;

 }

 public java.util.Enumeration

 findResourcesEnum(String resName)

 {

 return null;

 }

 public String findLibraryPath(String libraryName)

 {

 return "";

 }

 };

 StrategyClassLoader scl = new StrategyClassLoader(strat);

 Object obj = scl.loadClass("Hello").newInstance();

 }

This is obviously a contrived example, but shows the kind of flexibility we have i
ClassLoaderStrategy interface. In this case, the anonymous ClassLoaderStrategy
will look for “Hello.class” in the root directory of the current drive, load it, and
it back as the compiled code; it works for this example, but nothing else.

When reading the source code for the custom ClassLoaders, readers will note that
ClassLoader class is also a ClassLoaderStrategy-implementing class.2 This is so that
ClassLoader can participate in either scheme (Java’s standard ClassLoader syste
the StrategyClassLoader system). This helps improve the system’s overall flexib
where possible, my code makes use of the StrategyClassLoader and appropriate C

2 This is also the reason for the peculiar names of the ClassLoaderStrategy interface. Because Java
lows methods to overload based solely on return type, the only way to differentiate between the
face method and the ClassLoader-inherited method is to change the name from findCla
findClassBytes in my interface.

75

LoaderStrategy-implementing classes, but where necessary, I can always fall back on
the standard ClassLoader-implementing approach.

For those still stuck in the Java 1.1 environment, we can make use of the Class-
LoaderStrategy approach by providing a slightly modified version of StrategyClass-
Loader; the code is part of the com.javageeks.classloader package. The only
real variation between this class and the StrategyClassLoader for Java 2 is that it does

nd-
1.1

cause
mul-

 class
ental
nnot
from

t will
bout
ASS-

ences
ever

arent
ASS-
lass-

inear

TH,
tries.
lass-
 was
ould
 Foo,

lasses
vert-
y the
ours

 even
dard
EXTENDING CLASSLOADER

the delegation to the Strategy instance inside loadClass instead of in Java 2’s fi
Class. In fact, the StrategyClassLoader becomes even more important to the JDK
environment because of its ability to load classes from multiple sources. Be
JDK 1.1 lacks the delegating-parent concept, there is simply no way to define a
titiered array of ClassLoaders, as in 1.2.

3.1.5 CompositeClassLoader

Recall that one of the rules regarding the ClassLoader mechanism is that a given
can be associated with only a single given ClassLoader. What’s more, the par
relationship of the delegating ClassLoader system means that ClassLoaders ca
work as peers—that is, a group of ClassLoaders working together to find a class
a variety of sources, each with equal opportunity to find the class requested.

Because all CLASSPATH entries are referenced from a single ClassLoader, i
attempt to look in all CLASSPATH-entry locations for a referenced class. Think a
what happens if a separate ClassLoader were to be created for each entry in the CL
PATH. When a class (“A”), loaded from the first entry in the CLASSPATH refer
a second class (“B”) found only in the second entry on the CLASSPATH, “B” will n
get loaded. “A” will look to its own ClassLoader, not find it, then look to its p
ClassLoader, which will be the ExtClassLoader (which knows nothing about CL
PATHs), and also won’t find it. Therefore, “B” doesn’t exist, according to the C
Loader hierarchy. Unfortunately, we don’t want a hierarchy here; we want a flat l
list of ClassLoaders to test before giving up.

When a class is requested, the AppClassLoader, as it checks the CLASSPA
looks at each directory or .jar file in order, until one is found or it runs out of en
Were each of these entries in the CLASSPATH a separate ClassLoader, only that C
Loader and its immediate parent would be checked. This means that if class Foo
originally found in the first entry of the CLASSPATH, then any class Foo used w
be checked using that same ClassLoader or its parent. So if Bar were referenced by
but existed in the second entry in the CLASSPATH, it would never be loaded.

Unfortunately, CLASSPATH has two drawbacks: it can only be used for c
stored on disk, and, because it’s an environment setting, any end user can inad
ently corrupt, destroy, or modify it. Even worse, automated installers can modif
CLASSPATH, setting their code before yours, giving their code precedence over y
when classes of the same name are loaded.

It can be advantageous to distribute code for Java servers in multiple places,
though they might all be part of the same conceptual unit. For example, a stan

ERS

reporting system may store the framework for the reporting engine (which changes
infrequently, at best) in a .jar file on an HTTP server, but the ever-changing reports
themselves in the same database as the data on which they’re reporting. A security sys-
tem may store insecure code in the open on disk, but wish to pull code under security
restrictions from a centralized security server via a socket.

Listing 3.5 is the code for the CompositeClassLoader class, which takes any num-
code
76 CHAPTER 3 CUSTOM CLASSLOAD

ber of ClassLoaderStrategy-implementing objects and defers the retrieval of byte
to those Strategy objects.

public class CompositeClassLoader extends ClassLoader
 implements ClassLoaderStrategy
{
 public CompositeClassLoader()
 {
 this(CompositeClassLoader.class.getClassLoader(), null);
 }
 public CompositeClassLoader(ClassLoaderStrategy[] loaders)
 {
 this(CompositeClassLoader.class.getClassLoader(), loaders);
 }
 public CompositeClassLoader(ClassLoader parent)
 {
 this(parent, null);
 }
 public CompositeClassLoader(ClassLoader parent,
 ClassLoaderStrategy[] loaders)
 {
 // Establish parent ClassLoader relationship
 //
 super(CompositeClassLoader.class.getClassLoader());

 // Copy over ClassLoaderStrategy instances (if any)
 //
 if (loaders != null && loaders.length > 0)
 {
 for (int i=0; i<loaders.length; i++)
 {
 m_loaders.addElement(loaders[i]);
 }
 }
 }

 public void addLoader(ClassLoaderStrategy cls)
 {
 m_loaders.addElement(cls);
 }
 public Enumeration enumLoaders()
 {
 return m_loaders.elements();

Listing 3.5 Code for CompositeClassLoader

77

 }

 public void removeLoader(ClassLoaderStrategy cls)
 {
 m_loaders.remove(cls);

 }

 public byte[] findClassBytes(String className)
 {
EXTENDING CLASSLOADER

 byte[] bytecode = null;

 for (Enumeration enum = enumLoaders();

 enum.hasMoreElements();)
 {
 ClassLoaderStrategy strat =

 (ClassLoaderStrategy)enum.nextElement();
 bytecode = strat.findClassBytes(className);

 if (bytecode != null)

 {
 return bytecode;
 }

 }

 return bytecode;

 }
 public URL findResourceURL(String resourceName)
 {

 URL resource = null;

 for (Enumeration enum = enumLoaders();
 enum.hasMoreElements();)

 {
 ClassLoaderStrategy strat =

 (ClassLoaderStrategy)enum.nextElement();
 resource = strat.findResourceURL(resourceName);

 if (resource != null)

 {
 return resource;
 }

 }

 return resource;

 }
 public Enumeration findResourcesEnum(String resourceName)
 {

 Enumeration resourceEnum = null;

 for (Enumeration enum = enumLoaders();
 enum.hasMoreElements();)

 {
 ClassLoaderStrategy strat =
 (ClassLoaderStrategy)enum.nextElement();

 resourceEnum = strat.findResourcesEnum(resourceName);

 if (resourceEnum != null)

ERS

 {

 return resourceEnum;

 }

 }

 return resourceEnum;

 }

 public String findLibraryPath(String libraryName)

jects,
trates
e the
om-
ually
 and
78 CHAPTER 3 CUSTOM CLASSLOAD

 {

 String libPath = null;

 for (Enumeration enum = enumLoaders();

 enum.hasMoreElements();)

 {

 ClassLoaderStrategy strat =

 (ClassLoaderStrategy)enum.nextElement();

 libPath = strat.findLibraryPath(libraryName);

 if (libPath != null)

 {

 return libPath;

 }

 }

 return libPath;

 }

 protected Class findClass(String name)

 throws ClassNotFoundException

 {

 byte[] classBytes = findClassBytes(name);

 if (classBytes == null)

 {

 throw new ClassNotFoundException();

 }

 return defineClass(name, classBytes, 0, classBytes.length);

 }

 // Internal members

 //

 private Vector m_loaders = new Vector();

}

The test driver (see the source code for details) creates two ClassLoaderStrategy ob
one a FileSystemClassLoader, and the other a HashtableClassLoader, and demons
how classes can be loaded from either ClassLoader with equanimity. This is wher
idea of using Strategy objects, to vary the implementation, really pays off—the C
positeClassLoader doesn’t care where any of the ClassLoaderStrategy instances act
find the code, only that one of them can. And because CompositeClassLoader is, in

79

of itself, both a standard ClassLoader and a ClassLoaderStrategy-implementing class, it
can be used as either with equal efficacy.

3.1.6 Other ClassLoader tricks

In addition to providing ways by which bytecode can be loaded, a ClassLoader-
extending class can perform surgery and/or modification of the bytecode loaded

oned
.java
nces

tives.
vide

 you

mple
.java

e API
com/
tory,
 code

ple,
time.

been
de as
ends
byte-
-exit.
oses,

al, or
 this

 RMI

some
 into
 con-
 C++
ssible
nt of
EXTENDING CLASSLOADER

from some source, or even generate the bytecode directly from scratch, as menti
earlier. We’ve already demonstrated how a CompilerClassLoader can compile
files into .class code each time a class is requested, but under certain circumsta
we will want to generate the .class code directly from bytecode assembler direc
More often, we will want to instrument, modify, or enhance bytecode to pro
certain behaviors.

Dynamically generating bytecode

Dynamically creating code, at run time, provides the ultimate in flexibility—if
don’t have the behavior you want, create it!

The code demonstrating this concept can be found as part of the chapter 2 sa
applications; it’s too long to list here. The concept is simple: in the DynamicGen
file, a StrategyClassLoader is created, passing in an instance that uses the ClassFil
(the source code can be found on the publisher's web site at www.manning.
neward3; please make sure to copy it to your Java installation’s Extensions direc
or put it on the CLASSPATH before running the sample) to dynamically build the
to print “Hello, world!” on the console when constructed. Again, it’s a trivial exam
but it demonstrates how we can have total control over what we can do at run

Modifying bytecode on the way in

After the bytecode has been loaded from disk, but before the Class instance has
defined (by a call to defineClass), a ClassLoader is free to modify the byteco
desired. Consider, for a moment, a hypothetical LogClassLoader, which ext
URLClassLoader to load classes from any URL, but then modifies the method
code to write a message to a log file indicating method-entry and method
Although it greatly slows execution, this can be very useful for debugging purp
especially in environments where conventional debugging isn’t feasible, practic
easy (such as servlet debugging). Alternatively, as another example, we could use
filtering behavior to silently provide RMI stubs/skeletons when users request an
object or class.

This idea of modifying bytecode during the loading process isn’t new; in fact,
very interesting research, led by Shigeru Chiba of the University of Tsukuba,
Java’s capacity for metaprogramming is taking place. Metaprogramming is a new
cept, represented only in its most primitive form by generic class mechanisms like
templates; metaprogramming offers powerful abstraction capabilities not po
with a noninterpreted system like C++. This research has led to the developme

ERS

the OpenJava and Javassist compilers, which read a form of meta-Java code, and in
turn modify the generated Java code on the way into the JVM. In addition, Kestrel,
the JDK version 1.3, defines a new technology called dynamic proxies, which makes
the previous ClassLoaders almost trivial to create.

3.1.7 Other ClassLoaders

ea of
don’t
’s my
read

e for

de is
 new
, the

code.
le—
ou’re
 that

hout
com-
 con-
ment
 that

out:

eme?
-class
oader
 back
 any-

ple,
80 CHAPTER 3 CUSTOM CLASSLOAD

As we move through this book and visit other subjects, we’ll come back to the id
ClassLoaders and all the different ways we can get bytecode served up to us, so
think we’re completely done with this subject. There’s a lot of potential here; it
opinion that it’s not Java’s portability, simplistic syntax, or even its built-in th
support, but its classloading capabilities that far outstrip any other languag
server-side application development.

3.2 ON-THE-FLY CODE UPGRADES

One of the givens in enterprise development is that evolution is inevitable—as co
released into production, users will find bugs, come up with new ideas, or have
requirements. It’s inevitable. The problem is, once a server goes into production
system administrators are loathe to take the system down just to upgrade the
Remember, they’re looking to keep the system up and running as long as possib
downtime translates into direct loss of money for most IT organizations. So y
stuck with fixed, monthly upgrade dates, which leads your customers to believe
you’re not supporting them as quickly as you should be.

For years, developers have been searching for ways to upgrade code wit
bringing the server (or any clients using the code at the time of the upgrade)
pletely down. It could be done, under strict conditions, but most of the time the
ditions imposed were unacceptable to developers. For example, certain develop
systems could allow for it, but they were usually interpreted, proprietary systems
lacked language features, speed, or acceptance outside of that vendor’s product.

Java gives us the ability to do this sort of dynamic, on-the-fly upgrade with

• taking the server down
• interrupting service to other unrelated clients
• interrupting service to clients currently using the code to be replaced.

Remember what we said about class uniqueness within the Java classloading sch
Within the JVM, a unique class is a tuple of the class’s fully qualified package-and
name and the instance of the ClassLoader that loaded it. In Java terms, a ClassL
holds a reference to each and every class it loads. Each class, in turn, holds a reference
to the ClassLoader that loaded it. So long as either one of these are referenced from
where else in the JVM, that code will be used for new instances of that type. For exam
when we say

FileSystemClassLoader fscl = new FileSystemClassLoader(“D:\\”);
for (int i=0; i<10; i++)

81

{
 Class c = fscl.loadClass(“com.neward.MyClient”);
 Object o = c.newInstance();
}

even if the .class file is modified during the middle of this loop, the old code is used.
This is because when we call Class.newInstance, we reference back to the Class-

ad is

k up

her’s

or
ile
e

ON-THE-FLY CODE UPGRADES

Loader that loaded the Class, and find it has already loaded that class. No new lo
necessary. However, if we write

for (int i=0; i<10; i++)
{
 FileSystemClassLoader fscl = new FileSystemClassLoader(“D:\\”);
 Class c = fscl.loadClass(“com.blah.MyClient”);
 Object o = c.newInstance();
}

then if the .class file for MyClient changes in the middle of the loop, we will pic
those changes.

Don’t believe me? Let’s test it. You’ll find the following code on the publis
web site:

import com.javageeks.classloader.FileSystemClassLoader;

public class ClassLoadTest
{
 public static void main(String[] args)
 throws Exception // cheap way to avoid catch()ing Exceptions
 {
 // The idea is simple: load a .class and run() it, then pause f
 // 10 seconds before doing it again. If you modify the .class f
 // during the pause, then the new ClassLoader should pick up th
 // modification and execute the new file instead of the old one
 //
 System.out.println(args.length);

 if (args.length > 0)
 {
 if (args[0].startsWith("-unique"))
 {
 // We want to use a unique ClassLoader isntance on each
 // loop
 //
 while (true)
 {
 FileSystemClassLoader fscl =
 new FileSystemClassLoader("./TestDir");
 Class c = fscl.loadClass(args[1]);
 Object o = c.newInstance();
 System.out.println(o.toString());

Listing 3.6 Code for ClassLoadTest

ERS

 System.out.println("Sleeping for 15 seconds....");

 Thread.sleep(15*1000);

 }

 }

 else

 {

 // We want to use the same ClassLoader instance on each

.");

que
ader
 the
 has
82 CHAPTER 3 CUSTOM CLASSLOAD

 // loop

 //

 FileSystemClassLoader fscl =

 new FileSystemClassLoader("./TestDir");

 while (true)

 {

 Class c = fscl.loadClass(args[0]);

 Object o = c.newInstance();

 System.out.println(o.toString());

 System.out.println("Sleeping for 15 seconds....");

 Thread.sleep(15*1000);

 }

 }

 }

 else

 {

 System.out.println(

 "Usage: java ClassLoadTest [-unique] classname");

 System.out.println("\tWhile the code is running,

 open a new command");

 System.out.println("\tshell and execute TestDir’s SWITCH.BAT

 System.out.println(

 "\tThis will switch Hello.class from one version");

 System.out.println("\tto the other.");

 return;

 }

 }

}

The point of this code should be fairly obvious: based on whether the -uni
command-line option is present, either use a single FileSystemClassLo
instance to load the class, or else use the same instance repeatedly. Within
TestDir subdirectory under Chap02, you’ll find a LoadTest.java file, which
been compiled into two different versions:

public class LoadTest

{

 public LoadTest()

 {

 Thread t = new Thread(new Runnable()

 {

 public void run()

83

 {

 try

 {

 while (true)

 {

 System.out.println("Hello, " +

 //"from the first LoadTest!"); // ***

oad-
cond
 line.
t the

erent
ing a

and

ilar)

viron-
ch.bat
un-in-
ON-THE-FLY CODE UPGRADES

 "from the second LoadTest!");

 Thread.sleep(5*1000);

 }

 }

 catch (Exception ex)

 {

 }

 }

 });

 t.setDaemon(true);

 t.start();

 }

}

Within that directory, two sets of .class files exist for LoadTest; the first (L
Test1.class and LoadTest1$1.class) uses the “from the first LoadTest” line, the se
(LoadTest2.class and LoadTest2$1.class) uses the “from the second LoadTest”
Remember, Java checks the compiled class name within the .class file agains
name given on the command line, so we can’t just issue

java ClassLoadTest LoadTest1

and expect it to load the LoadTest1.class and execute it; we want the two diff
versions of the .class files to have the same name, to pretend as if LoadTest is gett
new version that needs to be deployed.

To make this work, issue the following commands from a Win32 Comm
shell3 in the Chap02 directory:

start java ClassLoadTest LoadTest

A new shell should appear, and the following output (or something very sim
should appear:

1

LoadTest@eb9de113

Sleeping for 15 seconds....

Hello, from the first LoadTest!

Hello, from the first LoadTest!

3 Again, this example assumes you’re running in a Win32 (Windows NT, Windows 95/98) en
ment. From within a UNIX environment, however, it shouldn’t be too difficult to adapt the swit
file to a standard shell-script file. Where I tell you to type “start java …”, instead use the Unix “r
the-background” switch, “&”: “java …. &”, and everything should work out just fine.

ERS

Hello, from the first LoadTest!

LoadTest@d5a1e113

Sleeping for 15 seconds....

Hello, from the first LoadTest!

Hello, from the first LoadTest!

Hello, from the first LoadTest!

Hello, from the first LoadTest!

ce of
and

thing
using
Test
eady

lass-
lt. In
wing
84 CHAPTER 3 CUSTOM CLASSLOAD

Hello, from the first LoadTest!

Hello, from the first LoadTest!

LoadTest@d7f1e113

Sleeping for 15 seconds....

Hello, from the first LoadTest!

Hello, from the first LoadTest!

Hello, from the first LoadTest!

Hello, from the first LoadTest!

Hello, from the first LoadTest!

Hello, from the first LoadTest!

As you can see, ClassLoadTest, every fifteen seconds, is creating an instan
LoadTest from the TestDir subdirectory. Now, if we go back to the original Comm
prompt, change directories into TestDir, and call the switch batch file, no
changes. Because we started ClassLoadTest without the -unique option, it’s re
the same FileSystemClassLoader instance over and over again to load the Load
class and newInstance it. Since that instance of FileSystemClassLoader has alr
loaded the LoadTest class (with the first version), it won’t go back to the disk.

Now, however, if we close everything and start again with an instance of C
LoadTest run this time with the -unique option, we get a very different resu
this case, from within the Command shell in the Chap02 directory, issue the follo
command, followed by the second command a few seconds later:

start java ClassLoadTest –unique LoadTest

(Wait a few seconds)

cd TestDir

switch

Look what shows up in the console window:

2

LoadTest@d58ce277

Sleeping for 15 seconds....

Hello, from the first LoadTest!

Hello, from the first LoadTest!

Hello, from the first LoadTest!

LoadTest@d064e277

Sleeping for 15 seconds....

Hello, from the first LoadTest!

Hello, from the second LoadTest!

Hello, from the first LoadTest!

Hello, from the second LoadTest!

85

Hello, from the first LoadTest!

Hello, from the second LoadTest!

When told to use a new ClassLoader instance each time to load a class, if the new
class on disk is different from the version loaded by a different ClassLoader, the new
version gets picked up, even if the old version is still being executed.

This is going to provide a substantial payoff later, in chapter 5, when we begin

 run

xten-
iron-
r and
 fired
solu-
 start
art as
own,
reful

iring

from

 run
t say,
com-

other
GJAS: FIRST STEPS

the implementation of the Generic Java Application Server (GJAS).

3.3 GJAS: FIRST STEPS

So where does all this discussion leave us? How does this talk of classloading and
time linking affect us in the server environment?

Remember that one of our goals in this book is to create a flexible, generic, e
sible server framework and system that you can use in your own server-based env
ment. A frequently asked question is: how do we avoid writing the same code ove
over again? We could, for example, write a simple Java class that is intended to be
up off the command line when the user logs in, executes, and terminates. This
tion, however, will be acceptable only for the most simplistic of services. Once we
talking about writing TCP/IP socket servers, as well as servers that need to rest
soon as the machine restarts (in the event of a power failure or controlled shutd
for example), repeatedly rewriting that complexity does nothing except see how ca
(or careless) we are with our ability to cut and paste.

We can do better.

3.3.1 Goals

The GJAS needs to have the following qualities, at least to start:

• Extensible
We should be able to plug in additional services and/or servers without requ
any code change to the server itself.

• Generic
We shouldn’t be excluded from including a particular server or service
within this system due to the system’s approach or limitations.

• Dynamic
We should be able to vary which servers or services are started from run to
(that is, the first time we run it, we should be able to run three servers tha
“Hello, world!”; the next run, two Hello servers and one that executes a
mand line) without necessitating a code change.

• Independence
No server or service should be able to bring down the JVM (and therefore
executing servers/services in the system).

ERS

We’re not going to delve into implementation code quite yet; we need to address
a few other issues first, such as scalability and robustness. However, we can at least take
a first pass at the design and the interfaces required.

Meeting these requirements requires Java’s ClassLoading mechanism as well as
careful interface design. Extensibility can be met by defining a simple Service interface
which clients must implement, which we load and construct at run time. Genericness

cness
 the

 Java
tself,

irec-
 that
right

JAS
86 CHAPTER 3 CUSTOM CLASSLOAD

can be met both through this run-time construction and careful design. Dynami
can be met by creating an API that our system exposes, allowing users to vary how
servers/services are loaded. Independence can be met by making certain that any
exception thrown from within a user service can be thrown out of the system i
bringing down the JVM.

The code for the following classes can be found in the CustomClassLoader d
tory on the publisher’s web site. There will be other versions in other directories
won’t match what we’re building thus far, so make sure you’re looking in the
place. Figure 3.1 shows the UML diagram of the system so far:

3.3.2 Service

We’ll start with the basic interface that any service wanting to be a part of the G
framework/system must implement (listing 3.7).

/**
 * Note: Service’s Serializable interface should be honored,
 * because Serialization is the basic means of exchange between
 * JVMs in RMI calls, and if a Service is not Serializable then it
 * cannot be transferred across JVMs.
 *
 * If a Service needs to maintain "interim" data that should not
 * be Serialized, then remember to mark the data members as
 * transient. Also, remember that a given Serializable
 * class can control what happens when it is serialized and
 * deserialized by means of the writeObject and readObject methods.
 * This would allow, for example, those Services that make use of
 * JDBC Connections (as an example) to close down and reopen the
 * Connection upon serialization and subsequent deserialization.
 */
public interface Service
 implements java.io.Serializable
{
 /**
 * Start the Service. All but the most simplistic Services

Figure 3.1 Simplified UML diagram of GJAS so far

Listing 3.7 Code for Service.java

87

 * should fire off their own thread from here.

 */

 public void start()

 throws Exception;

 /**

 * Stop the Service.

 */
GJAS: FIRST STEPS

 public void stop()

 throws Exception;

 /**

 * Pause the Service.

 */

 public void pause()

 throws Exception;

 /**

 * Resume the Service.

 */

 public void resume()

 throws Exception;

 /**

 * Get the current state of the Service; must be one of the

 * following types: STOPPED, STARTING, RUNNING, STOPPING,

 * PAUSING, PAUSED, or RESUMING.

 */

 public String getState();

 public static final String STOPPED = "STOPPED";

 public static final String STARTING = "STARTING";

 public static final String RUNNING = "RUNNING";

 public static final String STOPPING = "STOPPING";

 public static final String PAUSING = "PAUSING";

 public static final String PAUSED = "PAUSED";

 public static final String RESUMING = "RESUMING";

 /**

 * Return a String uniquely identifying this instance of the

 * Service; this String must be unique not just to the Service

 * class, but to the Service instance itself. Suggested return

 * format is something like:

 *

 * String instanceID = this.getClass().getName() + ":" +

 * getClassVersion() + ":" + getMillisecondCount();

 *

 * Note that maintaining an "instance count" of the number of

 * instances of this class will fail, since all instances will

 * be maintained within their own ClassLoader, and static

 * members are stored on a per-ClassLoader basis.

 */

 public String getInstanceID()

 throws Exception;

}

ERS

The first question might very well be why we choose to force all GJAS-compliant
servers to have to implement Service, instead of simply requiring a compliant class to
make public certain methods of a particular signature, and use Reflection to call them?
After all, wouldn’t using Reflection offer a measure of flexibility that went beyond
most other programming languages?

The answer isn’t clear-cut, and stems mostly from personal choice. It’s my pref-
addi-
oper,
ill be
 spe-
ier to

rver-
de to
 a bit
seful

ve to
erver
r it is
d be

hings
de in
for a
finite
erver
pper
g the

other
tance
van-

we’re
w) at

 that
ntent
ager
88 CHAPTER 3 CUSTOM CLASSLOAD

erence to accept the limitations of an interface-based API in exchange for the
tional compile-time checking that the compiler gives me, both as the server devel
as well as the client developer (the one who’s developing the services that w
plugged into the system). It’s also easier for me as a server developer to manage,
cifically from a code perspective. Not only are methods on the client service eas
call, but they are also easier to read and understand.

It would also be a simple matter to combine the two approaches—in the Se
Manager implementation (which we cover in a later chapter), we could add co
use Reflection within the system if the class loaded didn’t implement Service. It’s
of overkill—only one approach or the other should be used—but it can be a u
trick under other circumstances.

3.3.3 Server

Given that we already have a basic interface we want any user of our system to ha
implement in order to be hooked in, why create another layer between the s
manager (IServerManager), and the actual Service? At the moment, the need fo
fairly light—we probably could, in fact, just call the Service methods directly an
happy with it. As we move on, though, we’ll find that we have to do various t
around each call to the Service methods. For example, we’ll eventually want co
place that spins off a Thread to make the call to the Service method, and waits
few seconds to see if the call comes back, just in case Service is stuck in an in
loop or otherwise blocked. That way, we won’t lock up the entire system. So S
will become our handle to a Service, with each Service instance having a wra
Server around it. Server, in essence, will isolate us from Service being able to brin
entire system down.

This is a classic example of the Proxy pattern, in which we’re defining an
object instance to act as the gateway to another object. In this case, the Server ins
will act as the Proxy to the actual Service instance. This nets us absolutely zero ad
tage (and an additional function-call indirection for our trouble, which means
actually worse off than calling the Service instance directly, at least for right no
the moment, but becomes more critical later.

The code for Server is, at this point, rudimentary and straightforward. Note
we first specify Server as an interface (IServer), in order to preserve Server’s i
as a location-transparent class—we don’t want to know precisely how ServerMan
is hiding the Service from us (listing 3.8).

89

 **

 * The "public" interface for Servers; note that the Server instance

 * type will vary directly with the ServerManager used, in order to

 * best support the location transparency concept. IServer serves as

 * the Proxy to the Service instances loaded into the ServerManager;

e

nd

is

not

.

5

not

.

Listing 3.8 Code for IServer
GJAS: FIRST STEPS

 * any control of the Services must come through the Server, since

 * the client, if it tries to hold a Service instance within its own

 * JVM for "faster" access, may be holding a stale or otherwise

 * unstable reference.

 */

public interface IServer

 extends java.io.Serializable

{

 /**

 * Starts the wrapped Service instance. Services have 15 seconds in

 * which to either initialize, or else start a thread to perform th

 * necessary initialization and return. If a Service fails to respo

 * within 15 seconds of the start of its start call, the Server

 * and/or ServerManager are free to destroy it.

 */

 public boolean start();

 /**

 * Stops the wrapped Service instance; as with start, the

 * Service gets 15 seconds to stop itself before the ServerManager

 * free to take more drastic steps.

 */

 public boolean stop();

 /**

 * Pauses the wrapped Service. The Service should respond within 15

 * seconds of the start of this call; however, failure to do so is

 * sufficient grounds for the ServerManager or Server to destroy it

 */

 public boolean pause();

 /**

 * Resumes the wrapped Service. The Service should respond within 1

 * seconds of the start of this call; however, failure to do so is

 * sufficient grounds for the ServerManager or Server to destroy it

 */

 public boolean resume();

 /**

 * Kills the wrapped Service.

 */

 public void kill();

 /**

 * Returns the state of the wrapped Service.

 */

 public String getState();

 /**

ERS

 * Returns the instance ID of the wrapped Service.
 */
 public String getInstanceID();

 /**
 * Returns the last Exception thrown, if any, by the wrapped Service.
 */
 public Exception getLastError();

rvice
 that
kets,

men-
r.

fined
n the
dded
basic
nt of
oing

irtual
.
basic
vide
an-

want
, but
ble is
t we
an-

as the
s the
90 CHAPTER 3 CUSTOM CLASSLOAD

}

As you can see, IServer isn’t much more than a small shell around the Se
methods. Notice also how IServer extends the Serializable interface; this is so
(in later chapters) we can send IServer instances across RMI connections, soc
or even serialize it out to disk. By making IServer Serializable, we add a tre
dous amount of flexibility to how IServer can interact with the ServerManage

3.3.4 ServerManager

The core GJAS is the ServerManager class, which is the shell in which user-de
Service-derived classes will execute. ServerManager, more than any other class i
GJAS system, is the heart and soul of its application server. It holds the Services a
to it, hands out references to Services as requested by clients, and provides the
backplane for the GJAS system. However, in order to provide the maximum amou
location transparency, we don’t necessarily want the ServerManager class itself d
the actual work—we’d like to be able to connect with ServerManagers in other v
machines, and so forth. We’ll get to that later, but we’ll lay the groundwork now

We create ServerManager in a separated fashion. First, we’ll create the
ServerManager interface, called IServerManager, that any class wishing to pro
ServerManager-like behavior must implement. Next, we’ll create a class, ServerM
ager, that provides static-level access to the IServerManager instance. We
only one ServerManager instance in a given JVM (the classic Singleton pattern)
we don’t know ahead of time which we want. The reason we go to all this trou
that we want to provide a single way of interacting with the ServerManager, bu
want to vary the actual ServerManager implementation used. We write the ServerM
ager class to check to ensure that only one IServerManager instance is ever set
instance, and require any IServerManager-implementing class to set itself a
ServerManager instance.

A ServerManager needs to provide, at a minimum, the following interface:

public interface IServerManager
{
 public void shutdown();

 public IServer loadService(Service svc);
 public IServer addService(Service svc);
 public void removeService(String instanceID);
 public void killService(String instanceID);

91

 public String[] getServices();

 public IServer getService(String instanceID);

 public void log(String msg);

 public void log(Exception ex);

 public void error(String msg);

 public void error(Exception ex);

rver-

 The
vices
oable
ger is

 Ser-
 adds
does.
; this
t().
The
eID

oves
ce is
on’t

rings
turns

rting
arate
rting
here.
 and/
Serv-

ror

rob-
GJAS: FIRST STEPS

}

ServerManager’s API can be broken down into three sections: control of the Se
Manager itself, Service management, and diagnostic/logging support.

Controlling the ServerManager itself consists of one method: shutdown.
method prepares the ServerManager to go down, and is required to take all the Ser
down in as clean a manner as it can before terminating. Shutdown is an unvet
action, so if any Service tries to resist or simply takes too long, the ServerMana
free to terminate it.

The next set of methods deals with adding, removing, and enumerating the
vices running within the ServerManager. As might be expected, addService
the Service instance to the ServerManager and calls start on the Service as it
The loadService method adds the Service instance, but doesn’t call start
means that addService is the same as loadService(Service).star
Notice that both return the IServer instance we discussed above.
removeService method removes the Service specified by the instanc
parameter, calling stop on the Service first. The killService method rem
the Service altogether from the ServerManager—theoretically, when the Servi
no longer referenced by the ServerManager, it will be garbage-collected, but d
depend on this behavior. The getServices method returns the array of St
given by calling each Service’s getInstanceID method, and getService re
the IServer instance wrapping the Service in question.

The log and error methods provide a single unified logging/error-repo
facility. You may be wondering why, if we’re trying so hard to keep Services sep
from ServerManager, we would turn around and place the logging and error-repo
facilities inside of ServerManager. For now, it makes the most sense to put them t
If you have a real problem with that, feel free to create a Service (call it LogService
or ErrorService) that exposes the same APIs. In any event, accessing the APIs in
erManager is as simple as calling

ServerManager.log(“Started the FooBotz Service”);

Because ServerManager is a Singleton, we have no concerns about log or er
output being fragmented across multiple locations, which could very easily be a p
lem if the logging and error-reporting services are standard services.

ERS

3.4 SUMMARY

ClassLoaders offer powerful functionality for our server framework and system. We’ve
moved from the traditional bundle-up-all-the-code, get-the-system-administrators-to-
install-it-on-all-the-users’-machines approach to a more distributed, zero-deployment
system. We can drop our code in a single centralized point, be that a shared filesystem,

s any
e old
 seen
 class
92 CHAPTER 3 CUSTOM CLASSLOAD

FTP server, or HTTP server, and any new clients will pick up the new code, even a
old clients continue to finish their interaction using the old code. As the last of th
clients disappears, so does the loaded bytecode for the old instances. We’ve also
how we can modify the class bytecode as it is loaded into the JVM, thanks to the
filters concept, or even build entirely new bytecode on the fly.

C H A P T E R 4

Extensions

4.1 Types of extensions 94
4.2 Implications of the extensions mechanism 100
4.3 Packaging extensions 102
4.4 The plug-in 104
4.5 Summary 125
hanism.
l):
JDK 1.2 offers a new mechanism for updating code: the Java extension mec
From the JDK 1.2 documentation, (jdk1.2/docs/guide/extensions/index.htm
to be
JRE.”
 local

Extensions are packages of Java classes (and any associated native code) that
application developers can use to extend the functionality of the core platform.
The extension mechanism allows the Java virtual machine (VM) to use the
93

That last sentence should strike a nerve—“provides a way for needed extensions
retrieved from specified URLs when they are not already installed in the JDK or
That would seem to imply that if a class isn’t present within the CLASSPATH or
file system we can grab it from someplace else. That’s precisely what it means.

extension classes in much the same way as the VM uses the system classes. The
extension mechanism also provides a way for needed extensions to be retrieved
from specified URLs when they are not already installed in the JDK or JRE.

IONS

4.1 TYPES OF EXTENSIONS

The Java extension mechanism divides the world of Java extensions into two camps:
installed and download. Each carries its own advantages and drawbacks.

4.1.1 Installed extensions

hich
 Java
H if

ics as
32, a
h the
s sys-
ATH

erly,
on of
ASS-
r file
their
ow,

auto-

 sub-
tered
raises
ppli-
lkits)
. The
for a
 Sun
med

t rea-
ntion
g the
.jar”.
, and
f my
94 CHAPTER 4 EXTENS

An installed extension is code that resides within the JRE’s extension directory, w
within the Sun JRE distribution, is the JRE\1.2\lib\ext directory. Any compiled
code, whether in .class or .jar form, will be silently added to the JVM’s CLASSPAT
it resides within this directory.

In this respect, the JRE’s extension directory now mimics the same semant
most modern operating systems and shared libraries. For example, under Win
DLL will be found by a LoadLibrary() call regardless of the directory in whic
application is executing if the DLL resides in the Windows directory or Window
tem directory. Most UNIX OSs have something similar using the LD_LIBRARY_P
environment variable.

This makes distribution of Java applications much, much easier. Form
installing a Java application to a client’s machine required not only the installati
the .class or .jar file to the local file system, but also modification of the user’s CL
PATH environment variable to include the new directory or directories or the .ja
itself. While not a monumental task, users can (and quite frequently do) change
environment variable settings, making Java applications particularly vulnerable. N
install scripts can copy the code over to the extension directory, and Java will
matically find it.

Unfortunately, Java will look only in that specific directory, and not in any
directories underneath it. This means that this directory is likely to become clut
and crowded as multiple applications install themselves to this one place. It also
the ugly possibility that versioning issues will begin to appear on user systems as a
cations using common third-party JAR files (GNU code, or third-party GUI too
which start accidentally overwriting newer versions with older versions on install
Windows development community has been struggling with this problem
decade, and accidental overwrites still occur despite their best efforts. Unless
quickly takes steps to address this, I would be very careful about how files are na
when installed to this directory.

Fortunately, Java doesn’t seem to care what the JAR file itself is named; for tha
son, I’d suggest any JAR file to be installed to this directory follow a naming conve
similar to that of Sun’s package names. For example, if I create a .jar file containin
“HelloWorld.class” file, version 1, then I’d rename it “com.javageeks.HelloWorld
That way, in my install scripts, I can check for an earlier version of my application
search through the .jar file for a text file labeled “version”, and read which version o
code I’m thinking about overwriting.

95

One undocumented1trick regarding extensions is the java.ext.dirs prop-
erty. When the Java run time starts, it defaults this property to be the JRE’s lib/ext
directory. However, by using the -D parameter at the command line (or by specifying
the equivalent option when using JNI invocation), it’s possible to change or add direc-
tories to this path list.

As proof, create a simple Hello.java class and put it in the root of your file system;
reter

ctory

orre-
dded
could
 do.2

irs
s the
 class
 have
o the

 with

get-

nsions
e such
 of lo-
TYPES OF EXTENSIONS

here I’m assuming it’s a Wintel PC, on the C: drive. Now fire up the Java interp
with the –D parameter like so:

java –Djava.ext.dirs=C:\ Hello

UNIX Java users would run:

java –Djava.ext.dirs=/ Hello

Your Hello class will be loaded and executed although it resides in the root dire
instead of in the standard Extensions directory.

This in turn offers some hope for directory management. Each subdirectory (c
sponding to a single application, development group, component, whatever) can be a
to the java.ext.dirs property when the JVM is started. Naturally, this, too,
quickly become unmanageable, but until Sun changes this behavior, it’s the best we can

What would actually be very cool would be to modify the java.ext.d
property, or its equivalent within the ClassLoader, to add Extension directories a
application executes. Unfortunately, URLClassLoader, which serves as the base
for Launcher$ExtClassLoader, doesn’t make its addURL method public, so we
no hope of being able to do that. Once the Extension directories are loaded int
ExtClassLoader, they’re fixed for the lifetime of the JVM.

4.1.2 Building an installed extension

Building an installed extension is as simple as building a normal JAR file. Begin
standard Java code, compile it, and condense it into a JAR file:
// HelloWorld.java (in src/chap2)
//
public class HelloWorld
{
 public static void main(String[] args)
 {
 System.out.println("Hello, world!");

 }
}

1 As of this writing it only shows up when every property in the JVM is displayed via System.
Properties.

2 If you hold a Sun Community Source License to Java 2, you could modify the source for the Exte
ClassLoader that manages the extensions directory (sun.misc.Launcher$ExtClassLoader). Whil
a modification would immediately render your environment impure Java, sometimes these sorts
calized source changes are necessary and beneficial in the long run.

IONS

/*
From the command line, do:

javac HelloWorld.java
jar cvf com.javageeks.HelloWorld.jar HelloWorld.class
copy com.javageeks.HelloWorld.jar your-JRE-directory\lib\ext

or, if you use the GNU make from the CD, edit the makefile.rules
file in the ‘src’ directory, and do:

n on

sting
I can
ine if

pt to

ill be
ty to
s the
):

tions
e use
96 CHAPTER 4 EXTENS

make clean all

*/

As I described, typically if I’m packaging up a JAR file for release or installatio
end-user machines, I’ll also include a text file labeled “version” in the JAR:

Major 1
Minor 0

Then, inside of an install script or install executable, I can look for an exi
com.javageeks.HelloWorld.jar file within the Extension directory. If one exists,
open it using the java.util.zip classes, extract the version file, parse it, and determ
I need to overwrite what’s there.

Once the JAR file is created, copy it to the Extension directory, and attem
execute it:

copy HelloWorld.jar C:\prg\jdk1.2\jre\lib\ext
cd \
java HelloWorld

That’s all there is to it.

4.1.3 Download extensions

For all the power in the installed extension mechanism, download extensions w
the ones in which people will probably be most interested. This is the abili
download code from a URL if it is not already present on the system. However, a
JDK 1.2 extension guide tells us, (jdk1.2/docs/guide/extensions/extensions.html

The key part comes in the second paragraph: “… only applets and applica
bundled in a JAR file can make use of download extensions.” So, in order to mak

Unlike the case of installed extensions, the location of the JAR files that
serve as download extensions is irrelevant. A download extension is an exten-
sion because it is specified as the value of the Class-Path header in another
JAR file’s manifest, not because it has any particular location.

Another difference between installed and download extensions is that only
applets and applications bundled in a JAR file can make use of download
extensions. Applets and applications not bundled in a JAR file don’t have a
manifest from which to reference download extensions.

97

of download extensions, we need to have our application in a JAR file, with the Man-
ifest file indicating where else to look for code that the JVM can’t find.

This offers some serious code-reuse capabilities, especially in a corporate intranet.
In a sense, this is the DLL or shared library concept taken to a distributed context.
Remember, the original idea of the shared library (or DLL, under Windows) was to
prevent multiple copies of the same code loaded everywhere. By providing a mecha-

ared
 also
ary.
ism.

 hap-
load

ed to
lease
lease
place

 can
java-

elop-
 may
ently
load

given
com-
ainly
n the
 that

on’t.
sion

tirety
TYPES OF EXTENSIONS

nism by which code could be loaded only once across all processes using it, the sh
library/DLL concept not only reduced per-process memory requirements, but
allowed for across-the-board updates of code by simply replacing the shared libr

Java now provides the same possibilities via this download extension mechan
Suppose a team makes use of the com.javageeks.foobar component library, which
pens to be in version 2.0, to do its development. Normally, before the down
extension mechanism, the .jar file or .class files for the foobar library would ne
be deployed with the development team’s application. Should javageeks.com re
a new version of foobar (version 3), the development team needs to make a new re
with the new foobar .jar/.class files in it, even if no new development has taken
on the application.

Instead, with the download extension mechanism, the development team
mark the application’s JAR as being dependent on the foobar library by using
geeks.com’s URL to reference it:

Class-Path: http://www.javageeks.com/javalib/foobar.jar

Now, should javageeks.com release a new version of the foobar library, the dev
ment team need not do anything to take advantage of the new version; in fact, it
not even be aware of the new version. Just as DLLs could (in theory) be sil
upgraded with newer versions as bug fixes and patches were released, new down
extensions can also be silently upgraded without client knowledge.

This, of course, presumes that the download extension always exists at the
URL referenced within the application’s .jar file. This may not be the case for
mercial or freeware source sites, but on a corporate intranet developers cert
would. Just hang the shared component .jar/.class files from a known location o
corporate or departmental web server, and any application which makes use of
.jar/.class file library will automatically pick up any new updates.

Download extensions do carry some restrictions that installed extensions d
Each and every time an application or JAR file is run that uses a download exten
that resides off of a web server, the code will have to come across the wire in its en
(jdk1.2\docs\guide\extensions\extensions.html):

The extension mechanism will not install a download extension in the JRE
or JDK directory structure. Download extensions do not become installed
extensions after they have once been downloaded.

Unlike installed extensions, download extensions cannot have any native code.

IONS

This means that each and every time the user fires up the application, it will have
to download all of the application’s class files over the wire. This can mean long load
times, especially if your network bandwidth is tight, or you have a large number of
users and/or a low-end intranet Web server.

Additionally, the restriction regarding native code may have more impact than
might originally have been estimated. As seen in later chapters, JNI and native code

, and
xten-
 (off
irec-

e fol-

 the
le:

e -jar
s the
and-

le file
ifica-

on-

t this
here
98 CHAPTER 4 EXTENS

can have some powerful applications in server-side Java applications.

4.1.4 Building a download extension

The Manifest file specification is given in jdk1.2\docs\guide\jar\manifest.html
the specific headers for Java extensions are given in jdk1.2\docs\guide\e
sions\extensions.html. Creating a Manifest file means you create a subdirectory
the directory in which the JAR file will be built) called META-INF, and in that d
tory, create a file called MANIFEST.MF. It needs to contain, at a minimum, th
lowing line:

Manifest-Version: 1.0.

This establishes it as a Manifest file to any JAR-reading utility that works with
JAR file. Optionally, it can also contain a line indicating the creator of the JAR fi

Created-By: JavaGeeks.com

You can establish this as an executable JAR file with the following line:

Main-Class: com.javageeks.ClientApp.Main.

This line indicates that when this JAR is specified to the Java interpreter using th
flag, this class (com.javageeks.ClientApp.Main, in the above example) contain
main method to execute. Specifying this line effectively allows us to create a st
alone JAR file to execute on user machines. Effectively, saying

java –jar YourJar.jar

where YourJar.jar contains a Main-Class line of ClientApp.Main is the same as

set CLASSPATH=%CLASSPATH%;YourJar.jar

java ClientApp.Main

As a result, for the first time, Java now has the ability to ship a prepackaged sing
that contains all the necessary elements for execution, without requiring mod
tions to the user’s environment settings.

The key to download extensions is the Class-Path manifest setting, as dem
strated in this line:

Class-Path: servlet.jar foo.jar footoo.jar

Class-Path tells the JRE where else it needs to look for the additional classes tha
JAR file references. This line contains the file or URL reference telling the JVM w

99

to find additional .jar files on which this JAR depends. It will then attempt to use these
JAR files to resolve any requested classes during execution of the application code.

Readers familiar with the Java applet model will undoubtedly be curious why
download extensions would even be necessary, given that an applet embedded in a Java
page offers the same sort of functionality. After all, the applet model allows web page
designers to download code as necessary into the client JVM to execute applets. In fact,

own-
dbox
ppli-
cces-

 web
ding

 with
dard
e C:\

ello-
ill be
t-end
TYPES OF EXTENSIONS

the two approaches are distinctly related. However, in an application that uses d
load extensions, no security restrictions are in place—the infamous applet san
doesn’t exist in a standard Java application unless, of course, it is loaded into the a
cation via Java’s SecurityManager. This in turn means that all of those things ina
sible to Java applets is freely available to download extension code.

Additionally, the loading code doesn’t come from an HTML page, so no
browser is required to execute the application. This in turn means that the loa
application remains independent of web servers, HTTP, or HTML.

Example: HelloDownload

In this particular example, because not all readers will have access to a web server
which to test, we’ll create a JAR file that in turn depends on one in a nonstan
location. In this case, we’ll be trying to use code from the root directory of th
drive on a PC.

To start, create and compile two simple Java classes:

// Download.java

//

public class Download

{

 public void sayHello()

 {

 System.out.println("Hello from Download");

 }

}

// HelloDownload.java

//

public class HelloDownload

{

 public static void main(String[] args)

 {

 Download dl = new Download();

 dl.sayHello();

 }

}

Overly simplistic, but the classes should prove the point. The idea is simple: H
Download depends on the class Download to run. Therefore, HelloDownload w
either an installed extension or an executable JAR file (we need to make this fron
a JAR file, as well), and will reference the Download.jar file in its Manifest file:

IONS

Manifest-Version: 1.0
Created-By: JavaGeeks.com
Class-Path: C:/Download.jar3

Create the HelloDownload.jar file with the Manifest file named manifest by specify-
ing the name of the Manifest file on the jar utility command-line:

jar cvfm HelloDownload.jar manifest HelloDownload.class

own-
xten-
so as
:

load”

f you
 your
d the
URL-
n the

ious.

nism
n. If
 also
 new
 be a
 dis-
hen

ies.
lem.
dent

in the
here’s
100 CHAPTER 4 EXTENS

Create the Download.jar file in the normal fashion:

jar cvf Download.jar Download.class version

Copy the Download.jar file to the root directory of the C:\ drive, and the HelloD
load.jar (renaming it to com.javageeks.HelloDownload.jar, if you wish) to the E
sion directory. Change directory to someplace other than the current directory,
to make sure we’re not picking up the code in the current directory, and execute

java HelloDownload

Given a working JDK 1.2 installation, you should see the “Hello from Down
message on your console window.

The Class-Path header can be a file-relative path or a standard HTTP URL. I
have a web server, change the location of the Download.jar to be a location off
web root, change the Class-Path in the manifest file to be that URL, rebuil
HelloDownload.jar file, and try running it. Because ExtClassLoader extends
ClassLoader, any given URL type—file, http, or ftp—are all viable candidates i
Class-Path tag.

4.2 IMPLICATIONS OF THE EXTENSIONS MECHANISM

Using Java extensions carries implications that may or may not be immediately obv

4.2.1 Distributed libraries through download extensions

One of the problems with building applications using a dynamic linking mecha
is the inevitable necessity of upgrading the libraries which support the applicatio
an application uses library “X,” there will undoubtedly be other applications
using it, and a subsequent version of one of these libraries may in turn require a
version of the “X” library. Getting this out to all the users of the application can
much more difficult problem, for the same reasons as those making it difficult to
tribute the application in the first place. This becomes even more of an issue w
libraries in turn use other libraries. Suddenly, there’s an entire tree of dependenc

The download extension mechanism offers one practical solution to this prob
By marking the .jar files that a library or an application uses, any updates to a depen

3 Readers running the example on a UNIX installation will need to change the Class-Path line
manifest file to read “/Download.jar” or “/~/Download.jar” instead of “C:/Download.jar”. T
nothing magical about the root directory; any directory on the file system can be used.

101

library can be picked up automatically. Two options are now possible—if maximum per-
formance is desired, system administrators can manually copy new versions of the library
down to end-users’ machines, or a stand-alone daemon process on the end-users’ system
can check (at startup or every twenty-four hours, or any other practical time) the current
versions of its .jar files against a central repository. Alternatively, the extension can use http
URLs, and pull them as necessary from the same centralized repository. (Both approaches

 load
e less
espe-
ds to
mon

 abil-
 .class
dvan-
rable
oided
eces-

 pop-
cause
port
con-
e can
all of
nt of
e will
ed at
, and

mple
 part
y4 or

imple-
t, and
es not
o have
IMPLICATIONS OF THE EXTENSIONS MECHANISM

could be used simultaneously, as best benefits each individual application.)
The one drawback to this approach is that download extensions cannot

native library code. Typically, however, on end-user systems, native code will b
attractive due to the higher administrative support necessary to make it work,
cially in heterogeneous networks. In those rare situations where native code nee
be moved to each end-user’s workstation, the version-checking download dae
process can pull both .jar files and native code at the same time.

4.2.2 Java EXEs; relation to C++ static linking

The ability of the Java 2 interpreter to execute .jar files directly also makes possible the
ity to create stand-alone java executable files, .jar files, that contain all of the necessary
files to execute a given application. Recall from the start of chapter 2 one of the disa
tages of dynamic linking: an application that uses dynamic linking will always be vulne
to upgrades of the classes on which it depends. In the C++ environment, this can be av
by linking all referenced code statically, as part of the compiled executable, so that the n
sary dependent code travels with and is never upgraded by a dynamic library upgrade.

This sort of static linking carries another, more practical benefit, in that many
ular web browsers do not support more than one .jar file in the <APPLET> tag. Be
of this, attempting to keep the application’s code physically separate from the sup
code it uses will yield unworkable results when that applet is viewed from a non
forming browser. Instead, by packaging the entire codebase into a single .jar, that fil
be placed on the HTTP server and referenced from the web page. True, it means
the code must be downloaded each time, and that this may not be a trivial amou
data; however, in this case, only if the web browser caches the downloaded .jar fil
any time savings be realized, since the necessary classes will need to be download
least once. By static-linking the .jar file, only those classes used by the application
not any extraneous code, are downloaded.

Performing this sort of static linking is not pain-free. While it may be a si
matter to identify which code written by the developer needs to be deployed as
of this stand-alone application .jar, doing the same for the Java run-time librar

4 While this may seem overzealous, it actually helps when trying to deal with different Web browsers
menting different versions of the JDK. For example, most Web browsers aren’t JDK 1.2-complian
most only supported up to about JDK 1.1.6 or so. Because JDK 1.2 introduced a number of class
found within JDK 1.1.6, such as the CORBA org.omg.* classes, any CORBA-using applet needs t
those along for the ride.

IONS

third-party libraries used by the application can be another thing altogether. To go
along with this, code and any resources (graphics, sounds, resource bundles, and so
forth) used by the application need to be stored within the .jar file.

Because Java stores any classes used by a particular class within the class’ compiled
bytecode format, as Class entries in the class’s constant pool, we could create an auto-
mated tool to scan a particular class’ compiled bytecode, pick out all the Class entries

ny of
 then

aries,
g the
 the

addi-
er is
t any
ions’
tion-

ents
 and
rchi-
ader
der),

avag-
ay.5

nism
oring

 core
 will
 the
ents,
ot be
nism

details
102 CHAPTER 4 EXTENS

found there, and perform the same scan recursively. Such tools exist already, ma
which can be found within the Open Source community. This list-of-classes can
be fed into the Sun jar utility to build the .jar file directly.

4.3 PACKAGING EXTENSIONS

If extensions provide an easy path for reusable components and component libr
then it’s natural to make GJAS (as well as other components we develop alon
way) an extension. Unfortunately, while parts of GJAS migrate very easily to
extension architecture, the nature of Java’s ClassLoader architecture requires
tional complexity within the GJAS codebase. Since the extensions’ ClassLoad
unavailable for modification or separate instantiation, we need to make sure tha
Services loaded by GJAS are first loaded by ClassLoaders other than the extens
ClassLoader unless all other avenues have been played out. The ClassLoader rela
ship to our Services is illustrated in figure 4.1.

To start, the stand-alone compon
can be bundled up into packages
used independently of the GJAS a
tecture. This includes the ClassLo
components (com.javageeks.classloa
the thread components (com.j

eeks.thread), and socket clients (com.javageeks.client) developed along the w
Because these components will not need to use the change-on-the-fly mecha
ClassLoaders provide and GJAS takes advantage of, we have no problems with st
them as extensions.

The same is true of the Service, Server, and ServerManager classes, the
parts of GJAS itself. Correspondingly, this means that any upgrade of GJAS
require taking down the GJAS process, updating the codebase, and restarting
process. Should developers require the ability to upgrade the GJAS compon
then GJAS (or any other component that requires on-the-fly upgrading) cann
stored in extensions, and will probably want to make use of some other mecha
for easy distribution.

5 The .jar file is created in the “Lib” directory on the publisher's web site; see the makefile there for
on the specifics of how these files are created and stored.

Figure 4.1 ClassLoader-to-classes relationship

103

In the source tree on the web site, the entire “com.javageeks” is packaged into a
single .jar file. This may not be desirable in large-scale Java applications, since an
upgrade to any of the contained packages requires the replacement of the entire .jar
file. Instead, each package could be broken out into separate .jar files, with dependen-
cies on other .jar files labeled as download extensions, and upgraded individually as
necessary. This approach offers more flexibility in terms of piecemeal upgrades, but

 This
t var-

ment
m, it
 like

’t set
xam-
n an

nd it
order
mple
 java
.
o the

ent,
envi-
h we
want
ASS-
 Ext-
d we
hap-
 may

evel-
g nor
d up
ly, as
on’t
PACKAGING EXTENSIONS

sacrifices development ease; developers must now track each “library” separately.
also requires separate versioning of each jar, and some greater testing to verify tha
ious versions of each “library” work together.

4.3.1 The build-time vs. run-time dilemma

Unfortunately, this isn’t the only tension between the development and deploy
environments. Because Java is both a build-time and run-time interpretive syste
makes no inherent distinction between run time and build time. This seems
double-talk, without further explanation.

One of the first things a Java developer learns is that if the CLASSPATH isn
to include all of the classes used by an application, the code won’t compile. For e
ple, unless the JSDT classes are on the CLASSPATH,6 any code containing eve
import statement will not compile.

The reason is simple: the javac compiler is actually implemented in Java, a
uses the CLASSPATH to find the classes to which a particular source file refers in
to carry out its compile-time type checking. The javac compiler, in fact, is a si
wrapper around the class sun.tools.javac.Main, and can be invoked using
sun.tools.javac.Main, assuming the JDK 1.2 tools.jar file is on the CLASSPATH

All of this doesn’t seem to have any relevance, at least not until we get int
build time versus run time dilemma. There will be occasions, within developm
when a developer needs to have both a build-time environment and a run-time
ronment on his/her machine. The classic case is with GJAS itself—even thoug
need the Service classes we’ll be building to be available at build time, we don’t
them to be stored in the Extensions directory at run time. If they’re on the CL
PATH or in the Extensions directory, the system ClassLoader (AppClassLoader or
ClassLoader) will pick up the classes instead of our new ClassLoader instance, an
won’t be able to do the load-new-code-on-the-fly trick demonstrated in the last c
ter. If the code is stored on the CLASSPATH or in the Extensions directory, testing
be adversely affected, as in the case of GJAS.

Fortunately, this situation arises only on developers’ machines, since only d
opers require both the build-time and run-time environments. Neither the testin
the production environments require the build-time classes, since they’ll be picke
by the individual ClassLoader instances and not by the system loader. Fortunate
well, most developers won’t be faced with this situation, since most developers w

6 Or in the Extensions directory.

IONS

be facing this sort of situation (where classes need to be picked up by a custom Class-
Loader and not the system Loader).

Unfortunately, when working with an application server like GJAS, developers
will run into this situation head on. One solution is to use multiple JDK environments,
one CLASSPATH/extensions setup for compilation, and another for testing/execution.
For example, the developer can install the JDK under C:\JDK1.2, and install a stand-

mpt
other

 first
 This
, but
ated.
cially
need
 This
ated,
n the

ce it
ithin
 typ-
same
com-
App-

mic-
t 2.2
war),
of all
r the
nt to
ent,

-box
erver
s, we
 .exe
104 CHAPTER 4 EXTENS

alone JRE under C:\JRE1.2. The developer then runs two distinct Command Pro
shells, one with PATH and CLASSPATH set to the JDK for compilation, and the
with PATH and CLASSPATH set to point to the JRE.

This is awkward for a number of reasons. First, any code compiled within the
shell must be transferred to the second shell’s CLASSPATH or extension setup.
can be as simple as specifying a “-d <directory>” option to javac when compiling
can easily be forgotten or mismatched if the build process isn’t completely autom
Secondly, it’s often difficult to maintain two separate clean environments, espe
if the application uses files or other environment variables, some of which may
to be stored within the Win32 Registry (or other OS-specific centralized storage).
typically isn’t too much of an issue since most of these supports are run-time rel
not build-time. Lastly, it’s not uncommon for developers to get confused, and ru
tests from within the wrong shell, and get back results they don’t expect.

This build-time/run-time dilemma doesn’t rear its ugly head too often, sin
only occurs when the multiple-code-loading mechanism needs to be in effect. W
a developer’s test arena, once that mechanism has been proven, then all testing is
ically geared against one Service class, and not a whole host at once within the
run. For that reason, developers can usually keep the same CLASSPATH for both
pilation and testing, and simply know that the code will get picked up by the
or ExtClassLoader, and not their own custom version.

4.4 THE PLUG-IN

One of the interesting aspects of .jar files is their growing service as the level of ato
ity for black-box components. For example, EJB defines a Bean as a .jar, the Servle
specification talks about Web-apps being bundled into .jars (with the extension .
and the Java2 Enterprise Edition specification uses the same approach. On top
this, as we’ve seen, the Sun interpreter will examine a .jar’s Manifest file fo
Main-Class attribute for the class name to execute when given a -jar argume
the JVM. If .jar files are going to become the de facto standard for Java deploym
certainly we can make use of it, as well.

As we’ll see in a moment, allowing end users the ability to drop in new black
components gives your code tremendous flexibility. Consider a traditional client/s
reporting/data-viewing application. Under traditional development approache
might code each report or view as a separate class, linking them all into a single

105

(or .jar), and distributing that to the user. Each time a new report or view was required,
we’d have to re-release a new .exe/.jar.

Under an extensible-system approach, however, we’d instead create a basic inter-
face that report or view classes must implement. Instead of building the code into a
single .jar file, the application would be a simple shell which in turn looked into a sub-
directory (or other location) for the .jar files representing each report type. The user

 load
 new
some

 need
 you
 and

ired)
ceed
tion,
here
.

well-
f the
inte-

s/her
 own

, you

sible
 sup-
eth-

basic

e the
ages
THE PLUG-IN

could then pick from a list of the reports found, and the application shell would
the code from that .jar file. If a new report were required, we’d simply code up the
.jar file, and either distribute that to the users, or have the IT staff distribute it via
other form of push to the end-user’s machines. Numerous advantages abound:

• Testing is simpler.
Because the existing application shell hasn’t been touched, that code doesn’t
to be retested before releasing the new report. Your QA department will like
better if they don’t have to retest the entire application every other week
your customers will like you even better because of a faster release cycle.

• Development can be “parallelized.”
Individual developers (perhaps more junior than would otherwise be requ
can be given tasks that involve writing the individual reports. Work can pro
in a more parallel fashion, potentially speeding up the release cycle. In addi
the junior developers won’t be able to get into the application shell code w
they might introduce additional bugs or violate the basic application design

• Promotes encapsulation.
If the only way the report can interact with the application is through this
defined API, then the application knows nothing about the internals o
report, and vice-versa. This promotes encapsulation and allows later ma
nance to take place without concern for what else might break.

• Power-user flexibility.
If you happen to have a user who is more technically knowledgeable than hi
peers, he/she can be given the API documentation to allow creation of their
reports without having to bother the developers.

In short, by allowing this kind of drop-in flexibility in your applications
allow the users to be better served.

4.4.1 The plug-in concept

A class, when loaded, registers itself with some sort of manager which is respon
for calling on the registered class instances when applicable. Usually, in order to
port type-safety (and avoid having to use Reflection to discover the plug-in’s m
ods), the plug-in class will implement a common interface that defines the
behavior required of each plug-in class.

As an example, consider a scripting engine/interpreter. In order to maximiz
interpreter’s flexibility, we want to allow the engine to interpret different langu

IONS

based on the script file’s extension—.js for JavaScript, .vbs for VBScript, and so on.
Each language-interpreter class will implement a basic LanguageInterpreter interface,
which will look like this:

public interface LanguageInterpreter

{

 public boolean canInterpret(String filename);

eter-
level
tion,
f the
cript
 than
nter-
 file.
ard.

eters,
e the

ay of
106 CHAPTER 4 EXTENS

 public int interpret(String filename, String[] args)

 throws Exception;

}

(The throws declaration is just a cheap way to allow the LanguageInterpr
implementation class to pass exceptions back to the engine; a production-
application should define more clear-cut exception types, such as SyntaxExcep
ExecutionException, etc.) The first method, canInterpret, is called to see i
LanguageInterpreter-implementation class can, in fact, interpret the given s
file. This allows a single LanguageInterpreter-implementation to support more
one scripting language. The second method, interpret, is where the LanguageI
preter-implementation does the actual work of parsing and executing the script

Having done this, the ScriptingEngine class becomes ridiculously straightforw
When told to execute a file, it simply iterates through its list of LanguageInterpr
asking each if it can interpret the file, and if so, orders it to do so. We defin
ScriptingEngine class as:

public class ScriptingEngine

{

 private LanguageInterpreter[] interps;

 // How this is populated is explained later

 public int interpret(String scriptFile, String[] args)

 {

 for (int i=0; i<interps.length; i++)

 {

 if (interp[i].canInterpret(scriptFile))

 return interp[i].interpret(scriptFile, args);

 }

 return –1; // Nobody recognized it

 }

 public static void main(String[] args)

 {

 ScriptingEngine engine = new ScriptingEngine();

 engine.interpret(args[0], args);

 }

}

The ScriptingEngine is trivial; the only question mark comes in regard to the arr
LanguageInterpreter instances, interps. How does it get initialized?

107

Conventional design would have each LanguageInterpreter-implementation class
defined and stored within the application, and the array initialized within the
ScriptingEngine code as follows:

public ScriptingEngine

{

 private LanguageInterpreter[] interps =

 lan-
com-
e, we

xam-

ly, is
out:

oper-
ng-
t file

with
ialize
d be
THE PLUG-IN

 {

 new JavaScriptInterpreter(),

 new VBScriptInterpreter(),

 new REXXInterpreter()

 };

}

Unfortunately, this means that ScriptingEngine now has the sum total of all
guages supported by the engine, and cannot be reconfigured at run time to ac
modate new languages. This means that if we need to support a new languag
have to ship out an entirely new application. Ick.

Alternatively, we could provide a properties file that the ScriptingEngine e
ines, parses, and executes Class.forName() on each line:

languages.properties file

JavaScriptInterpreter

VBScriptInterpreter

REXXInterpreter

Then, the ScriptingEngine parses this languages.properties file (which, presumab
stored on the user’s hard disk) to establish which languages the engine knows ab

public ScriptingEngine

{

 private LanguageInterpreter[] interps;

 static

 {

 // Open languages.properties

 // For each line, call Class.forName().newInstance() and

 // store it into the returned array

 }

}

While attractive, this approach suffers from one critical flaw: if the languages.pr
ties file is corrupted, deleted, or otherwise rendered unusable, the Scripti
Engine is paralyzed. Now it knows about no languages, and will fail every scrip
handed to it. There must be a better way.

4.4.2 Enter plug-ins

What we really want is for each intalled language interpreter to register itself
the scripting engine. Ideally, this registration (which takes place when we init
the ScriptingEngine with the array of LanguageInterpreter instances) woul

IONS

code-independent, so that users could add new LanguageInterpreters without hav-
ing to modify code.

This approach isn’t a new one. For example, Adobe Photoshop uses this notion
of plug-ins extensively, and even built an industry (dominated mostly by Kai’s Power
Tools) around plug-ins for Photoshop. OLE began life looking to do this sort of plug-
in capability, as well, by providing interfaces that allowed those objects to place them-

t edi-
mail
 lan-
 even
g the

aries,
plic-

des a
ain

e can

mic-
the

 only

 that
ASS-
stem
ds on
lass-

 reg-
108 CHAPTER 4 EXTENS

selves on the menu bar, provide context-sensitive help, and more. The Emacs tex
tor is perhaps the crowning glory of this concept, with plug-ins ranging from e
clients to full-fledged development-and-debugger modules for just about any
guage. Jeff Nelson, in his book Programming Mobile Objects in Java, shows how
mobile objects can participate in this sort of extend-the-app process by havin
extensions download themselves into a text editor.

In a C++ environment, with an operating system that supports shared libr
we can iterate through a directory that we designate as a plug-in directory, and ex
itly load each library into the process’ address space. Because each OS provi
method that is called when the shared library is loaded into the process space (DllM
or DllEntryPoint under Win32, for example), the LanguageInterpreter instanc
be registered with the ScriptingEngine within this method.

Within Java, however, we have a few hangups. Because Java is already a dyna
loading system, we don’t have to build a custom approach for each platform—
ClassLoading mechanism is already there and in place. Unfortunately, that’s the
part that Java gives us; the rest gets tricky.

Remember that one of the Java ClassLoading buzzwords is lazy. This means
even if a .jar file or directory containing .class files is specified in the user’s CL
PATH, the classes stored within that .jar or directory aren’t loaded until the sy
needs the class. Recall, also, that needing a class comes when another class depen
the class in question, or the class is explicitly loaded using Class.forName or C
Loader.loadClass.

In the case of our ScriptingEngine, we could get each LanguageInterpreter to
ister itself with the ScriptingEngine as follows:

public class ScriptingEngine

{

 // Everything else, as before

 private static List interps = new Vector();

 public static void register(LanguageInterpreter interp)

 {

 interps.add(interp);

 }

 public int interpret(String scriptFile, String[] args)

 {

 for (Iterator i = interps.iterator(); i.hasNext();)

 {

 LanguageInterpreter interp =

109

 (LanguageInterpreter)i.next();

 if (interp.canInterpret(scriptFile))

 return interp.interpret(scriptFile, args);

 }

 return –1; // Nobody recognized it

 }

}

 itself
more
) is a
ippet
n be

ques-
ation
takes

plug-
THE PLUG-IN

Now, all we need to do is get each LanguageInterpreter to register an instance of
with the ScriptingEngine. Usually, this means that the ScriptingEngine (or,
generically, the plug-in manager, where the LanguageInterpreter is the plug-in
Singleton, or else uses a static list of plug-ins, as demonstrated in the code sn
above. Within the LanguageInterpreter-derived classes, one of two approaches ca
used: either register the instance in a base class,

public abstract class LanguageInterpreterBase

 implements LanguageInterpreter

{

 public LanguageInterpreterBase()

 {

 // ... other initialization, as necessary

 ScriptingEngine.register(this);

 }

}

or the derived class can register an instance of itself in a static initializer block:

public class PerlInterpreter

 implements LanguageInterpreter

{

 static

 {

 ScriptingEngine.register(new PerlInterpreter());

 }

}

I prefer the second approach, since the first approach requires that the class in
tion must be loaded, and then a new instance of it created, before the registr
with the plug-in manager takes place. In the second approach, the registration
place as soon as the class (PerlInterpreter, in this case) is loaded into the JVM.

Furthermore, if a single plug-in can handle more than one type of call, the
in’s static initializer block can make as many registrations as necessary:

public class ShellInterpreter

 implements LanguageInterpreter

{

 static

 {

 ScriptingEngine.register(new ShellInterpreter(), “.bat”);

 ScriptingEngine.register(new ShellInterpreter(), “.cmd”);

IONS

 ScriptingEngine.register(new ShellInterpreter(), “.sh”);

 // ... and so on

 }

}

In this way, we’re preserving the encapsulation of the plug-in by not having to know
anything about what needs to happen to register it with its manager—the plug-in

order
 Java
nt to
scan

o use
re all
class,
every
f the
 gets
ses is

 have

 that
f the

 con-
s. To

 Java
eam,
110 CHAPTER 4 EXTENS

does that as soon as it’s loaded into the VM.
If we designate a given directory into which plug-ins must be dropped in

to be loaded, we’re going to run into two problems in short order. Remember that
.class files are stored in directories corresponding to package names, so if we wa
allow plug-ins to be packaged like other Java classes, we have to recursively
through all directories under our plug-in directory.

The greater problem is that most plug-ins of a nontrivial nature are going t
more than one .class file to implement their behavior. Unfortunately, when they’
stored in the same directory, we’re not going to know which ones are the plug-in
and which ones are the supporting class. As a result, we’ll have to load each and
one of them—whether or not they’ll be used—into the VM. This violates one o
basic precepts of Java’s ClassLoading mechanism—if you don’t use it, it never
loaded. It also means a huge performance hit as each and every one of those clas
loaded at plug-in registration time.

If, on the other hand, we require the plug-ins to come in a .jar or .zip file, we
another option.

4.4.3 Marking a .jar file as a plug-in

One of the little-known facts about .jar files (or their ancestors, the .zip file) is
every class used to open, examine, retrieve, and create a .jar file is already part o
JDK run-time library. The java.util.zip and java.util.jar packages
tain all of the code used by the jar utility and the java.net.URLClassLoader clas
examine the contents of a .jar’s Manifest file, it’s as simple as the following:

import java.io.*;

import java.util.*;

import java.util.jar.*;

import java.util.zip.*;

public class JarLister

{

 public static void main (String args[])

 throws Exception

 {

 JarInputStream fin =

 new JarInputStream(new FileInputStream(args[0]));

We need to open the .jar file, so we use the JarInputStream class, which, like all
stream classes, decorates (as in the Decorator pattern sense) another InputStr
which in this case will be a FileInputStream.

111

 Manifest manifest = fin.getManifest();

 if (manifest != null)

 {

Next, we obtain the .jar’s “META-INF/MANIFEST.MF” file, if it exists. Note that not
all .jar files have a Manifest file, since .zip files are technically .jar files and many, if not
all, .zip files created before the release of JDK 1.1 (and many long after that) didn’t have

est.

e .jar
sking
ated-

ies in
rator
tring
rned

ntro-
ugin-
n the
d do
hich

plug-

ows:
THE PLUG-IN

a Manifest file. Hence, we have to check for a null return value from getManif

 Attributes attribs = manifest.getMainAttributes();

Attributes is the class representing the attributes that can be attached to either th
file or each of the entries within it. By calling getMainAttributes, we’re a
for the attributes that apply to the .jar file itself (such as the Main-Class or Cre
By attributes discussed earlier).

 Set set = attribs.keySet();

 for (Iterator i = set.iterator(); i.hasNext();)

 {

 Attributes.Name key = (Attributes.Name)i.next();

 System.out.println(key + ": " +

 attribs.getValue(key));

 }

 }

 }

}

And, as you might guess, the last block of code iterates through each of the entr
the Attributes object, printing each one out to the console. Note that the Ite
returned from the Set obtained from the Attributes object is not iterating over S
objects, but instead over Attributes.Name objects. If you attempt to cast the retu
object from the Iterator to a String, you’ll get a ClassCastException.

Now that we know how to get the attributes of the .jar file’s manifest, we can i
duce our own custom .jar tags. We’ll create a custom tag within the manifest, Pl
Class, that contains the class name (fully qualified) of the plug-in class itself. The
PluginClassLoader only needs to find this attribute, get the name of the class, an
a ClassLoader.loadClass using that value. This will load the plug-in class, w
will fire off the plug-in’s static initializer block(s), which will in turn register the
in with its manager.

4.4.4 PluginClassLoader

The code for PluginClassLoader, from the com.javageeks.classloader package, foll

package com.javageeks.classloader;

import java.io.*;

import java.net.*;

import java.util.*;

import java.util.jar.*;

IONS

/**
 * PluginClassLoader is not an actual ClassLoader, but serves a role

 * of preloading "plugin" classes into the JVM, so that the Plugins
 * can register themselves with whatever "plugin manager" they use.
 *
 * See Chapter 4 of Server-Side Java for a detailed

 * description of how it all works together.
 */

t the
UIs,

 user
rown

lding
 not

 drop
nced
112 CHAPTER 4 EXTENS

public class PluginClassLoader
{
 /**

 * Interface to allow interested clients to be notified each
 * time a new plugin class is loaded into the JVM.
 */
 public static interface Listener

 {
 public void pluginLoaded(String pluginName);
 public void exception(Exception ex);
 }

Listener is simply an interface that allows interested parties, when they construc
PluginClassLoader, to be called back when a new plug-in is loaded. This allows G
for example, to display a status bar that flashes “loading plugin XYZ…” to the
while starting up. The exception method is called when an exception is th
during the load-up process.

 // Private data
 //
 private URLClassLoader urlClassLoader;

We use a URLClassLoader to load the classes from the list of .jar files we’ll be bui
later in the code because it already has that functionality built within it. By
extending URLClassLoader, and instead containing an instance of it, we can also
the URLClassLoader (and, implicitly, any classes loaded by it if they’re not refere
elsewhere) and reload the plug-ins.

 /**
 *
 */

 public PluginClassLoader(String dir)
 {
 this(dir, new Listener()
 {
 public void pluginLoaded(String pluginName) { }

 public void exception(Exception ex) { }
 });
 }
 /**

 *
 */
 public PluginClassLoader(String dir, Listener listener)
 {

113

 File file = new File(dir);

 reload(file, listener);

 }

 /**
 *

 */

 public PluginClassLoader(File dir)

 {

oad
ener,
oad
g.
THE PLUG-IN

 this(dir, new Listener()

 {

 public void pluginLoaded(String pluginName) { }

 public void exception(Exception ex) { }

 });
 }

 /**

 *

 */
 public PluginClassLoader(File dir, Listener listener)

 {

 reload(dir, listener);

 }

These four constructors are really just convenience wrappers around the rel
method. Where no Listener is passed in, the constructor builds a NullObject7 List
which does nothing when called on; that way, the actual implementation in rel
needs never to check for a null Listener object, and can call on it without worryin

 /**

 * Reload the plug ins; note that the old URLClassLoader held

 * internally is released, so if the plug-in classes loaded
 * earlier aren’t in use within the app, they’ll get GC’ed.

 *

 * HOWEVER, if an instance of an earlier-loaded

 * plugin class is still in existence, it will remain an

 * entirely separate and distinct type from the type loaded
 * in on this plass, even if the .class files are identical!

 * This is because classes loaded into two separate (non-

 * parentally-related) ClassLoaders are considered separate

 * and unrelated types, even if their contents are identical.
 */

 public void reload(String dir, Listener listener)

 {

 reload(new File(dir), listener);

 }
 /**

 * Reload the plugins; note that the old URLClassLoader held

 * internally is released, so if the plugin classes loaded

 * earlier aren’t in use within the app, they’ll get GC’ed.

 *

7 This is called the NullObject pattern (Pattern Languages of Program Design 3, p. 5).

IONS

 * HOWEVER, if an instance of an earlier-loaded
 * plugin class is still in existence, it will remain an

 * entirely separate and distinct type from the type loaded
 * in on this plass, even if the .class files are identical!
 * This is because classes loaded into two separate (non-
 * parentally related) ClassLoaders are considered separate
 * and unrelated types, even if their contents are identical.

 */

 we’ll

 .zip
ntees
o, so

s();
114 CHAPTER 4 EXTENS

 public void reload(File dir, Listener listener)
 {

The reload method is the heart-and-soul of the entire PluginClassLoader, so
take it in easy chunks.

 String[] contents = getPluginDirContents(dir);

The getPluginDirContents method simply obtains a list of all the .jar and
files in the directory specified by the File object dir. As we’ll see later, it guara
that it will always return a String array of some length, even if that length is zer
no null-check is necessary.
 Vector urls = new Vector();
 Vector plugins = new Vector();

 for (int i=0; i<contents.length; i++)
 {
 try
 {
 File jarFile = new File(dir, contents[i]);

 Attributes attribs =
 new JarFile(jarFile).getManifest().getMainAttribute

 if (attribs.getValue("Plugin-Class") != null)
 {

 String pluginClass =
 attribs.getValue("Plugin-Class");

 urls.add(jarFile.toURL());
 plugins.add(pluginClass.trim());
 // Need the trim(); getValue() has the

 // annoying habit of leaving a trailing
 // space on the end of the class, which will
 // cause the loadClass() to fail later.
 }
 }

 catch (IOException ioEx)
 {
 // Just continue; ignore the file and move on
 }
 catch (NullPointerException npEx)

 {
 // No manifest, perhaps?
 }
 }

115

This seemingly complex piece of code is doing one thing: checking each .jar/.zip file
for that Plugin-Class manifest entry we talked about earlier. If it’s found, we add the
URL of the .jar/.zip file to the Vector urls, and the value of the Plugin-Class
attribute to the Vector plugins. We need the URL of the .jar/.zip file to pass into
the URLClassLoader constructor, and we’ll need the name of the class so that we can
preload it into the JVM (which will force it to register with the rest of the system).

rt-
rls

 how
ass as
child

 .jar/
those
riate
nce
has a
wn.
THE PLUG-IN

 urlClassLoader =

 URLClassLoader.newInstance(

 convertUrlVectorToArray(urls),

 getClass().getClassLoader());

This is simply another way of calling a new URLClassLoader(…) . The conve
UrlVectorToArray method is a convenience method to convert the Vector u
to an array of URL objects, which is what URLClassLoader expects. Notice also
we explicitly pass in the ClassLoader that loaded this (the PluginClassLoader) cl
our delegating parent—again, this is because we want to preserve the parent-
ClassLoader relationship appropriately, as discussed in chapter 2.

 // Preload each of the plugins, giving them the chance to

 // register (in their static initializer block) with whatever

 // "PluginManager" they choose to.

 //

 for (int i=0; i<plugins.size(); i++)

 {

 String plugin = (String)plugins.elementAt(i);

 try

 {

 Class.forName(plugin, true, urlClassLoader);

 listener.pluginLoaded(plugin);

 }

 catch (Exception ex)

 {

 listener.exception(ex);

 }

 }

 }

Now that we’ve constructed the URLClassLoader around the Plugin-Class-marked
.zip files, we need to load each plug-in class into the JVM, which in turn allows
classes, in a static-initializer block, to register instances of themselves with the approp
plug-in manager. Notice, as the comment points out, that we have to call newInsta
on the loaded class before it is loaded into the JVM; this requires that the plug-in
default constructor that can be called by outside clients, or an Exception will be thro

 /**

 * Releases the handle on the URLClassLoader used internally;

 * this will have the effect of allowing all the plug in classes,

 * if not referenced anywhere else within the application, to be

IONS

 * GC’ed the next time GC takes place.

 */
 public void unload()
 {

 urlClassLoader = null;
 }

 /**
116 CHAPTER 4 EXTENS

 * Returns a String array of filenames in the directory which are
 * potential plug-in files.
 *

 * @param dir The File object representing the directory to iterate
 * through
 */

 private String[] getPluginDirContents(File dir)
 {
 // sanity-check--does the directory exist?

 if ((!dir.exists()) ||
 (!dir.isDirectory()))
 {

 return new String[0];
 }

 String[] contents = dir.list(new FilenameFilter()

 {
 public boolean accept(File dir, String name)
 {

 if (name.endsWith(".jar") ||
 name.endsWith(".zip"))
 {

 return true;
 }
 else

 return false;
 }
 });

 return contents;
 }
 /**

 * Returns a String array of filenames in the directory which are
 * .class files.
 *

 * @param dir The File object representing the directory to iterate
 * through
 */

 private String[] getPluginDirClasses(File dir)
 {

 String[] contents = dir.list(new FilenameFilter()
 {
 public boolean accept(File dir, String name)

 {
 if (name.endsWith(".class"))
 return true;

117

 else

 return false;

 }

 });

 return contents;

 }

 /**

nd a
rrent
ded.8

ee.jar,
onsole
THE PLUG-IN

 * Simple helper method to convert a Vector of URL objects into an

 * array of URL objects (required by URLClassLoader)

 */

 private URL[] convertUrlVectorToArray(Vector urls)

 {

 URL[] urlArray = new URL[urls.size()];

 for (int i=0; i<urlArray.length; i++)

 {

 urlArray[i] = (URL)urls.elementAt(i);

 }

 return urlArray;

 }

 /**

 * Test suite--just load whatever plugins happen to be in the

 * current directory.

 */

 public static void main(String[] args)

 throws Exception

 {

 PluginClassLoader pcl =

 new PluginClassLoader(".", new Listener ()

 {

 public void pluginLoaded(String pluginName)

 {

 System.out.println(pluginName + " loaded.");

 }

 public void exception(Exception ex)

 {

 System.out.println("Exception:");

 ex.printStackTrace();

 }

 });

 }

}

The remainder of the code entails the convenience methods mentioned earlier, a
main method for testing. Main simply builds a PluginClassLoader on the cu
directory, where presumably a collection of some plug-in .jars can be found and loa

8 The Extensions directory contains three .jar files, PluginOne.jar, PluginTwo.jar, and PluginThr
all of which register themselves with the PluginManager class; they simply spit a string to the c
when they’re registered, just to prove that they are, in fact, loaded and registered.

IONS

4.4.5 Example: PluginApp

Let’s demonstrate the concept by building a simple, useless GUI application that can
be extended by plug-in .jars; by itself, the application does absolutely nothing—it dis-
plays a File menu and a Help menu. The File menu has two options: Exit, which is
self-explanatory, and Reload, which will call the PluginClassLoader’s method to
reload the plug-ins found; this will allow us to test PluginClassLoader’s dynamic-

with

f real
 will
main

use if
Bar,
tion’s
est to
o.)
118 CHAPTER 4 EXTENS

reload capability. The Help menu has just one option, About.
There’s not much to it. The code to produce this application, complete

plug-in support, is also not very large or complicated:

import java.awt.*;
import java.awt.event.*;
import java.util.Iterator;

import java.util.Vector;
import javax.swing.*;
import com.javageeks.classloader.PluginClassLoader;

/**
 *
 */

public class PluginApp
{
 // Private data

 //
 private JFrame frame;
 private static Vector plugins = new Vector();
 private transient boolean canQuit;

 // State variable used in method exit(); should be modified
 // *only* within that context and not used elsewhere.

These are the private data members of PluginApp; of these, only one is o
importance—plugins is the Vector of registered plug-ins that the application
use during its run. The frame object is the JFrame this application uses as its
window, and canQuit is a state variable used later.

 /**
 * Plug ins must implement this interface; the app will call

 * the plug in when appropriate.
 */
 public static interface Plugin
 {

 public void addToMenuBar(JMenuBar menu);
 public boolean canQuit();
 }

The Plugin interface, here, is the basic interface any of our sample plug-ins should
they want to “hook into” this application—it defines two methods, addToMenu
which gives each plug-in a chance to add a menu item or menu to the applica
menu bar, and canQuit, which gives each plug-in a chance to cancel a user’s requ
quit. (This is where the traditional “File is not saved—still quit?” message would g

119

 /**
 * Plug ins make themselves known to the App by calling this
 * method.
 */
 public static void registerPlugin(PluginApp.Plugin plugin)
 {
 // Just keep a reference to it for future use
 plugins.add(plugin);

n we
te an
 we’ll
THE PLUG-IN

 }

 /**
 * This is an interface to ease calling across all the plug ins
 * in the system.
 */
 protected static interface PluginAction
 {
 public void action(Plugin plugin);
 }
 /**
 * General-purpose method for calling an action across all the
 * currently registered plugins.
 */
 private void doPlugins(PluginAction pluginAction)
 {
 for (Iterator iter = plugins.iterator(); iter.hasNext();)
 {
 Plugin p = (Plugin)iter.next();
 pluginAction.action(p);
 }
 }

This is a shorthand version for iterating across all plug-ins to do something. Whe
want to make a call across all the registered plug-ins on this application, we crea
anonymous PluginAction class/object on the spot, and pass it into doPlugins;
see this used in just a bit.

 /**
 *
 */
 public PluginApp()
 {
 }

 /**
 *
 */
 public PluginClassLoader.Listener getPluginListener()
 {
 return new PluginClassLoader.Listener()
 {
 public void pluginLoaded(String pluginName)
 {
 System.out.println(pluginName + " loaded.");

IONS

 }

 public void exception(Exception ex)

 {

 System.out.println("Exception:");

 ex.printStackTrace();

 }

 };

we’ve
ould
….”

te-
od-
120 CHAPTER 4 EXTENS

 }

This method creates the usual console-output PluginClassLoader.Listener that
seen before. In a production-quality application, however, this is where you w
update the splash screen or status bar with messages such as “Loading plug-in XYZ

 /**

 * Display the application

 */

 public void show()

 {

 frame = new JFrame("PluginApp Example");

 frame.addWindowListener(new WindowAdapter()

 {

 public void windowClosing(WindowEvent e)

 {

 exit();

 }

 });

 JPanel contentPanel = new JPanel();

 contentPanel.add("North", createMenubar());

 frame.getContentPane().add(contentPanel);

 frame.pack();

 frame.show();

 }

The show method is unremarkable, with one exception—the call to crea
Menubar, which will iterate across all the plug-ins asking them if they wish to m
ify the menu bar.

 /**

 *

 */

 public void exit()

 {

 canQuit = true;

 doPlugins(new PluginAction()

 {

 public void action(Plugin plugin)

 {

 if (plugin.canQuit() == false)

 {

 canQuit = false;

121

 }
 }

 });

 if (canQuit)
 {
 System.exit(0);
 }

te an
g the
 (Pre-
capa-
st.)
THE PLUG-IN

 }

This is the first of two samples demonstrating how doPlugins works. We crea
anonymous PluginAction class that calls each plug-in’s canQuit method, settin
PluginApp state variable canQuit to false if any indicate that we can’t quit yet.
sumably this is the user telling us this, but perhaps we want to allow plug-ins the
bility to prevent the user from quitting without performing some necessary task fir

 /**

 * Build the application-shell’s menu bar; just "File" and "Help"
 */
 private JMenuBar createMenubar()
 {
 final JMenuBar mb = new JMenuBar();

 JMenu menu;
 JMenuItem mi;

 // "File"--"Reload"
 menu = new JMenu("File");
 mi = new JMenuItem("Reload");

 mi.addActionListener(new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {

 pluginCL.reload(“.”,getPluginListener());
 }
 });
 menu.add(mi);

 // "File"--"Exit"

 mi = new JMenuItem("Exit");
 mi.addActionListener(new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {

 exit();
 }
 });
 menu.add(mi);

 mb.add(menu);

 // "Help"--"About"
 menu = new JMenu("Help");
 mi = new JMenuItem("About");
 mi.addActionListener(new ActionListener()

IONS

 {

 public void actionPerformed(ActionEvent e)

 {

 }

 });

 menu.add(mi);

 mb.add(menu);

ill be
hod,
thod
plug-
tems,
plug-
ound

thod.

es and
122 CHAPTER 4 EXTENS

 // Allow the Plugins to register themselves

 doPlugins(new PluginAction()

 {

 public void action(Plugin plugin)

 {

 plugin.addToMenuBar(mb);

 }

 });

 return mb;

 }

Finally, the createMenubar method builds the JMenuBar instance that w
added to the application’s main window. Notice, however, at the end of the met
that we iterate through each installed plug-in, calling on its addToMenuBar me
(passing in the JMenuBar we just created). This is the mechanism by which the
ins can allow themselves to be invoked within this application; within other sys
plug-ins may be called with some discriminatory information to discern which
in to load (as in the scripting engine example above), or may simply be tried, r
robin, until one is found that works.9

 /**

 *

 */

 public static void main (String args[])

 {

 // Create the basic app object

 PluginApp app = new PluginApp();

 // Display the app

 app.show();

 }

}

And main, of course, creates an instance of the application and invokes its show me
Next, let’s examine a simple example plug-in for this application:

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

9 This is what James O. Coplien called the “exemplar idiom”; Advanced C++ Programming Styl
Idioms (Addison-Wesley, 1992).

123

The usual necessary-for-Swing imports. Nothing new here.

public class PluginOne

 implements PluginApp.Plugin
{
 static

 {
 PluginApp.registerPlugin(new PluginOne());

tance
THE PLUG-IN

 }

As discussed before, when PluginOne is loaded into the JVM, it registers an ins
of itself with the PluginApp class.

 public PluginOne()
 { }

 public void addToMenuBar(JMenuBar menuBar)

 {
 System.out.println("addToMenuBar called");
 final JMenuBar menu = menuBar;

 // Put us into the "File" menu
 for (int i=0; i<menu.getMenuCount(); i++)

 {
 JMenu m = menu.getMenu(i);

 System.out.println(m.getText());

 if ("File".equals(m.getText()))
 {
 System.out.println("Found File menu; adding self");

 JMenuItem mi = new JMenuItem("PluginOne");
 mi.addActionListener(new ActionListener()
 {

 public void actionPerformed(ActionEvent e)
 {

 int result = JOptionPane.showConfirmDialog(
 null,
 "Do you like PluginOne?",

 "information",
 JOptionPane.YES_NO_CANCEL_OPTION,
 JOptionPane.INFORMATION_MESSAGE);

 if (result == JOptionPane.YES_OPTION)
 {

 JOptionPane.showMessageDialog(
 null, "I’m glad");
 }

 else if (result == JOptionPane.NO_OPTION)
 {
 JOptionPane.showMessageDialog(

 null, "I’m sorry to hear that");
 }
 else if (result == JOptionPane.CANCEL_OPTION)

 {
 JOptionPane.showMessageDialog(

IONS

 null, "Operation cancelled");

 }

 else

 {

 // How is this possible?!? Swing is broken!

 }

 }

aren’t
enu,

“Yes/
 “I’m
tton

Plug-
o so.

ting
 lan-
 sim-
port
r file
n, as
unc-
rsion
ppli-
nded
card

ibutes
124 CHAPTER 4 EXTENS

 });

 m.add(mi);

 }

 break;

 }

 }

This long snippet of code is an exercise in Swing mechanics; for those who
Swing gurus, the code simply adds a menu item to the bottom of the File m
called “PluginOne”. When the user picks “PluginOne” from the File menu, a
No/Cancel” dialog box will be displayed, and a second dialog box will display
glad,” “I’m sorry to hear that,” or “Operation canceled,” depending on which bu
the user pressed. Nothing overly exciting here.
 public boolean canQuit()

 {

 System.out.println("PluginOne sez yes, you may quit");

 return true;

 }

}

Lastly, the canQuit method spits a message out to the console, informing us that
inOne was given a chance to cancel the File-Exit command, and chose not to d

4.4.6 Uses for plug-ins

The plug-in concept can extend in many directions. As discussed earlier, a scrip
language engine could use plug-ins as the interpreters of the various script
guages it understands, allowing users to drop in support for new languages by
ply copying in the appropriate script-language .jar file. A web server could sup
servlets in much the same way—instead of a Plugin-Class tag, requiring the .ja
to contain a Servlet-Class tag, indicating the Servlet class to load.10 An applicatio
demonstrated above, could allow sophisticated end users to create additional f
tionality for the application. A graphics conversion (or any kind of file-conve
application, for that matter) can use plug-ins to manage each file format the a
cation wants to handle, so long as there is a good interim format that can be ha
between the formatters. Even games can make use of this concept. A basic

10 The Java2 Enterprise Edition specification uses XML “Deployment Descriptors” instead of attr
in the .jar file, but it’s the same concept.

125

game shell can implement the rules of various card games (cribbage, gin rummy,
and poker) as plug-ins loaded when the game shell starts up.

The plug-in concept represents a good marketing strategy, as well—customers
can be given the basic application shell for free (available for download, for example),
with a simple demo as their only available plug-in. Then, as customers begin using the
application and demand greater functionality, more powerful plug-ins can be made

tory.
n of
avier
 con-
 and

nder
any

with-
sion.
ry, as
ntire
 that
other

po-

a has
those
, but
ward
char-
hich
nism
.

 this is
nents

olesale
SUMMARY

available, which customers buy and copy into the application’s plug-ins direc
This approach has the advantage of giving the user a free, non-timing-out versio
the application that may be good for lightweight use, but requires purchase for he
use. Customers who require support outside of the existing realm of plug-ins can
tact the company for a custom plug-in, which the company can then turn around
resell to other customers, as well.

4.5 SUMMARY

Developers would be well-advised to think of Java’s extension mechanism as u
the same rules as developing reusable libraries in other languages such as C++. M
of the same concepts, and trade-offs apply. For example, development of code
out using libraries means the entire code base can be assumed to be the same ver
Breaking up the code into separate, modular, libraries means now that each libra
well as each application, must be versioned, tracked, and tested against the e
application suite before it can be released. Using the library concept also means
developers will be restricted from wholesale replacement of components, since
applications may be dependent on the particular structure and/or usage of com
nents in the library, which restricts developers.11

For all its drawbacks, the Java extension mechanism is the first step Jav
shown toward building reusable component libraries and toolkits other than
shipped as part of the JDK. It may be argued that the .jar file was the critical step
the modification of the CLASSPATH necessary to use a given .jar file made it awk
to use .jar files, especially when large numbers were used. CLASSPATHs over 500
acters long aren’t uncommon when making use of a half-dozen .jar files at once, w
is not unreasonable in any moderately-sized project. The Java extension mecha
makes the modification of the CLASSPATH almost completely unnecessary now

11 In an ideal world, each component would have its public interface fixed and immutable, but
an unattainable target. As needs within the development team change, use of particular compo
grows, and initially acceptable and elegant designs grow more and more unworkable, and wh
replacement of the design becomes necessary.

C H A P T E R 5

Threads

5.1 Why threads? 127

5.2 Java threads 130

5.3 Thread implementations in Java 146

5.4 Summary 148

5.5 Additional reading 148
 pro-
ntrol
 exe-
antly
s are
ead
The Java language is the only popular development language or environment to
vide native, intrinsic support for threads and the necessary related concurrency co
constructs. Not only are Java threads a built-in, inherent part of the language and
cution environment, they simplify the concurrent programming model signific
from native alternatives. Consider the Win32/C++ environment. Here, thread
OS-level constructs that must be created through a Win32 API call, CreateThr
rface
on of
using
mbly
 sup-
ject-

reads

ploy-
uild-
costs
g off
126

with its associated half-dozen or so parameters. Because this is an API call, its inte
is designed for a C development environment; as a result, trying to tie the noti
object in C++ to thread in Win32 is not trivial. It requires an arcane hookup
static methods of C++, thunk layers, or equally mystical manipulation of asse
code in order to get C++ objects that look, feel, and act like threads. In fact, Java’s
port for threads has enamored C++ developers to the point that a company, Ob
Oriented Concepts (www.ooc.com), has gone so far as to create a Java-like th
library for C++ developers.

Threads, while not directly moving us toward zero development, zero de
ment, or zero administration, are key building blocks toward all three goals. By b
ing Thread constructs in a reusable manner, we reduce necessary development
for the next project, moving toward zero development. By judiciously spinnin

127

threads in key areas, we can make it possible to perform more than one task at once,
such as configure the application during its execution (zero administration). Further-
more, threads are critical to good performance, when used properly.

But for all its simplicity, concurrent programming in Java is still overly intimidat-
ing to a number of Java developers. They feel that threads will somehow mysteriously
lock up their application, or cause it to hang without warning, without reason, and

nt of

ilable
other
ce on
mul-
 one

ously
otion
reads
rint-
sting
n in
.
how-
 file?
ould
what
 uses
cond

ns in
t for

given
sers,

n the
cutes

sed
quest
WHY THREADS?

without any way to debug the problem. As with most things, there is an eleme
truth to this belief. And if that’s the case, why bother using them?

5.1 WHY THREADS?
Threads and concurrent design provide possibilities that simply wouldn’t be ava
in a single-threaded environment. Threads allow you to continue execution in an
portion of your code while the CPU is blocking on something, or providing servi
the behalf of another, unrelated client. Threads, in fact, are to your process what
tiprocessing is to a single machine—the ability to provide services to more than
client at a time, without imposing overly complex restrictions on those clients.

5.1.1 Concurrent processing

The use of threads permits an application to perform two actions simultane
without having to execute them sequentially. The classic example given is the n
of printing while you work. In a user application, such as a word processor, th
can be fired off to take care of background tasks, such as checking spelling or p
ing, while the user continues to work in the foreground. One particularly intere
application of threads is the use of a background thread to perform compilatio
development environments such as Microsoft Developer Studio or Borland C++

The use of threads in this manner raises some interesting design questions,
ever. What if a user modifies a file during the middle of a compilation on that
Should the compiler use the file as it existed when the build sequence began or sh
it use the most recent contents? If the compiler uses the file as it existed, then
point is there to being able to edit the file during compilation? If the compiler
the current contents, how does it guarantee that the contents of the file at this se
is the same as it was when it built the previous unit?

Where the use of threads in user applications has some dubious applicatio
certain areas, the use of threads in server applications is an essential requiremen
performance and scalability. A server that can process only a single client at a
moment is unnecessarily restrictive; this means that to control two concurrent u
two machines must be purchased. This is unnecessarily wasteful, especially whe
tasks being performed are identical. For example, a web server fundamentally exe
the precise same sequence of steps for each and every web request it receives:

• Parse the HTTP header to determine the URL requested
• Locate the resource on the server, after appropriate validation (if any) is pas
• Return the resource to the waiting requester and prepare to receive the next re

ADS

This would almost seem to be a throwback to procedural development—execute
a sequence of steps, in fixed order, starting at the top of the flow and moving through
to the bottom, only to go back to the top again. In a single-threaded server, the first
client to come in would be serviced in fast fashion, but other clients coming in with
requests during the processing of the first request would have to queue up until the
server could react to them. With web sites and internal corporate intranet sites look-

 not

f the
f the
ache
 The
ocess
 disk
dent
ple,

t the
 sec-
 pro-
copy
algo-
cross

 each
 oth-
urce
 can

work
urce

ently
 pro-
must
ch as
 two
write
ends
 I/O,
128 CHAPTER 5 THRE

ing to handle upward of thousands of concurrent requests, this is obviously
acceptable.

One alternative to the use of threads would be to run multiple instances o
single-threaded application, each one performing its actions independently o
others. (UNIX systems have used this approach for years, and, in fact, the Ap
web server still makes use of it.) This approach carries two problems, however.
first is resource management; in most operating environments, only a single pr
may have access to certain scarce resources (such as sockets, or printers, or even
space). Attempting to coordinate requests and contentions between indepen
processes can be a complex and overly arduous task. Using the web server exam
a separate process must do the listening on port 80, and in turn farm ou
requests to other processes listening on a range of internally known ports. The
ond problem is that of process independence: in most operating environments,
cesses are prevented from seeing another process space. This means that each
of a given file, object, or resource must be loaded, stored, and used. Caching
rithms to help speed up the access of frequently accessed pages become useless a
process boundaries.

Threads share the same process space, but receive their own execution stack;
thread carries its own set of registers, allowing it to execute independently of the
ers. Since they share the same process space, however, one thread can access a reso
loaded in by another thread. Since they share the same process space, one thread
access a network resource (such as a socket) even as another thread finishes up its
with it. This means a lower footprint for the same functionality, since a given reso
need only be loaded once.

5.1.2 Scalability per machine

Without threads, attempting to serve more than one client request concurr
requires either multiple processes, or multiple machines. The use of multiple
cesses carries additional run time overhead, since the entire process footprint
be duplicated multiple times. Multiple machines lead to different problems, su
the coordination of processes or avoiding the duplication of data across
machines, especially common where database environments (or any other read/
server) are used. This is painful, especially when you realize that the CPU sp
about 90 percent of its available time waiting for something—disk I/O, network
user input, and so forth.

129

The use of threads allows the server to serve the needs of a number of clients
simultaneously and still preserve operating system process independence. Most impor-
tantly, the Java scheduler (or the native scheduler, depending on whether this is a
green or native threads platform) can allow other threads to execute while a particular
one is blocked, waiting for I/O or other time-consuming tasks to complete.

In fact, this is where much of the notion that threads improve your application
of an

ing:
t and
 out
itch

ions,
ad of

spent
has a
or an
g to
 the
rma-
PU-

avail-

ing a
 true,
ce, as
ould
slice,
oting
 var-

e one

vior,
uest-
g to

ds to
 the
sults

vesti-
WHY THREADS?

performance originates. Threads inherently do not improve the performance
application; in fact, they slow it down! If this seems ludicrous, consider the follow
In order to support the independence of two threads, the entire CPU register se
execution stack must be saved off and restored each time this thread is swapped
and back in again. This is known in thread parlance as a context switch. This sw
does not occur in a single-threaded application. So, in a given sequence of operat
all of which are CPU-intensive, if you break it up into multiple threads, inste
improving performance, you may actually degrade it, on a single-CPU system.

However, for most server-side development, the majority of the CPU is not
in heavy-CPU computation, but heavy I/O operation. This means that the CPU
tremendous amount of idle time, where it blocks on a response from a request
operation. It is this time that threads can reclaim for you, thereby appearin
improve your application’s performance. It becomes even more positive when
application can delegate all of its disk I/O requests (such as writing logging info
tion) to a different thread, leaving the delegating thread to continue with its C
intensive tasks. The goal in this case is to make use of 100 percent of the CPU’s
able time, leaving no time spent in idleness.

About multiple-CPU machines and performance: it would seem that us
multiple-CPU machine would only improve performance. This is not necessarily
unfortunately. Under certain circumstances, this can actually reduce performan
most OSs do not simply map a thread to a CPU, as many threading-proponents w
claim. Instead, the OS scheduler typically swaps a thread into a CPU for a time
then maps it back out when the time slice is finished. Considering that simply bo
into NT 4.0 Workstation fires off at least seventy threads just to run Explorer and
ious behind-the-scenes services, I also wouldn't expect to see machines that hav
CPU per thread, either.

5.1.3 Encapsulation

Because Java sees threads as objects, thread objects can not only encapsulate beha
but also the data and state variables that go along with that behavior. A web req
response thread, for example, needs to store the URL which the request is tryin
access, and ensure that the response sent back is specific to that URL. It also nee
store the socket on which the request came, so that it knows where to send
response. Database requests carry an SQL statement that must be executed and re
returned. They need to track the state of open cursors or iterators as clients in
gate the result sets returned.

ADS

Because of Java’s threads-as-objects approach, it becomes trivial to associate data
with a thread. Any time we can wed behavior to data and remove requirements to
understand the interaction between the two from the public domain we have simpli-
fied the system. Less work will be required to maintain it, improve it, or understand it.

5.1.4 Design and implementation

 to a
intu-
, for
tes a
 The
o the
used
ade’s
s sys-
ility,

pler
 used
allow
ecute
other
opers
hich

cept
elop-
ccep-
myth
ll are
eces-

ntary
those
s are
read

uild it
130 CHAPTER 5 THRE

The ability to create, use, and otherwise treat threads as objects in Java1 leads
number of design possibilities and approaches. Several of these are immediately
itive—cancelable operations threads, and so forth. Several are not. Consider
example, the Façade pattern from the Design Patterns book. Façade encapsula
subsystem made up of many additional objects behind a single object interface.
example used in the book is that of a compiler. Threads can be integrated int
design in either a subtle or obvious approach—subtle, in that threads can be
within the Façade, away from the client’s perceptions, to help improve the Faç
responsiveness, or obvious, in that the Façade can be treated as an asynchronou
tem. Either way, the use of threads within the pattern allows for additional flexib
customization, and opportunity for reuse.

Threads can also make the implementation of other systems trivial or sim
than in sequential systems. For example, finite state machines were commonly
in single-threaded systems (such as MS-DOS or very early versions of UNIX) to
multiple actions to take place concurrently—a task was given the chance to ex
one stage of its state machine, then it returned to the central scheduler to allow
tasks to execute. The advent of thread capability within the system allows devel
to unroll the finite state machines into a single-dimensional sequence of steps, w
can be easily represented as simple, straightforward procedural logic.

5.2 JAVA THREADS

While Java’s thread support is impressive in its flexibility and simplicity, the con
of suddenly having two things happening at once may be confusing for Java dev
ers who may not have run into the concept before. Fortunately, the widespread a
tance of Java as a server-side development language reduces the mystery and
that surrounds the subject; as more and more experience, knowledge, and ski
brought to the topic, it becomes easier and easier for developers to pick up the n
sary details.

There are a number of books on programming for Java that cover the rudime
aspects of Threads, so it would be tempting to simply tell you to check out one of
books for your basic introduction to the subject. However, I believe that thread
such an important concept to understand that I’m going to go back over the Th

1 Or any other language that supports the notion of threads-as-objects, even C++ (once you b
yourself, of course, since C++ has no inherent support for Threads, as does Java).

131

API (java.lang.Runnable, java.lang.Thread, java.lang.ThreadGroup
and the assorted Exception classes associated therewith) in some detail, to make sure
we’re all on the same page.

5.2.1 java.lang.Thread and java.lang.Runnable

The core of Java’s threading API comes in these two classes; while you may be able to
 any-

ding
entry
 run

fired
hese

lisec-
 one
do is
s are

 cur-

d by

 and

 over

 con-
JAVA THREADS

dodge some of the Thread classes for a while, like ThreadGroup, you can’t do
thing with threads without touching these two.

If you simply start at the top of java/lang/Thread.java and start rea
down, once you get past a number of internal fields and methods (and a curious
labeled InheritableThreadLocalEntry, which we’ll get to later), you
across these constants:

public final static int MIN_PRIORITY = 1;

public final static int NORM_PRIORITY = 5;

public final static int MAX_PRIORITY = 10;

As you might well guess, these are the priority settings for threads. Each thread
from within Java has a corresponding priority level, ranging from 1 to 10. T
numbers are not absolutes—they don’t correspond to a certain number of mil
onds for time slices, and so forth. They are only useful in how they relate to
another. Thus, if you set all of your threads to be MAX_PRIORITY, all you’ll
starve other threads in the system, such as the garbage-collection thread. Prioritie
set using the Thread’s getPriority and setPriority methods.

Continuing farther down, we run across a few native methods:

• currentThread returns the Thread object corresponding to the Thread
rently executing

• yield surrenders control of this time slice to another Thread (determine
the JVM or OS scheduler, not you)

• sleep parks your thread for a number of milliseconds (or milliseconds
nanoseconds, depending on the version of sleep you use).

These are all well-documented and intuitive to understand, so I won’t go
them in any greater detail.

Next (after skipping a private method), you run into a block of Thread
structor methods. Summarized, they look like:

public Thread()

public Thread(Runnable target)

public Thread(ThreadGroup group, Runnable target)

public Thread(String name)

public Thread(ThreadGroup group, String name)

public Thread(Runnable target, String name)

public Thread(ThreadGroup group, Runnable target, String name)

ADS

If you examine them as a group, you see a pattern—each constructor is one variation
on the (target, group, name) tuple. Threads can be constructed with a name
argument, which is nothing more than an identification tag for your own use, a
target argument, which we’ll discuss momentarily, or a group argument, which
we’ll discuss in a later section. Or you can construct a Thread with nothing at all,
which is typically not very useful unless you extend Thread in a subclass, which I do

ame
 this
cates

hen
hich
 will
code

these
sing

 was
class,
ehav-

on-
lltalk

tance
rious
read;
132 CHAPTER 5 THRE

not recommend. If you leave out a name argument, Thread will set a default n
of “Thread-” plus an incremental thread-count, and you can retrieve or modify
name with the getName and setName methods. The group parameter indi
that this Thread is to be made part of the ThreadGroup group.

The target parameter, however, is by far the most important. Without it, w
the Thread’s start method is called, the created thread calls Thread.run(), w
by default does nothing. If you pass in a target, however, Thread.start()
actually call the Runnable’s run method. For example, these two snippets of
accomplish the same thing:

public class ThreadSubclass extends Thread

{
 public ThreadSubclass() { }
 public void run()

 { System.out.println("ThreadSubclass.run() called"); }
}

ThreadSubclass t = new ThreadSubclass();
t.start();

public class RunnableObject

 implements Runnable
{

 public RunnableObject() { }
 public void run()
 { System.out.println("RunnableObject.run() called"); }

}
Thread t = new Thread(new RunnableObject());

t.start();

While both print "<classname>.run() called!" to the console window,
are two very different approaches—one relies on the time-honored tradition of u
inheritance for reuse, the other uses the more recent approach of componentry.

When object-orientation first became widespread, one of its key features
inheritance, and the reuse that could be obtained by its use. Simply write a base
developers were told, and any class that inherits from that base class can use its b
ior by default. This implementation inheritance, as it is now known, became comm
place and led to the deeply-nested type hierarchies that were characterized by Sma
and early C++ environments and libraries.

Componentry, on the other hand, seeks to avoid implementation inheri
wherever possible—instead of extending a type, you use the type, and plug in va
other components to customize its behavior. In the example, we don’t extend Th

133

instead, we plug a Runnable component, with which Thread knows how to work, into
the Thread object itself.

Why two different approaches? It turns out that componentry more closely
achieves the goal of black-box reuse than implementation inheritance. One problem
with implementation inheritance is that of preserving base-class semantics. For example,
if we extend Thread’s run method, do we need to call the base class version in order

e do
es up
ed to
vent,

 sys-
tem’s
This
sula-
se it,
hav-

oders
rtain
n (in
d, or
avior
brary

to as
men-
cted,
ple,

e fol-
n an
hav-

acing
orth.

po-
class
 The
idea.
 base

93).
JAVA THREADS

to make sure everything still runs correctly? If so, do we need to call it before w
our custom behavior, after, or some time in between? A classic case of this com
in the Java AWT 1.0. If we extend handleEvent in a Component, do we ne
call the base class version? (Yes.) When? (Depends.) And what if we handle the e
and don’t want to pass it up the chain—will that break something? (Possibly.)

As developers continued to work with implementation inheritance-based
tems, they found that they needed to know a tremendous amount about the sys
internals in order to make certain they didn’t accidentally break something.
directly violates another precept of object-oriented development, that of encap
tion. I shouldn’t have to know information about a particular class in order to u
but in an implementation inheritance design, I often have to, both to extend its be
ior as well as to simply preserve its current behavioral semantics.

Another problem arose as these libraries continued to evolve. Library c
wanted to make changes, either in response to bug reports or to improve ce
classes. They found they couldn’t because users of the library were counting o
their derived class code) certain member variables to be set before they were calle
were changing the value of those member variables in order to influence the beh
of the base class, and so forth. This led to less flexibility both on the part of the li
developers as well as the library users.

The last problem with this approach centers on what Peter Coad referred
the principle of perpetual employment.2 Each new behavior required in an imple
tation inheritance-based system requires an entirely new subclass to be constru
with all of the required knowledge about the base class to go with it. For exam
assume you purchased a UI library that provides a TextEditor component. Th
lowing week, you receive the requirement to create a hex-edit editor window. I
implementation-inheritance model, you subclass TextEditor, and override its be
ior to put out hex numbers instead of single characters, react to keystrokes by repl
the current hex number at the cursor location with a new hex number, and so f
The week following, you receive the requirement to create an HTMLEditor com
nent. So, you fire up your trusty development environment, and proceed to sub
TextEditor again, this time with appropriate HTML tags and editor commands.
week after that, you’re asked to create an XMLEditor component. You get the
Under certain circumstances, it’s possible to use one of your derived classes as a

2 From Object-Oriented Programming, by Peter Coad and Jil Nicola (Prentice Hall/Yourdon Press 19

ADS

from which to start working (such as XMLEditor from HTMLEditor). You can some-
times factor common code from the two into an interim base class (XMLEditor and
HTMLEditor—both inherit from MarkupLanguageEditor, perhaps?). As soon as a
request comes for a class that reaches across the inheritance chain (an XMLHexEditor
view?), though, you’re in trouble.3

 still
ding
s me
eates
fects.
Tree
w to

rows.
 data
ssary
 cus-

ore
ator,
able

 two
 and
se of

 turn
 new

hout
cipal

fined
sages

rup to
s since
134 CHAPTER 5 THRE

Componentry seeks to avoid this sort of need for internal knowledge and
allows for infinite extension without requiring an unending number of correspon
subclasses. Rather than force me to extend a class (which, remember, in Java give
access to all of its internal fields not marked private), a component developer cr
a well-defined collection of classes that I can plug in to achieve certain specific ef
A wonderful example of this is the JFC GUI code, also known as Swing. With the J
and JTable classes, I can plug in a Model class that tells the GUI component ho
build itself—with JTree, with nodes and leaves, with JTable, with columns and
JTable goes even further with this concept. If I want to create the ability to edit
within the cell, I can implement the TableCellEditor interface, provide the nece
methods that JTable promises to call in well-defined ways, and I can effectively
tomize this JTable instance without knowing anything about JTable’s internals. M
importantly, those internals remain the sole knowledge of the component cre
which means the creator can continue to improve or radically change the way JT
works under the hood without concern of breaking my code.

Bringing the discussion back to Thread and Runnable: remember that the
code snippets above are behaviorally equivalent. However, suppose I create a new
improved Thread class. ThreadSubclass (from the example above) cannot make u
this new Thread-based class without changing its extends clause, which in
breaks other parts of the code. RunnableObject, however, can be plugged into the
Thread class, since Threads interact with Runnables in a very well-defined way.

NewAndImprovedThread newThread =

 new NewAndImprovedThread(new RunnableObject());

newThread.start();

In effect, we’ve made use of the new behavior of NewAndImprovedThread wit
having to modify a single line within RunnableObject. This is one of the prin
benefits of componentry.

Some may argue that this is unnecessary, since Thread is already a well-de
class with little room for improvement. I disagree. Let’s examine two common u

3 It was to support this concept (“a SeaPlane IS-A Plane and IS-A Boat”) that led Bjarne Stroust
introduce multiple inheritance into C++, a decision which was hotly contested for years, and ha
fallen out of favor.

135

of Thread: to perform a particular action at a given time, and to periodically perform
an action (every n seconds) (listing 5.1).

/**
 * PeriodicThread is a specific type of Thread that fires off its

Listing 5.1 Code for Thread
JAVA THREADS

 * associated Runnable evry <code>interval</code> milliseconds.
 */
public class PeriodicThread extends Thread
{
 private PeriodicThread()
 {
 // This prevents instantiation without an associated Runnable;
 // I don’t want to allow the possibility of this code from
 // ever compiling:
 //
 // new PeriodicThread().start();
 //
 }

 /**
 * Constructor taking the Runnable whose run method we
 * wish to call every interval milliseconds.
 */
 public PeriodicThread(Runnable r, int interval)
 {
 super();

 m_runnable = r;
 m_interval = interval;
 }

 /**
 * The run method spins in an infinite loop, calling
 * run on the owned Runnable instance every interval
 * milliseconds (as specified in the constructor). The time spent
 * in the Runnable’s run method is not taken into
 * account in the period spent sleeping.
 */
 public void run()
 {
 try
 {
 while (true)
 {
 Thread.sleep(m_interval);
 m_runnable.run();
 }
 }
 catch (InterruptedException iEx)
 {
 return;

ADS

 }

 }

 private int m_interval = 0;

 private Runnable m_runnable = null;

 /**

 * Test driver for the PeriodicThread component
136 CHAPTER 5 THRE

 */
 public static void main(String[] args)

 throws Exception

 {

 PeriodicThread pt = new PeriodicThread(new Runnable()

 {

 public void run()

 {

 System.out.println("Fired!");

 }

 }, 10 * 1000);
 pt.start();

 PeriodicThread pt2 = new PeriodicThread(new Runnable()

 {

 public void run()

 {

 System.out.println("Hired!");

 }

 }, 15*1000);

 pt2.start();

 System.out.println("Use Ctrl-C to quit.");

 pt.join();

 pt2.join();

 }

}

/**

 * ScheduledThread

 */

public class ScheduledThread extends Thread
{

 private ScheduledThread()

 {

 // Prevent "new ScheduledThread().start()"

 //

 }

 public ScheduledThread(Runnable runnable, java.util.Date when)

 {

 m_runnable = runnable;

 m_when = when;
 }

 public void run()

 {

137

 try
 {
 // Make sure "when" is after now.
 //
 while (m_when.after(new java.util.Date()))
 {
 Thread.sleep(1000);
 }

s, or

read
. Try
ate a

nt to
 sec-

 only
thod,
reen

art
 par-
pect.
JAVA THREADS

 // If the above test failed, it’s time
 // to run our target
 //
 m_runnable.run();
 }
 catch (InterruptedException intEx)
 {
 return;
 }
 }

 private java.util.Date m_when;
 private Runnable m_runnable;
}

Now, any Runnable object can be fired off right away, fired off every n second
fired off at a specific time. Or any combination of the three:

Thread t =
 new ScheduledThread(
 new PeriodicThread(
 new Runnable() { . . .}, 15 * 1000),
 new Date(/* some date here */));
t.start();

This creates a Thread that, when the Date given occurs, will fire off a PeriodicTh
to perform some action every (15 * 1000) milliseconds, or every fifteen seconds
to combine the two thread concepts into a single subclass, and you’d need to cre
new subclass from Thread called PeriodicScheduledThread. Then, if you wa
reverse the use (a PeriodicThread that fires off a new ScheduledThread every n
onds), you’d need a new ScheduledPeriodicThread… you get my drift.

5.2.2 Starting threads

The next set of methods in Thread deals with starting the thread itself. Actually,
one method really deals with starting the Thread, the start method. This me
when called, creates an underlying thread (either an OS native thread, or a g
thread), starts it, and returns to the caller.

When the new thread is started, it does not continue execution within the st
method, as users of UNIX’s fork system call would expect, nor does it execute a
ticular function, as users of Win32’s CreateProcess system API would ex

ADS

Instead, the starting point for any started Thread is always the same—the Thread
object’s run method:
public void run() {
 if (target != null) {
 target.run();
 }
}

 only
 run
, the

ment
clean
rride
 this
ically
e not

seem
cause
class,
138 CHAPTER 5 THRE

As you can see, if the Thread has no target instance within it (which it will
have if a Runnable instance were specified in a constructor), then the Thread’s
method is effectively a no-op. Correspondingly, when the run method returns
created thread dies.

The method after start, called exit, sounds intriguing, as does the com
attached to it: “This method is called by the system to give a Thread a chance to
up before it actually exits.” Unfortunately, it’s private, meaning we can’t ove
it, correct? Not true—the JDK 1.2 has a particularly strange hole regarding
method; despite the fact that private methods are not supposed to be dynam
bound, the Thread.exit method appears to be just that. The following cod
only compiles, but executes in an entirely different manner than it should:

public class ThreadExit
{
 public static void main(String[] args)
 throws Exception
 {
 Thread t = new Thread()
 {
 private void exit()
 {
 System.out.println("Thread.exit()");
 }
 };
 t.start();
 t.join();
 }
}

When run, "Thread.exit()" appears on the console window. This might
like an opportunity for some thread cleanup, but be very careful here. Be
Thread.exit() is marked private, you can’t call up to it from the derived
and the implementation of exit yields some disturbing thoughts:

private void exit() {
 if (group != null) {
 group.remove(this);
 group = null;
 }
 /* Aggressively null object connected to Thread: see bug 4006245 */
 target = null;
}

139

It’s that last comment that bothers me: “see bug 4006245.” The bug in question was
found in Java 1.0, and marked fixed in Java 1.1, and deals with the garbage collector
taking a long time to collect Thread instances. In an effort to force garbage collection
to occur earlier, Sun chose to aggressively null-out the references held within Thread.
The fact that we’re unable to call back up to the base version of exit means we can’t
take advantage of the fix.

bring
since
aving
enly

see if

akes
stroy
al in

tion;
f the
 doc-
code
JAVA THREADS

If we can’t make use of this information without running some risks, why
it up at all? The fact is that per-Thread cleanup is a useful concept, especially
exit, unlike finalizers, has some well-defined context regarding its cleanup. H
this ability open to us is a useful one. Be careful if you use it, and if your JVM sudd
appears to be requiring a much larger footprint than you would expect, look to
this is the culprit.

Having discussed how to start threads, let’s talk about how to stop them.

5.2.3 Stopping threads

To go along, it would seem, with Thread.start is Thread.stop. This m
sense—if start creates and launches the thread, then stop must stop and de
the thread. JavaSoft has chosen to mark stop as deprecated, subject to remov
future versions of Java (From jdk1.2/docs/api/java/lang/Thread.html):

The central problem with stop is that it is an immediate and terminable ac
objects used by this thread have no opportunity to react to the termination o
thread, and as a result, may be in a damaged or inconsistent state. What the JDK
umentation suggests, instead of the use of stop to shut down a thread, is to
something as follows:

This method is inherently unsafe. Stopping a thread with Thread.stop
causes it to unlock all of the monitors that it has locked (as a natural conse-
quence of the unchecked ThreadDeath exception propagating up the stack).
If any of the objects previously protected by these monitors were in an incon-
sistent state, the damaged objects become visible to other threads, potentially
resulting in arbitrary behavior. Many uses of stop should be replaced by code
that simply modifies some variable to indicate that the target thread should
stop running. The target thread should check this variable regularly, and
return from its run method in an orderly fashion if the variable indicates that
it is to stop running. If the target thread waits for long periods (on a condition
variable, for example), the interrupt method should be used to interrupt
the wait.

For more information, see “Why are Thread.stop, Thread.suspend
and Thread.resume Deprecated?” (jdk1.2/docs/guide/misc/threadPrimi-
tiveDeprecation.html).

ADS

public class StoppableThreadObject

 implements Runnable

{

 public void run()

 {

 while (!stopped)

 { do_some_work(); }

clean
 has

simi-
This

every
 for-
efore

, the
on—
 new
ed to
 asso-

thod
c cir-
gates
read

rrupt

emen-
 catch

 won’t
140 CHAPTER 5 THRE

 }

 public void stop()

 { stopped = true; }

 private volatile boolean stopped = false;

}

StoppableThreadObject sto = new StoppableThreadObject();

Thread t = new Thread(sto);

// . . . later

sto.stop();

Code written in this manner allows objects used by StoppableThreadObject to
themselves up before the thread completely goes away. However, this approach
one particular flaw: If the Thread gets wrapped up in an infinite loop or other
larly busy action, it can’t check the stopped flag to see if it’s time to quit.
approach also relies on the developer being a good citizen and checking his flag
so often to see if it’s time to quit. If the developer decides to be stingy, or simply
gets to check the flag in a long sequence of code, it could be a very long time b
the stop takes effect. This may not be acceptable in some situations.

The stop method comes in two versions, one which takes no arguments
other which takes a single Exception argument. Both perform the same operati
wake up the Thread, force it to throw either (in the no-arg version of stop) a
ThreadDeath object, or the Exception argument specified. Usually, if you ne
call stop, you’ll call the no-arg version, because there are some special semantics
ciated with ThreadDeath that you won’t get otherwise.4

One alternative approach to stop is the interrupt method. This me
causes the current Thread to immediately cease its current action (under specifi
cumstances5) and throw a new InterruptedException, which then propa
back up the chain, all the way back to the run method of the Runnable or Th
that was called by this thread. User code can check to see if either throw an inte

4 If the Thread propagates the ThreadDeath exception all the way back to the JVM’s native impl
tation, the JVM knows to destroy the underlying thread at the OS/JVM level. Accordingly, if you
the ThreadDeath exception, make sure you re-throw it, or the thread will never actually die!

5 Specifically, the thread needs to be in a sleep or wait—a thread blocking for any other reason
cause it to be interrupted

141

by calling the isInterrupted method.6 We can then recode the preceding Stop-
pableThreadObject as:

public class StoppableThreadObject

 implements Runnable

{

 public void run()

ead),
erna-
n to
own,

 also
n for
tions
, sus-
low)
s can
 ever
d.)

volve
ager

upt-

again.
JAVA THREADS

 {

 try

 {

 while (!Thread.currentThread().isInterrupted())

 { do_some_work(); }

 }

 catch (InterruptedException interruptedException)

 {

 // Clean up here

 }

 }

}

StoppableThreadObject sto = new StoppableThreadObject();

Thread t = new Thread(sto);

// . . . later

t.interrupt();

This way, we still get the semantics we desire (immediate cessation of the Thr
but also allow any owned objects to clean themselves up appropriately. An alt
tive implementation would use a finally clause to the try block in ru
allow the StoppableThreadObject to clean itself up on any Exception thr
not just interruptions.

You may also notice that the Thread methods suspend and resume were
deprecated starting in JDK 1.1. The reason for this was similar to the reasons give
deprecating stop; this sort of immediate action on the Thread can lead to situa
where the Thread still holds resources that can mess up other Threads. In this case
pending a Thread while it holds a monitor inside of a synchronization block (see be
means no other Threads can enter that block while the first one is suspended. Thi
lead to deadlock. (If the Thread that made the suspend call is itself blocked from
calling resume on that same Thread, those two Threads are infinitely deadlocke

One other thing to note is that almost all of the Thread methods that in
manipulating a Thread’s current status involve a check to the Java SecurityMan
before continuing.

6 Which, unfortunately, clears the interrupted flag in the Thread, so that if the first call to isInterr
ed returns true, any subsequent calls will return false, at least until the Thread is interrupted

ADS

5.2.4 Daemon threads

One of the interesting features of Java’s thread support is that an application doesn’t
exit the JVM until all created threads have terminated. To prove it, let’s try the follow-
ing code:

public class Wait

{

onds

read,
, this
 isn’t
 gar-

RL-C

us to
 that

 until
akes
at it
142 CHAPTER 5 THRE

 public static void main(String[] args)

 {
 new Thread(new Runnable()

 {

 public void run()
 {

 try
 {

 Thread.sleep(15 * 1000);
 System.out.println("Exiting run() thread");

 }
 catch (InterruptedException iEx)

 {

 iEx.printStackTrace();
 }

 }
 }).start();

 System.out.println("End of main()");
 }

}

If you run this, you’ll get

C:\Projects\SSJ\cd\src\chap3>java Wait
End of main()

Exiting run() thread

C:\Projects\SSJ\cd\src\chap3>

with the "Exiting run() thread" text appearing on the console fifteen sec
after "End of main()".

Certain tasks make better sense performed as a background task in a separate th
such as garbage collection or spelling checker in a text editor. Unfortunately
behavior of the JVM would seem to make these operations impossible. If the JVM
going to quit until all threads are terminated, then constantly spinning tasks, like
bage collection, will keep the JVM active until the user explicitly kills it (via CT
in the console window, “kill” on UNIX, or the Task Manager under NT).

Fortunately, the Java Thread model offers a solution—setDaemon allows
mark the thread as a daemon thread. In UNIX parlance, a daemon process is one
starts when the machine is first booted, and runs continuously in the background
the machine is shut down, or the process is explicitly teminated by a user. Java m
the same analogy to threads—marking a thread as a daemon thread means th

143

intends to run continuously in the background, and, more importantly, doesn’t count
against the “all Threads must die for the JVM to quit” condition. If we modified the
previous code snippet to read:

public class Wait

{

 public static void main(String[] args)

reads
tput,

hrow
tarts.
 not.

n of
xt-
lass-

 find
 then
JAVA THREADS

 {

 Thread t = new Thread(new Runnable()

 {

 public void run()

 {

 try

 {

 Thread.sleep(15 * 1000);

 System.out.println("Exiting run() thread");

 }

 catch (InterruptedException iEx)

 {

 iEx.printStackTrace();

 }

 }

 });

 t.setDaemon(true);

 t.start();

 System.out.println("End of main()");

 }

}

then we execute the code, and we see

C:\Projects\SSJ\cd\src\chap3>java Wait

End of main()

C:\Projects\SSJ\cd\src\chap3>

In other words, main exits as soon as it is finished, because all other executing Th
are daemon threads. The created Thread never gets a chance to write its ou
because it’s still sleeping when main quits and the JVM decides to shut down.

Note that if you try to call setDaemon after the Thread starts, Java will t
an IllegalStateException; you must set daemon status on the Thread before it s
The method isDaemon can be used to ask a Thread if it is set to daemon status or

5.2.5 Threads and ClassLoaders

One of the quiet changes the JDK 1.2 made to the Thread API was the additio
two potentially useful methods: setContextClassLoader and getConte
ClassLoader. Remember, associated with each class is a reference to the C
Loader that loaded it. The thread’s context ClassLoader will be the one used to
new classes and resources for this thread. If you don’t set a context ClassLoader,

ADS

it will default to the ClassLoader used to create the Thread object representing the
new thread. The context ClassLoader can be loaded at any time during the Thread’s
lifetime, unlike the thread’s daemon status.

The thread’s context ClassLoader has a unique role within the Java system. When
the JVM is first started, a Thread object is created, to call the main class’s main
method. As part of that initialization at JVM-start, the AppClassLoader is set as the

ntext
n the
s (or
der),

 any-
cular
cular
) will
t that
t call
 load

u are
ntext
espe-
tems
port
read
ead’s
e the
ss.

 web
cket

ds to
reads
diag-
dow,
other
d so
efer-
144 CHAPTER 5 THRE

primordial Thread’s context ClassLoader. However, that having been said, the co
ClassLoader, under normal circumstances, is never consulted as a ClassLoader i
chain. This means that if a Class can’t be found by the App- or ExtClassLoader
any custom ClassLoaders that were called before it got to App- and ExtClassLoa
the thread’s context ClassLoader is never called.

This naturally leads into the question, “Why include it then, if it’s not called
where?” It’s provided there for use by packages that wish to make use of a parti
(mutable) ClassLoader, without having to hard-code knowledge about a parti
ClassLoader into the package. In other words, certain packages (namely, RMI
consult with the thread’s context ClassLoader to find classes that they require, bu
this must be coded for explicitly within those certain packages—if you don’
Thread.getContextClassLoader to obtain the ClassLoader from which to
a class, it will never be called.

All of the above essentially boils down to this: for the most part, unless yo
doing dynamic class-loading, you don’t have to worry about the Thread’s co
ClassLoader. Having it available, however, opens up some powerful functionality,
cially in regard to the discussion of ClassLoaders and dynamically upgrading sys
on the fly from the last chapter. For example, a web server providing Servlet sup
might create a ServletClassLoader to load the servlet class from disk, spin off a Th
in which to allow the servlet to execute, and set the ServletClassLoader as the Thr
context ClassLoader, thus ensuring that any RMI-calls within the servlet also us
ServletClassLoader (and its parent chain, as well) as part of the class-search proce

5.2.6 java.lang.ThreadGroup

It’s not uncommon for groups of threads to work together in some fashion. A
server, for example, may wish to have a group of threads on hand to farm out so
requests; FTP or mail servers may do the same. AI systems using multiple threa
explore different paths of decision-making may want to group certain th
together to allow them to interact with one another in a neural-net approach. A
nostic message tracer may keep one thread per diagnostic message sink (file, win
and so on). However, these groups of threads in turn have nothing to do with
groups of threads within the system (such as the garbage-collection thread(s), an
forth). It would be nice to be able to refer to a logical group of threads, without r
ring to the entire set within the system.

145

Java provides this capability with the class java.lang.ThreadGroup, a spe-
cialized collection class for Threads. ThreadGroup contains a variety of methods to
control, access, and hierarchically group collections of threads.

Constructing a ThreadGroup can take one of several forms:

public ThreadGroup(String name)

rent,
. You
lling
lling
 You
read-
up is

ove
ortu-
more
unt

, and
reads
read-

ls to
d by
 I do
thod
JAVA THREADS

public ThreadGroup(ThreadGroup parent, String name)

ThreadGroups have a name and a parent ThreadGroup. If you don’t specify a pa
the code assumes that the ThreadGroup of the current thread is to be the parent
can retrieve the parent of a ThreadGroup by calling getParent, the name by ca
getName, the maximum priority of all threads within the ThreadGroup by ca
getMaxPriority, and set this maximum priority with setMaxPriority.
can mark all threads within this ThreadGroup by calling setDaemon on the Th
Group, and when the last thread or ThreadGroup owned by this ThreadGro
destroyed, the ThreadGroup will die with it.

Threads and ThreadGroups can be added or removed via the add and rem
methods. The list method writes out (to System.out, and nowhere else, unf
nately) a list of all Threads and ThreadGroups owned by this ThreadGroup. Of
interest are the enumerate and activeCount methods. Calling activeCo
returns the current number of Threads executing as part of this ThreadGroup
enumerate populates an array of Thread references with references to the th
owned by this ThreadGroup. Thus, to iterate across all threads in a given Th
Group and print out their toString representation, the code looks like this:

ThreadGroup tg = . . .; // obtain ThreadGroup we want to query

int count = tg.activeCount();

Thread[] list = new Thread[count + count/2];

 // allow some padding since the count could change in

 // between the calls to activeCount() and enumerate()

tg.enumerate(list);

for (int i=0; i<list.length && list[i] != null; i++)

System.out.println(list[i].toString());

Because Threads could be added to the ThreadGroup in between cal
activeCount and enumerate, I artificially bump up the count returne
activeCount by 50 percent just to accommodate this possibility. The reason
this is given in the ThreadGroup documentation for the enumerate me
(Jdk1.2/doc/api/java/lang/ThreadGroup.html#enumerate()):

An application should use the activeCount method to get an estimate
of how big the array should be. If the array is too short to hold all the threads,
the extra threads are silently ignored.

ADS

Because enumerate promises to silently ignore any extra Threads if room isn’t
provided for them in the passed-in array of Thread references, I make extra room and
test for null, just to be safe.7

ThreadGroups owned by this ThreadGroup can also be retrieved, in the same
way, using the activeGroupCount and the versions of enumerate that take an
array of ThreadGroup references. The ThreadGroup version of enumerate also has

es to
ssing
s on

ed in
read-
hem,
 and
upt,
ually,
roy

thod.

ound

ch in
 that

ative
APIs.
leads
sume

nten-
uage
t the
eads.

o pass
-ism.”
146 CHAPTER 5 THRE

one more possible parameter, recurse, which indicates whether the caller wish
know all ThreadGroups owned by this or any owned-in-turn ThreadGroups. Pa
true in for recurse will return a count or list of ThreadGroups from thi
down to the very bottom of the ThreadGroup tree.

ThreadGroup, like Thread, also has a number of methods that were deprecat
JDK 1.1. The methods stop, suspend and resume were all deprecated in Th
Group for the same reasons they were deprecated in Thread. If you choose to use t
however, be aware that they will in turn call the same method on every Thread
ThreadGroup owned within this ThreadGroup. ThreadGroup also has interr
which does the same thing. Note that while destroy within ThreadGroup will act
in turn, call destroy on each Thread and ThreadGroup within it, the dest
method of Thread simply throws a NoSuchMethodError to indicate it is a no-op me

5.3 THREAD IMPLEMENTATIONS IN JAVA

Within the Java environment, a developer never creates a thread. This may s
ludicrous, but hear me out. Within Java, the code

new Thread(new Runnable() {

 public void run()

 { System.out.println("Wow!"); }

}).start();

does not, in fact, create a thread. It constructs a java.lang.Thread object, whi
turn instructs the Java virtual machine to create a thread of execution, and in
thread of execution, invokes the run method of the owned Runnable object.

It may seem to be splitting hairs, but this is an important distinction. In n
C/C++ development, you can create threads directly via the various OS threading
In Java, however, you do not create threads—the JVM does this for you. This
to an important distinction between Java and C++ development: You cannot as
you have a native OS thread for every Thread object.

The JVM requires very little when it comes to threading support. This is done i
tionally—Java was originally intended as an embedded systems development lang
for the development of code on cable-TV set-top boxes. It could not be assumed tha
underlying chip (or OS, as it turned out) had the capability to support multiple thr

7 Why not return a Thread[], or a Vector containing the Thread references? Why force me t
in a preallocated array? Java added the implicit .length field to arrays just to avoid this sort of “C

147

As a result, JVM thread implementations fall into one of two categories: “green”
and “native.”

5.3.1 Green threads

Green threads are effectively a figment of your imagination; they do not exist as OS-
level constructs, but are scheduled by the JVM itself in a nonpreemptive format.

text-
6-bit
oorly

nally
mple
men-
rn is
 var-
 calls
 until

 GUI
 call,
r the

 for a
jects.
 own
ch as
ple-

 back
cause
r any
6-bit

 one-
work
read,

Java-
here
uled
THREAD IMPLEMENTATIONS IN JAVA

Essentially, the JVM has a single thread of execution, and it manages the con
swapping by hand between Java Thread objects, the same arrangement as under 1
Windows. This has dangerous implications for your code. It means that one p
constructed thread can bring down the entire JVM.

Remember, that not all Java acts remain exclusively within the JVM. Occasio
we do have to run out to the native OS to accomplish certain tasks. A classic exa
is file management. If you look inside of java.io.File, you’ll find that actual imple
tation of most methods defers to a class called java.io.FileSystem, which in tu
made up of nothing but native methods that do the actual work of calling the
ious OS-level file-management calls. The problem is that most (if not all) of these
will block when called, not returning control back to the thread that called them
they are complete.

If I create a thread to perform a long blocking I/O call, another thread to do
updates, and expect the GUI thread to remain responsive during the blocking I/O
I’m in for a big disappointment. Even worse, if the garbage-collection mechanism fo
JVM, which typically runs in its own thread, is poorly constructed, I could be in
long wait at the point in my application where I suddenly need to recycle unused ob

This is less of a problem than I make it out to be until you start making your
native calls. JVM implementors, on platforms that lack native thread support (su
Windows 3.1, MS-DOS or older versions of the MacOS), can write their native im
mentations of classes such as java.io.FileSystem to be friendly, yielding control
to the JVM scheduler periodically while performing large I/O operations. And be
the JVM scheduler has the opportunity to switch a thread away before or afte
bytecode instruction, there is no concern for yielding the CPU as there was in 1
Windows operations.

5.3.2 Native threads

Native thread JVMs, on the other hand, match OS threads to Java threads on a
to-one basis (or fairly close to it). These implementations are by far easier to
with, since any native calls performed by the thread will block within its own th
leaving the other threads within the process to execute normally.

5.3.3 Hybrids

Combinations in between green and native threads are possible. For example,
Soft’s own Solaris Reference Implementation for JDK 1.2 uses a hybrid model, w
Java threads are given to a pool of native POSIX threads for execution in sched

ADS

fashion; while not single-threaded, as most early green JVM implementations were,
it’s also not single-thread-per-Java-thread, either.

5.3.4 Implications

This leaves Java developers in something of a predicament. Java advocates a platform
independent development model, where the particulars of a given operating system

Any-
here

/run
reen-
t the
 that

ke it
, and
hips,
lica-
e for
uch

They

bout
elop-
ing-

 said,
ding
ico-

ram-
your

hile
seful
lica-
148 CHAPTER 5 THRE

or environment are shielded from you by the JVM principle: Write Once, Run
where. Unfortunately, this holds less effectively in practice, especially in areas w
the JVM specification is not clear, such as thread support.

In practical terms, this boils down to a complete violation of the Java write
principle: know your targets. If you know that code you write will be run on a g
threaded platform, make certain that any native calls don’t block indefinitely. A
very least, you can forewarn users before undertaking long blocking operations
will hang the JVM until they return.

As I stated before, this is less of an issue than first consideration might ma
appear to be. Most JVM implementations will use native threads, where available
environments in which threads are not available (embedded systems for microc
for example) will typically not be environments on which Java servers (not app
tions) will execute. In those environments, the JVM scheduler will usually suffic
thread management. After all, embedded systems probably don’t have to make m
in the way of native calls, since there’s no layer between them and the hardware.
are the hardware!

5.4 SUMMARY

If you’ve never done Thread coding before, you may be a bit apprehensive a
jumping into this concurrent programming thing. The horror stories about dev
ers spending entire weeks (or even months) trying to track down these subtle tim
dependent bugs in multithreaded applications are legendary. That having been
however, I also have to point out that the horror stories about developers spen
entire weeks (or even months) trying to track down a bug due to a misplaced sem
lon are also legendary. The point is that Threads are simply too powerful a prog
ming practice to ignore due to fear, uncertainty, and doubt. Threads are
friends—learn them, live them, love them.

5.5 ADDITIONAL READING

• Scott Oaks and Henry Wong, Java Threads (O’Reilly, 1997).

Part of the O’Reilly Java series, this is a great introduction to Java threads. W
not JDK 1.2-friendly, the book is stocked to the brim with incredibly u
information, including an appendix on how to debug multithreaded app
tions using the Java debugger jdb.

C H A P T E R 6

Threading issues

uce a
 con-
6.1 Synchronization 150
6.2 Exception-handling with multiple

threads 153
6.3 Thread idioms and patterns 158

6.4 GJAS 166
6.5 Summary 173
6.6 Additional reading 173

Firing off Threads helter-skelter is never an answer to a problem. Threads introd
new problem into the developer’s life, that of concurrency. Most developers see
 extends
perating
ses need
’s native
currency only within the context of multiple threads, but the problem itself
much further than that. Take, for example, a collection of processes all o
simultaneously, working together as part of a single system. If two proces
access to the same file, either the processes must rely on the operating system
their

nifies
urces
reads
antee

r the
ingle
, in a
 sys-

time.
. For
rent,
149

support for concurrency, or they must work out a concurrent-access system of
own to ensure that the two processes aren’t stepping on one another’s toes.

Introducing Threads into a Java application/applet/servlet/Bean simply mag
this problem. Now, not only does a process need to synchronize access to reso
outside of the boundaries of the process, but also to resources inside it. If two Th
attempt to modify the same element or member simultaneously, there is no guar
as to which one will ultimately succeed—if either one does.

Note that Threading and concurrency are not always hand-in-hand; unde
classic definition of concurrency, no multithreaded application executing on a s
CPU system is ever running concurrently. Instead, they are all executing serially
time-sliced fashion. True concurrent execution is only possible on multiple-CPU
tems when two threads may be executing on two different CPUs at the same
And, as stated before, it is possible to have concurrency without multiple Threads
the most part, however, Java developers must think of Threads as being concur

SUES

since the JVM itself (and the vagaries of “Write Once, Run Anywhere”) means we will
never know if we’re on a 1-CPU or a 64-CPU system.

6.1 SYNCHRONIZATION

If threads are executing in a concurrent fashion, there runs the risk that they can also
sly, it
usly.

naïve
class)

n to
at we
ingle
 and
bject
 still

mpty
ray is
e 2,
tion

e the
hich
ched
n to

reads
ilities
150 CHAPTER 6 THREADING IS

access or modify object or type instances concurrently, as well. More dangerou
also means that threads can be executing within the same method simultaneo
This has serious implications for how you write your code; for example, a
implementation of a dynamic-array class (similar in concept to Java’s Vector
could be written as:
public class DynamicArray

{

 // other methods omitted for clarity

 public void add(Object obj)

 {

 Object[] temp = new Object[m_data.length]; // 1

 System.arraycopy(m_data, 0, temp, 0, m_data.length); // 2

 m_data = new Object[temp.length + 1]; // 3

 System.arraycopy(temp, 0, m_data, 0, temp.length); // 4

 m_data[m_data.length] = obj; // 5

 }

}

Unfortunately, this code is not thread-safe. If two threads of execution happe
enter the add method at the same time, serious problems will result. Assume th
have two threads, A and B, that are attempting to both add an Object to a s
DynamicArray instance, which currently holds five items. Thread A enters add
executes line 1. We’re all right so far—temp now holds an empty array of five O
references. Thread B now enters add, and executes line 1. The m_data array
holds only five references, so temp in thread B now holds an array of five e
Object references. Thread A gets control, and executes lines 2 through 5. The ar
copied over and back, with no problems. Unfortunately, when B executes lin
m_data will hold six items, not five, and you’ll get an IndexOutOfBoundsExcep
from System.arraycopy.

There are a dozen different ways this scenario could play itself out; becaus
order of scheduling is nondeterministic, we have no way of knowing precisely in w
order the two threads execute each line. Remember, too, that threads can be swit
in or out between bytecode instructions, and each line above will compile dow
more than one bytecode instruction each. This raises the possibility that the th
could be switched out and in the middle of the line, leaving even more possib
for chaos to occur.

151

This problem has plagued every concurrent development environment yet
invented. Entire languages have been invented, solely on the basis of concurrency syn-
chronization, and reams of paper are sacrificed to the subject. Java, however, boils it
down to a single keyword: synchronized. By marking a method as such, Java will
block other threads from entering that method until the current thread within that
method exits. Similarly, if a synchronized block is entered within a method, the

read

from

re to
 than
lems

 only
ly be
tion

most
ch to
SYNCHRONIZATION

JVM will guarantee that no other thread will enter that block until the current th
finishes it. This means that we could rewrite the add method above as:

public class DynamicArray

{

 // other methods omitted for clarity

 public synchronized void add(Object obj)

 {

 Object[] temp = new Object[m_data.length]; // 1

 System.arraycopy(m_data, 0, temp, 0, m_data.length); // 2

 m_data = new Object[temp.length + 1]; // 3

 System.arraycopy(temp, 0, m_data, 0, temp.length); // 4

 m_data[m_data.length] = obj; // 5

 }

 /*

 * Or, we could write it this way:

 public void add(Object obj)

 {

 synchronized

 {

 Object[] temp = new Object[m_data.length]; // 1

 System.arraycopy(m_data, 0, temp, 0, m_data.length); // 2

 m_data = new Object[temp.length + 1]; // 3

 System.arraycopy(temp, 0, m_data, 0, temp.length); // 4

 m_data[m_data.length] = obj; // 5

 }

 }

 */

}

The two methods are identical in operation—thread B will now be prevented
entering add until thread A has finished executing line 5 completely.

This is probably the worst part of concurrent development. Knowing whe
synchronize, why to synchronize, and when not to synchronize remains more art
science for most developers. Even worse, trying to debug synchronization prob
(such as the one above) can be frustrating and elusive, since the problem may
occur under very specific circumstances. In that example, a problem would on
detected when the IndexOutOfBoundsException was thrown, and that excep
would only be thrown when two threads manage to enter the same method at al
exactly the same time. With several hundred thousand method calls from whi

SUES

choose, and several million clock cycles in which to choose them, getting two threads
to hit the same method in the same order in a consistent manner to allow for testing
and debugging is a truly aggravating experience.

Determining when to synchronize, and how to prove (or disprove) that a method
is fully thread-safe is a subject that easily encompasses entire volumes on its own. It’s
this very subject that provides most of the rumors surrounding how difficult it is to

ine if
tion,
t like

py of
 two

es to
read

rking
chro-
d for
 class
ithin

here
 that
ions,
aps a

nitial
t will

ng-
ys-

ill see
t see
152 CHAPTER 6 THREADING IS

program with threads. What’s worse, there is no quick and easy way to determ
your code is thread-safe. The best advice is to err in your code on the side of cau
preferring to oversynchronize the code rather than the opposite, and that you tes
crazy for long periods of time.

6.1.1 Thread-local storage

One way to avoid thread synchronization code is to give each thread its own co
particular variables and objects. This is called thread-local storage, and comes in
forms in Java.

The first is the easier to understand, although it uses no linguistic featur
enforce it. Whenever possible, associate the data required by the thread with the th
by wrapping it up into the Runnable object being executed by the thread and ma
it private. If only one thread has access to the data in question, then no syn
nization is necessary. (This assumes that a new Runnable object would be create
each new Thread fired off.) Alternatively, make the run method of the Runnable
completely stateless, with no dependencies on internal or external state, even w
the class itself.

This is an overly simplistic solution, however, and doesn’t cover all cases. T
will be objects (particularly Singleton objects accessed from multiple threads)
have to maintain separate data per thread within themselves. For these situat
Java 1.2 offers the second alternative, the java.lang.ThreadLocal class, which wr
generic Object, one per thread.

public class Whatever

{

 public ThreadLocal m_threadLocal = new java.lang.ThreadLocal() {

 protected Object initialValue() { return new Integer(5); }

 };

}

This creates a ThreadLocal object that wraps an Integer object, initializing its i
value to 5. If you don’t override the initialValue method of ThreadLocal, i
contain null.

When thread A calls Whatever.m_threadLocal.set(new Stri
(“Five”)) , this value will only be seen by that thread. Any other thread calling S
tem.out.println(Whatever.m_threadLocal.get().toString()) w
the original Integer object created by the initialization block. Thread A canno
thread B’s version of m_threadLocal, and vice versa.

153

Thread-local storage won’t solve all your synchronization problems, but it cer-
tainly can help with some.

6.2 EXCEPTION-HANDLING WITH MULTIPLE THREADS

Threads raise some questions regarding standard exception-handling behavior.
 that
thod
ain

xam-

seem
g the
able’s

h the
imity
 this:
EXCEPTION-HANDLING WITH MULTIPLE THREADS

Within Java, when an exception is thrown and not caught within the method
threw it, it filters upward. Specifically, it propagates back to the caller of the me
until either it is caught, or it is thrown back out of main. This assumes that m
declares itself as throwing some (or all) Exception types, as I frequently do with e
ples found in this book:

public class Sample

{

 public static void main(String[] args)

 throws Exception // cheap way of avoiding try/catch blocks

 // within main()

 {

 // . . .

 }

}

If this is the behavior expected of the main thread’s entry point (main), it might
intuitive to expect this same behavior from any secondary threads created durin
execution of your Java code—that exceptions thrown out of a Thread’s or Runn
run method would pass back out to the caller.

The problem with this idea is that it confuses the compile-time model wit
actual run-time model; a thread, once started, has no relation to the physical prox
of the code that started it. A naïve approach to catching an exception might look like

try

{

 Thread t = new Thread(new Runnable()

 {

 public void run()

 {

 while (!Thread.currentThread().isInterrupted())

 doSomething();

 }

 }).start();

 // Later . . .

 t.interrupt();

}

catch (InterruptedException intEx)

{

 System.out.println(“Interrupted!”);

}

SUES

This doesn’t work. Specifically, if this code does compile (which would only hap-
pen if a method declared to throw InterruptedException is called within the try
block, since Thread.start doesn’t itself declare throws InterruptedExcep-
tion), you will never receive the InterruptedException thrown when the Thread
is interrupted. Java’s threading system is nondeterministic—execution of the
thread that created the secondary thread may have moved completely outside of

rated

g its
eated
 The
 the

read-
s the
if the
Ex-
ever,
g.
f the
h, is
read
tion
154 CHAPTER 6 THREADING IS

the try block when the interrupt finally finishes. For a more exagge
example of this, consider:

try

{

 Thread t = new Thread(new Runnable()

 {

 public void run()

 {

 Thread.sleep(24 * 60 * 60 * 1000);

 // sleep for one day

 doSomething();

 }

 }).start();

}

catch (Exception intEx)

{

 System.out.println(“Interrupted!”);

}

In this case, the started thread is sleeping for twenty-four hours before attemptin
doSomething method. It’s foolish, however, to believe that the thread that cr
the doSomething thread will be patiently awaiting the start of t’s execution.
JVM will have long since moved beyond the try/catch block that enclosed
start call.

Instead, when an exception propagates out of run, the JVM finds the Th
Group instance that parents the Thread that threw the exception, and passe
Thread and the Exception to its uncaughtException method. By default,
exception object thrown is anything other than a ThreadDeath object, uncaught
ception prints the stack trace and exits. Throwing a ThreadDeath object, how
is the normal way to terminate a thread, so uncaughtException does nothin

In some cases, however, the caller (or creator) of a thread wants to know i
Thread terminated abnormally. One approach, which I call last error approac
to have each thread store the Exception it throws within its associated Th
object, and have callers check the status of the Thread and the associated Excep
when the Thread terminates:

public class ExceptionRunnable implements Runnable

{

 public void run()

 {

155

 try

 {

 // . . .

 }

 catch (Throwable t)

 {

 lastError = t;

on’t

lue of

ull
This
ull

il the

then
thod
uler).
ction
serial

hen
n (or
 one

ep-
tener
hem-
on is
EXCEPTION-HANDLING WITH MULTIPLE THREADS

 }

 }

 public Throwable getLastError()

 { return lastError; }

 protected Throwable lastError;

}

Problems with this approach are:

• It’s nonstandard Java.
This get-last-error idiom is not one used anywhere else within Java, and so w
seem right to developers accustomed to working with Java-like constructs.

• It requires clients to actively check the status of the thread before checking the va
lastError.
Simply checking to see if getLastError returns anything other than n
won’t work, since that doesn’t indicate when the thread has terminated.
could be worked around by setting lastError to some benign non-n
value at initialization.

• In line with the point above, it also requires clients to check this repeatedly unt
Thread terminates.
Clients must either join with the Thread object until it terminates, and
check the status of lastError, or repeatedly poll the getLastError me
(which is definitely unfriendly to the rest of the Threads in the JVM sched
Clients that join with the Thread are then blocked from taking further a
until the thread terminates, but if these two threads are to act in this sort of
fashion, perhaps a rethink of the design or implementation is in order.

Another approach might be to define a customized ThreadGroup class that, w
uncaughtException is called, in turn propagates the exception to the mai
another secondary) thread, but this approach suffers from the original—no
Thread has the ability to call into another.

ThreadGroups can, however, take other approaches within uncaughtExc
tion (listing 6.1). One approach might be to use a callback, or event lis
approach, where interested parties implement a particular interface, register t
selves with the ThreadGroup, which in turn calls on them when an excepti
thrown from the Thread.

SUES

public interface ExceptionListener
{
 public void exceptionThrown(Thread t, Throwable e);
}

import java.util.Enumeration;

chro-
k on
n be
s call
read

Listing 6.1 Code for ExceptionListener
156 CHAPTER 6 THREADING IS

import java.util.Vector;
public class ThreadGroupEx extends ThreadGroup
{
 public ThreadGroupEx(String name)
 {
 super(name);
 }

 public ThreadGroupEx(ThreadGroup parent, String name)
 {
 super(parent, name);
 }

 public void registerListener(ExceptionListener l)
 {
 m_listeners.add(l);
 }
 public void removeListener(ExceptionListener l)
 {
 m_listeners.remove(l);
 }

 public void uncaughtException(Thread t, Throwable e)
 {
 for (Enumeration enum = m_listeners.elements();
 enum.hasMoreElements();)
 {
 ExceptionListener el =
 (ExceptionListener)enum.nextElement();

 el.exceptionThrown(t, e);
 }

 super.uncaughtException(t, e);
 }

 private Vector m_listeners = new Vector();
}

Problems with this approach come when clients must now deal with the asyn
nous nature of the callback or event-notification call. The caller can’t simply bloc
the thread using join or wait, because the exception-notification will in tur
trying to call on a blocked thread, which results in deadlock. The asynchronou
could come on a third thread, but there are other approaches to using the third th
to wait for the exception that would be more intuitive or straightforward to use.

157

Another version is to create a shim Runnable class that acts as an Adapter class
and in turn calls a version of Runnable whose run method is declared to throw Excep-
tions (listing 6.2).

public interface ExRunnable

Listing 6.2 Code for ExceptionableRunnable
EXCEPTION-HANDLING WITH MULTIPLE THREADS

{

 public void run()

 throws Throwable;

}

public class ExceptionableRunnable

 implements java.lang.Runnable

{

 public ExceptionableRunnable(ExRunnable target)

 {

 m_target = target;

 }

 public void run()

 {

 try

 {

 m_target.run();

 }

 catch (Throwable t)

 {

 thrown = t;

 }

 }

 public Throwable thrown = null;

 private ExRunnable m_target = null;

 public static void main(String[] args)

 throws Exception

 {

 ExceptionableRunnable er =

 new ExceptionableRunnable(

 new ExRunnable()

 {

 public void run()

 throws Throwable

 {

 Thread.sleep(5*1000);

 throw new Exception("Generic Exception");

 }

 });

 Thread t = new Thread(er);

 t.start();

 t.join();

SUES

 if (er.thrown != null)

 {

 System.out.println("ExceptionableRunnable threw:");

 er.thrown.printStackTrace();

 }

 }

}

ning
addi-
 in a
more
 This
ed.

iques
object
asses,

unfa-
om a
ecifi-
apers

s, the
ct of
ween
ation
g the

 sys-
 they
nally

G. All
158 CHAPTER 6 THREADING IS

This approach allows clients to continue execution while waiting for the run
thread to exit, without having to worry about an asynchronous notification. In
tion, it’s a reusable component—it can be used repeatedly without modification
variety of situations and systems. There are drawbacks: it’s not a Runnable any
and clients now have to poll the thrown member when the Thread is finished.
is awkward for clients to use and unfriendly to the JVM scheduler, as already not

6.3 THREAD IDIOMS AND PATTERNS

“Design patterns,” writes Doug Lea,1 “are used to help organize the wealth of techn
available for structuring concurrent programs. A pattern describes a form, usually an
structure (also known as a micro-architecture) consisting of one or more interfaces, cl
and/or objects that obey certain static and dynamic constraints and relationships.”

Patterns are one of the best ways by which to examine a new and (potentially)
miliar territory or technology. The next section presents several patterns culled fr
variety of resources, including pseudo-patterns of my own experience. Patterns sp
cally relating to concurrent programming can be found in Lea’s book and various p
by Douglas Schmidt (at http://www.cs.wusl.edu/~schmidt/patterns-ace.html).

6.3.1 Client-Dispatcher-Server

“When we need to distribute software components over a network of computer
location-transparent communication between them becomes an important aspe
their design. In the Client-Dispatcher-Server pattern, an intermediate layer bet
clients and servers is introduced: the dispatcher component. It provides loc
transparency by means of a name service and hides the details of establishin
communication connection between client components and their servers.”2

In a Client-Dispatcher-Server system, contrary to traditional client/server
tems, clients do not attempt to communicate with the server directly; instead,
first contact a Dispatcher component, which then in turn reroutes to (or inter
makes the request of) the server (figure 6.1).

1 See “Additional reading.”
2 Pattern Languges of Program Design 2, p. 476. The pattern itself is Copyright © 1995 Siemens A

Rights Reserved.

159

 dis-
ow-

cable
 serv-
using
ction
ttern
echa-

 fire
ased
read

s can
cular
rson
 cus-
hich
ta in
iring

rme-
d by
sock-
 even
 RMI

reads
fired

gram
THREAD IDIOMS AND PATTERNS

At first glance, this may not seem to be a concurrent pattern as much as a
tributed one, and more suitable for chapter 11, in which we talk about sockets. H
ever, with a bit of embellishment, it’s not difficult to see how this pattern is appli
to a concurrent architecture more than a distributed one. For example, most web
ers (which includes the one we will build in chapter 11) will follow this model,
a single thread to listen on port 80,3 and farming out each actual request/conne
received to a separate thread as the requests come in. The applicability of the pa
also increases when services begin to accept requests from communication m
nisms other than sockets.

Two such sources that come to mind are files or databases—a service could
off a Polling thread to check a given directory for a file, and undertake action b
on its contents. Here, the Polling thread would be the Dispatcher, and the th
which actually parses the file and performs the actions is the Server. Database
be polled, as well, looking for particular data to come through, and parti
actions taken based on the content of the data scanned. For example, a salespe
may request that an email be fired to him/her as soon as a sale is made for any
tomer within a particular sales territory. The Dispatcher thread is the one w
scans the database, and the Server thread is the one which examines the da
detail, determining if an email is required, and performing the actual work of f
the email.

Our GJAS will be acting as the Dispatcher in the system, acting as the inte
diary between client components (those attempting to use the Services hoste
GJAS) and their servers (the Services themselves). Because we’ve not yet gotten to
ets and networks, GJAS remains a single-machine system, but the concept holds
in that case. Once we get into more interactive services via sockets (chapter 11) or
(chapter 15), we’ll see how GJAS fits this pattern like a glove.

6.3.2 Fire-and-forget

One common idiom in threading, especially with Java’s first-class support for th
and anonymous classes, is the fire-and-forget model of threading. Threads are
off, and the thread itself is not tracked afterward:

3 The port for the HTTP protocol.

Figure 6.1

Client-Dispatcher-Server dia

SUES

new Thread(new Runnable() {
 public void run()
 {
 // Do something here
 }
}).start();

The Thread object’s handle isn’t held because there is no further need to access it. It is
. It is
 ter-

half.
eated

s are
eOb-
p, or
ation

 ever
g the
n the

eck-
his is
160 CHAPTER 6 THREADING IS

“forgotten.” No attempt will be made to pause, suspend, or interrupt the Thread
expected to either complete its assignment, or throw an exception out of run and
minate. Either way, the Thread runs to completion and dies.

6.3.3 ActiveObject

ActiveObject is an object instance that has its own thread of execution on its be
In this pattern, the creator of the object often has no knowledge of the thread cr
on behalf of the object:

public ActiveObject
 implements Runnable
{
 public ActiveObject()
 {
 new Thread(this).start();
 }

 public void run()
 {
 // . . .
 }
}

In pseudo-real-time simulation systems, or systems where independent object
interacting within an environment, this can be particularly useful. Users of Activ
ject need not worry about the peculiarities of the thread-to-object relationshi
about setting priorities appropriately; the object encapsulates all of that inform
within itself.

The lifetime of the thread is intimately tied to that of the object; if the object
leaves its run method (due to exception or voluntary exit), the thread dies, takin
object with it. The two are inseparable, since ActiveObject offers no way to obtai
Thread it encapsulates.

6.3.4 SpinLoop

In a SpinLoop thread, the thread spends most of its execution time constantly ch
ing some condition, taking action only when (if ever) that condition changes. T
the classic busy-wait loop, often coded as:

while (m_flag != false)
{
 // do nothing

161

}
doSomething();

In most cases, this sort of loop is inefficient and a tremendous waste of the CPU—
there is no attempt to give the CPU any hints about when it might be safe to leave
this thread alone. Moreover, most of the time the constant checks are unnecessary—
do you really need to know the precise nanosecond the m_flag variable changes?

ween

pin-
rtain
s are
ts of

d has
rwise

po-
THREAD IDIOMS AND PATTERNS

Most of the time, it’s not necessary, and a 100 millisecond sleep call in bet
checks can drastically improve performance for other threads in the system.

6.3.5 Polling (PeriodicThread)

Akin to the SpinLoop is the PollingThread idiom. This is a particular type of S
Loop that, instead of constantly checking the value of the condition, waits a ce
period of time, checks a condition, and either acts or waits again. PollingThread
particularly useful in areas where the condition can take more than trivial amoun
time or resources, such as checking a database to see if a particular type of recor
come in, or watching a directory to see if a file has been placed there or othe
modified since the last check.

PollingThreads usually take the form:

public class RDBMSCheck implements Runnable
{
 public void run()
 {
 try
 {
 Thread.sleep(60 * 1000); // check every minute

 if ((ResultSet rs = get_database_records()).next())
 {
 // Take some action here
 }
 }
 catch (InterruptedException intEx)
 {
 }
 }
}

Because this is such a common idiom, however, it can be factored back into a com
nent that manages the wait and action:

/**
 * PeriodicThread is a specific type of Thread that fires off its
 * associated Runnable evry <code>interval</code> milliseconds.
 */
public class PeriodicThread extends Thread
{
 private PeriodicThread()
 {

SUES

 // This prevents instantiation without an associated Runnable;

 // I don’t want to allow the possibility of this code from

 // ever compiling:

 //

 // new PeriodicThread().start()

 //

 }

 con-
arget
hout
162 CHAPTER 6 THREADING IS

 /**

 * Constructor taking the Runnable whose run method

 * we wish to call every interval milliseconds.

 */

 public PeriodicThread(Runnable r, int interval)

 {

 super();

 m_runnable = r;

 m_interval = interval;

 }

 /**

 * The run method spins in an infinite loop, calling run on

 * the owned Runnable instance every interval milliseconds

 * (as specified in the constructor). The time spent

 * in the Runnable’s run method is not taken into

 * account in the period spent sleeping.

 */

 public void run()

 {

 try

 {

 while (true)

 {

 Thread.sleep(m_interval);

 m_runnable.run();

 }

 }

 catch (InterruptedException iEx)

 {

 return;

 }

 }

 private int m_interval = 0;

 private Runnable m_runnable = null;

}

Another interesting aspect of the PeriodicThread class is that the no-arg default
structor is declared private. Because a PeriodicThread is useless without a t
or time interval to wait, I prevent users from being able to instantiate one wit
those arguments.

163

6.3.6 DelayedFire (ScheduledThread)

In a DelayedFire thread, the execution of the behavior desired is delayed by some
period of time, similar to the cron utility of UNIX or at in Windows NT. This is
useful in situations where action needs to be taken after giving the user a window of
opportunity to take action. For example, in an interactive service, users need to be
notified of impending shutdown if the administrator of the service needs to take the

or so
on is
 only
cated

want
2:00
read
ava’s
THREAD IDIOMS AND PATTERNS

system down. While this could be coded to simply wait the one or five minutes
on the current thread, it can make coding easier if the shutdown implementati
coded within its own thread. This way, if the shutdown needs to be stopped, the
action required is to destroy the shutdown Thread object, instead of compli
shutdown-OK flags and state-machine logic.

Delaying a thread’s execution can come in one of two forms—clients may
to delay execution for n seconds, or have the thread fire off at the absolute time “1
midnight today.” Coding the first is the far simpler case (simply have the th
sleep for the n number of seconds), but the second case is not difficult, given J
rich support for Date comparisons (listing 6.3).

public class ScheduledThread extends Thread

{
 private ScheduledThread()

 {
 // Prevent "new ScheduledThread().start()"
 //

 }

 public ScheduledThread(Runnable runnable, java.util.Date when)
 {

 m_runnable = runnable;
 m_when = when;

 }

 public void run()
 {

 try
 {
 // Make sure "when" is after now.

 //
 while (m_when.after(new java.util.Date()))

 {
 Thread.sleep(1000);
 }

 // If the above test failed, it’s time
 // to run our target
 //

 m_runnable.run();
 }

Listing 6.3 Code for ScheduledThread

SUES

 catch (InterruptedException intEx)

 {

 return;

 }

 }

 private java.util.Date m_when;

 private Runnable m_runnable;

d to
r) is

read
hed-

chro-
if it’s
t and
 text
pars-
s per
 then
phics
 this

ple,
read,
 GUI
164 CHAPTER 6 THREADING IS

}

Within the ScheduledThread’s run method, the Date’s after method is use
determine if the current time stamp (obtained from Date’s default constructo
after the time given. If it is, then the Runnable’s run method is executed.

Again, as with PeriodicThread, the default constructor of the ScheduledTh
is declared private. This is done to prevent users from instantiating a Sc
uledThread without a Runnable, a time stamp, or delay argument.

6.3.7 Futures

Futures, or FutureReplies, as they’re also called, allow you to call a method asyn
nously, perform other tasks in the meantime, and obtain the result of the call
ready. For example, it’s common in web browsers to download the specified tex
images separately, allowing users who don’t care to see the images to view the
without having to wait. Futures fit into this very nicely—as the web browser is
ing the returned HTML, each image (which must be downloaded separately, a
the HTTP specification) can be requested in a Future, and the web browser can
continue to parse the text. As each image-thread returns with the complete gra
file, the browser can then take the time (presuming it’s done with the text by
time) to place the image in the browser window appropriately.

Futures are also useful within enterprise scenarios. A database query, for exam
is a terrific candidate for a Future idiom—the query is carried out in the Future th
and the user interface can continue to perform other tasks (such as preparing the
to display the results) until the time in which it needs the results.

Futures typically appear similar to the following:

// Fire off the query in a Future

FutureThread ft = new FutureThread(

 new FutureRunnable()

 {

 public Object run()

 throws java.sql.SQLException

 {

 Statement stmt = aJDBCConnection.createStatement();

 return stmt.executeQuery(“SELECT * FROM . . .”);

 }

 });

ft.start();

165

// . . . Bring up the GUI element associated with the query

ResultSet rs = (ResultSet)ft.getResult();
 // If the query isn’t finished yet, we block here waiting for
 // it to return

while (rs.next())
{

esire.
able

s tar-
g the
THREAD IDIOMS AND PATTERNS

 // . . .
}

This approach also allows users to cancel the query at any time if they so d
Notice that in the foregoing, the FutureThread class takes a different type Runn
class as its parameter—FutureThread could easily take a standard Runnable as it
get, but would then need to have some way within the Runnable object of settin
results object so that the user could obtain it via FutureThread.

One possible FutureThread implementation looks like that in listing 6.4.

public interface FutureRunnable
{
 public Object run();
}

public class FutureThread extends Thread
{
 public FutureThread(FutureRunnable run)
 {
 m_target = run;
 start();
 }

 public void run()
 {
 m_result = m_target.run();
 }

 public Object getResult()
 throws InterruptedException
 {
 if (Thread.currentThread() != this)
 this.join();

 return m_result;
 }
 public Object getResult(long timeout)
 throws InterruptedException
 {
 if (Thread.currentThread() != this)
 this.join(timeout);

 return m_result;
 }

Listing 6.4 Code for a FutureThread implementation

SUES

 private Object m_result;

 private FutureRunnable m_target;

 public static void main(String[] args)

 throws Exception

 {

 FutureThread ft = new FutureThread(

 new FutureRunnable()

come
de to

eter
edi-

JVM
s fin-
) in

hilo-
r, we
ithin
 pre-
166 CHAPTER 6 THREADING IS

 {

 public Object run()

 {

 try

 {

 Thread.sleep(5*1000);

 return new String("Finished!");

 }

 catch (InterruptedException intEx)

 {

 return null;

 }

 }

 });

 System.out.println("OK, we’re waiting now....");

 String result = (String)ft.getResult(10 * 1000);

 if (result != null)

 System.out.println("Result: " + result);

 else

 System.out.println("We didn’t finish in 10 seconds.");

 }

}

One curiosity about this implementation is that if the FutureThread fails to
back within the timeout specified in the getResult method, no attempt is ma
terminate the thread via stop. This means that if you change the timeout param
in the supplied main to be one second, instead of ten, the JVM won’t exit imm
ately after printing “We didn’t finish in 10 seconds….”. Instead, because the
must wait until all user threads are finished, it will wait until the FutureThread i
ished before exiting. Fixing this behavior is as easy as calling setDaemon(true
the FutureThread constructor.

6.4 GJAS

Talking about thread support for GJAS at this point falls into the category of a p
sophical discussion, because as of yet GJAS doesn’t exist as a system. Howeve
want to at least think about how we’re going to use multiple Threads (if at all) w
the GJAS code, and a little jaunt down Abstract lane will give us a better sense of
cisely what we need to do once we get to the point of writing code.

167

Adding thread support to GJAS could be a matter of requiring Services to, when
start is called, fire off a Thread for their own use and return immediately thereafter.
In fact, this would be a workable system and function adequately for some time. How-
ever, this is not a robust, or stable, mechanism. At some point a developer will create
a Service that fails to adhere to this rule, perform behavior that blocks in start, and
wonder why the entire system hangs.

, and
aling
s can
) or
er-

t can
 have
owed
stem

read,

main
t all,
ices,

 case.
thing

ork,
 Ser-

ent a
art a
print
 Ser-
se to
ice is

calls.
r fif-
rvice

 Serv-
nce it
GJAS

We could, therefore, remove Service as the base from which clients derive
make it the point to which all user code must extend, with base functionality de
with the creation of Threads. This fails on two points. First, any method in a clas
be overridden, and users will just as easily forget to call super.start(
super.stop() in their derived-class as they would to fire off the thread from S
vice.start in the first place. Second, this imposes large restrictions on wha
now be plugged into our system; because Java is a single-inheritance language, we
now arbitrarily imposed the base class on users of our system. Using Service all
us to give users the flexibility to hook in third-party products and code into our sy
without huge overhead.

We can’t, it would seem, enforce the requirement that Services fire off a th
and we can’t do it for the user. What’s left?

Actually, we don’t have to require that Services fire off a thread in order to re
robust and stable. In fact, some Services may not require an additional thread a
as we’ll see in the chapter on Threads, when we start writing some actual Serv
ExecService, a Service that executes an arbitrary command-line, is one such
ExecService fires off a command-line when start is invoked, and does no
for the remainder of its lifetime.4 If a Service needs to fire off a thread to do its w
then it must do it within start. ServerManager still needs to ensure that a rogue
vice doesn’t bring the entire JVM to a halt, however.

6.4.1 Adding thread support to GJAS

One of the first things we’ll do to improve on GJAS’s current configuration is prev
single rogue Service from bringing down the entire system. Consider this: we st
Service to bring up your favorite text editor, and another Service line after that to
“We’re back!” to the screen. If we were to run the system without such antirogue
vice protection, then the system will hang when the text editor comes up, and refu
continue until the text editor is closed. The reason, of course, is that our first Serv
blocking, waiting on the text editor to complete its execution before returning.

Fixing this is a matter of applying the Future pattern to the various Service
We’ll use a Future to call the Service’s start method, for example, and wait fo
teen seconds; if the call to start hasn’t returned by then, we’ll assume the Se

4 We could add code to the end of the ExecService.start() method to remove itself from the
erManager when its created process completes, so as to remove its overhead from the system o
completes its required task.

SUES

has either hung itself or is still working, and return to our caller. We have, however,
two places where we can apply this improvement. We could do it inside of Server-
Manager, or inside of the corresponding Server instance.

Here again is a decision based largely on personal choice; I choose to make the
improvement in Server, since it is intended to be my wrapper around a Service. I’m also
thinking down the road, where I may wish to expose Server objects to controllers other

mply
orry)
.
rised
oose

 than
arries
lable
ry at
 find
d it.

st for
 sys-

thing
168 CHAPTER 6 THREADING IS

than ServerManager. If I place this Future code inside of Server, then others can si
call on Server’s versions of these methods without needing to understand (or w
about what to do if the Service simply runs away with the call and never returns

One other note before we dive into the next chapter: you may well be surp
to notice that rather than use the classes I demonstrated for you previously, I ch
to use Lea’s concurrent library. His library is far more extensive and well-written
anything I could write on my own and this is one place where a buy decision c
no risk. Lea has released his code into the public domain (making it freely avai
to anyone who want to download it), and he has released the source for the libra
the same time, meaning that the other risk of buy decisions is now reduced. If I
a bug, I can correct it on my own, assuming Lea cannot get it fixed before I nee

You are, of course, free to use whichever approach (buy or build) works be
you in your system. Remember, GJAS is not intended to be a production-quality
tem out of the box, but a proof of concept system that in turn leads to some
stronger, more robust, and more tailored to your (and your company’s) needs.

Given that, we’ll modify the Server.start method (listing 6.5):

/**

 * Start the wrapped Service instance. Services have 15 seconds in

 * which to either initialize, or else start a thread to perform

 * the necessary initialization and return. If a Service fails to

 * respond within 15 seconds of the start of its start

 * call, the Server and/or ServerManager are free to destroy it.

 */

public boolean start()

{

 // We want to fire off a Thread to make the start() call, and wait

 // up to 15 seconds to see if we return. If we don’t by the time

 // the 15 seconds are up, we assume the Service has run off into

 // Limbo and needs to be killed. (Most Services of any complexity

 // will need to fire off their own Thread to do their work, so

 // their start() methods should come back pretty quickly.)

 //

 try

 {

 FutureResult futureResult = new FutureResult();

 Runnable cmd = futureResult.setter(new Callable()

 {

 public Object call()

Listing 6.5 Code of a modified Server.start

169

 {

 try

 {

 m_service.start();

 }

 catch (Exception ex)

 {
GJAS

 m_exception = ex;

 ServerManager.instance().log(ex);

 }

 return null;

 }

 });

 new ThreadedExecutor().execute(cmd);

 futureResult.timedGet(15*1000);

 // we want to wait 15 seconds, no more.

 return true;

 }

 catch (TimeoutException tEx)

 {

 m_exception = tEx;

 // The Service ran out of time starting up; kill it, note the

 // failure to start, and return

 //

 ServerManager.instance().log(tEx);

 }

 catch (InterruptedException iEx)

 {

 m_exception = iEx;

 // For some reason, the thread doing the call failed; note the

 // failure to start, and return

 //

 ServerManager.instance().log(iEx);

 }

 catch (InvocationTargetException itEx)

 {

 m_exception = itEx;

 // Java Reflection failed; note the failure, and return

 //

 ServerManager.instance().log(itEx);

 }

 catch (Exception ex)

 {

 m_exception = ex;

 ServerManager.instance().log(ex);

 }

 return false;

}

SUES

What seems to be a tremendous increase in complexity turns out to be mostly catch
handlers. The core of what we want to do occurs in the first third of the listing:

FutureResult futureResult = new FutureResult();
Runnable cmd = futureResult.setter(new Callable()
{
 public Object call()
 {

ur-
all

es all

ures.
than
170 CHAPTER 6 THREADING IS

 try
 {
 m_service.start(args);
 }
 catch (Exception ex)
 {
 m_exception = ex;
 ServerManager.instance().log(ex);
 }
 return null;
 }
});
new ThreadedExecutor().execute(cmd);
futureResult.timedGet(15*1000);
 // we want to wait 15 seconds, no more.

return true;

We create a FutureResult (imported from EDU.oswego.cs.dl.util.conc
rent), and set it to hold an anonymous Callable instance, one which, in its c
routine, creates a try block, makes the call to Service.start, and catch
Exceptions thrown out of there.

This looks a bit different than expected, given the code I listed above for Fut
The reason is simple—Lea’s code is much more flexible and componentized
mine. Listing 6.6 is FutureResult.

/*
 File: FutureResult.java

 Originally written by Doug Lea and released into the public domain.
 This may be used for any purposes whatsoever without acknowledgment.
 Thanks for the assistance and support of Sun Microsystems Labs,
 and everyone contributing, testing, and using this code.

 History:
 Date Who What
 30Jun1998 dl Create public version
*/

package EDU.oswego.cs.dl.util.concurrent;
import java.lang.reflect.*;

// Comments have been stripped for brevity

Listing 6.6 Code for FutureResult(Lea)

171

public class FutureResult {

 protected Object value_ = null;

 protected boolean ready_ = false;

 protected InvocationTargetException exception_ = null;

 public FutureResult() { }

 public Runnable setter(final Callable function) {
GJAS

 return new Runnable() {
 public void run() {

 try {

 set(function.call());

 }

 catch(Exception ex) {

 setException(ex);

 }

 }

 };

 }

 protected Object doGet() throws InvocationTargetException {

 if (exception_ != null)

 throw exception_;

 else

 return value_;

 }

 public synchronized Object get()

 throws InterruptedException, InvocationTargetException {

 while (!ready_) wait();
 return doGet();

 }

 public synchronized Object timedGet(long msecs)

 throws TimeoutException, InterruptedException,

 InvocationTargetException {

 long startTime = (msecs <= 0)? 0 : System.currentTimeMillis();

 long waitTime = msecs;

 if (ready_) return doGet();

 else if (waitTime <= 0) throw new TimeoutException(msecs);

 else {
 for (;;) {

 wait(waitTime);

 if (ready_) return doGet();

 else {

 waitTime = msecs - (System.currentTimeMillis() - startTime);

 if (waitTime <= 0)

 throw new TimeoutException(msecs);

 }

 }
 }

 }

 public synchronized void set(Object newValue) {

SUES

 value_ = newValue;

 ready_ = true;

 notifyAll();

 }

 public synchronized void setException(Throwable ex) {

 exception_ = new InvocationTargetException(ex);

 ready_ = true;

 yet;
ating
ither
 over
 do).
ult is
 sys-
hich

ecu-
iffer-

de, no
 a dif-
 from.
172 CHAPTER 6 THREADING IS

 notifyAll();

 }

 public synchronized InvocationTargetException getException() {

 return exception_;

 }

 public synchronized boolean isReady() {

 return ready_;

 }

 public synchronized Object peek() {

 return value_;

 }

 public synchronized void clear() {

 value_ = null;

 exception_ = null;

 ready_ = false;

 }

}

Lea’s version allows us to peek at the returned value to see if the call has returned
my version didn’t. Furthermore, FutureResult itself acts merely as a Factory, cre
Runnable instances around the Callable instances passed in, allowing clients to e
use the returned Runnable within its own Thread, if they choose to take control
the threading mechanism, or within his ThreadFactory system (as I choose to
His approach is more componentized than the one I proposed, since FutureRes
now completely disconnected from, and not dependent on, the actual threading
tem used. My approach assumed that each Future would want its own thread, w
may not always be the case.5

Once the Runnable instance has been returned, we pass it into ThreadedEx
tor, which places the Runnable into its own Thread and executes it. This is no d
ent than had it been written as:

new Thread(runnable).start();

5 It may seem odd that I disparage my own code while extolling Lea’s. I do this to show that any co
matter how well-written, can usually be improved and that componentization can sometimes be
ficult thing to get right without tens, if not hundreds, of iterations and possible scenarios to draw

173

except that ThreadedExecutor implements the concurrent library’s Executor inter-
face, which all of Lea’s thread factory classes implement. This allows clients to, if they
choose, select a given Executor type at startup and use it generically:

// At startup, we write

ServerManager.setExecutor(new ThreadedExecutor());

d of
d. It
 and
lied,

ng of
chro-
on in
poll-
base.
sh to

hich
-side
o the
gacy-

tterns

 Java
rself
it up
nable
 first
ADDITIONAL READING

// . . . Later . . .

ServerManager.getExecutor().execute(cmd);

Again, this may seem like splitting hairs. The consistent use of a single metho
doing things, however, makes code simpler to maintain and easier to understan
may require that adopters of this code need to spend a few days looking over
experimenting with Lea’s concurrent library, but once that learning curve is app
any code that uses the concurrent library will be easily understandable.

6.5 SUMMARY

As you can see, Threads offer impressive opportunities for successful partitioni
work and logic. By spinning off separate Threads to accomplish tasks in an asyn
nous fashion, for example, we can isolate particular functionality of the applicati
well-encapsulated classes. For example, you might spin off a Thread to do some
ing over an RDBMS table to keep watch on records being inserted into the data
Or you might spin off a Thread to handle a user request that the user may wi
cancel if the operation takes too long. And so on, and so on.

Threads also offer an opportunity to build some robustness into a system in w
user-configured actions are taking place. Normally, it is unacceptable for a server
process to hang due to external-resource delays; by placing the call or the access t
external resource in a separate Thread, we avoid the potential danger of a slow le
system call blocking the entire JVM.

6.6 ADDITIONAL READING

• Douglas Lea, Concurrent Programming in Java: Design Principles and Pa
(Addison-Wesley, 1997).

Part of the JavaSoft “Java Series,” this is the best reference on concurrent
programming, bar none. If you work with threads in Java, you owe it to you
to read this book at least twice. Martin Fowler, author of Refactoring, sums
best: “The compiler ought to require that anyone who implements Run
must read this book.” (Note: the code examples for this chapter are from the
edition; as this book was going to press, a second edition became available.)

C H A P T E R 7

Control

ntain
Applications, unfortunately, are not autonomous entities—they very rarely co

7.1 GJAS 175
7.2 Testing the LocalServer implementation 187
7.3 ExecService 189
7.4 HelloAgainService 193
enough intelligence to configure themselves (both initially and as circumstances
change within the execution environment), monitor themselves, and know when to
add or remove services within them. Asking an HTTP server, for example, to reread
its configuration settings is a bit much—if it constantly rereads the settings, it will be
taking adverse performance hits. But if it caches them, then it runs the chance that it

n file

 that
ntrol
r the
bout
more

lica-
ple-

to be
on is
, and
174

may be out of sync with what the user has specified in the server’s configuratio
or, on Win32 machines, in the Registry.

As a result, humans must be able to control the applications we write. Note
I use the term humans and not system administrators or users. Who gets to co
the application is, more often than not, a policy decision of the corporation o
departments within it. Far be it from me to lay down a blanket generalization a
which group should get control. Instead, we’ll simply leave it at “humans,” or the
accurate term “application administrators” (or administrators, for brevity).

Despite this obvious requirement to allow administrators to control the app
tion, many, if not all, custom server-side applications are analyzed, designed, im
mented, and released without a thought or concern for how the application is
controlled. Unfortunately, this leads to serious problems once the applicati
released. It doesn’t take long for the lack of control facilities to become obvious

175

developers are often bewildered by the subsequent requests for modification or out-
right rejection of the software.

This is, again, an area where a generic overserver helps. By designing a generic
control and configuration interface for all Services running within the server, devel-
opers can focus more on the meat of the application, and less on the necessary trap-
pings for controlling it. Less time spent on the tedious necessity of control interfaces

diza-
 who

ation
ppli-
Con-
 such
urity
lica-

o the
aphy

them
e, we
on of
stem

d its
ple-

ager,
 we’ll
 well

ger is
This
nt to
GJAS

means quicker turnaround time during development, but additionally, standar
tion of the control interface also means less learning curve for the administrators
must use the application.

One thing to understand before we begin: application security and applic
control are two very different subjects. Security is about who gets to control the a
cation, in addition to who may use the application or administer the application.
trol is about what an individual user or administrator can do to the application,
as reconfigure or restart or stop it. The two are somewhat intertwined, since sec
may be required to ensure that only authorized users are able to control the app
tion, and control may in turn mean configuring who has what security rights t
application. No discussion of cryptography, secure sockets, or the Java cryptogr
extensions is presented here.

7.1 GJAS

The first several chapters have given us basic tools; now it’s time to start putting
together into a coherent system. We know how to load classes from anywher
know how to ensure that when a class is loaded it always picks up the latest versi
the code, and we know how to use multiple threads to ensure that the entire sy
isn’t blocked waiting on one errant Service.

Recall from chapter 2, that we discussed the IServerManager interface an
static-method cousin, the ServerManager class. It’s now time to provide a basic im
mentation of that class, functioning at the local JVM level. This LocalServerMan
in turn, will need an IServer-implementing class to control its Services, which
call LocalServer. Finally, we’ll create some sample Services to demonstrate how
it all works.

Let’s start with the LocalServerManager and LocalServer implementation.

7.1.1 Local implementation

The LocalServerManager.java code is long, but understanding LocalServerMana
crucial to understanding how the whole system is supposed to work together.
class, more than any other, is GJAS; everything else serves as an adjunct or assista
the LocalServerManager.

/**
 * This class presents a local-to-this-JVM-only ServerManager.
 * It is useful for localized testing, and for loading/running
 * Services within their own JVM. Note that use of this

ROL

 * ServerManager does not inherently prevent object-sharing or

 * prevent inter-JVM communication of Services, since it does

 * nothing to block sockets or any other IPC communication. For

 * example, nothing prevents us from running a LocalServerManager

 * with a SocketControlService that allows us to remotely (through

 * the SocketControlService) start, stop, and otherwise control

 * the Services listed within this JVM.

er-
an-
en’t

h so
 the
ager
ting
med
ade
 it)
 set
lled
tion
176 CHAPTER 7 CONT

 *

 * Note that LocalServerManager, by default, uses the local

 * (default) ClassLoader scheme to load and find its classes,

 * so any classes loaded will need to be found on the CLASSPATH

 * and/or as an extension.

 */

public class LocalServerManager

 implements IServerManager

{

 public LocalServerManager()

 {

 ServerManager.instance(this);

 // Set log & error streams

 try

 {

 m_logStream = new FileOutputStream("ServerManager.log");

 m_errStream = System.out;

 m_log = new PrintWriter(m_logStream);

 m_err = new PrintWriter(m_errStream);

 }

 catch (Exception ex)

 {

 ex.printStackTrace();

 System.exit(-1);

 }

 }

To start, the LocalServerManager constructor first registers itself as the IServerManag
implementing Singleton instance within this JVM; to do this, it calls the ServerM
ager instance method, passing in itself as the argument. At this point, we hav
seen the ServerManager class, but its implementation is straightforward, enoug
that I won’t present the code here, but refer you to the ServerManager.java code in
com.javageeks.gjas package for details. In summary, the key to ServerMan
is in two parts: the Singleton methods, and the static helper methods that ease get
to the Singleton IServerManager instance. The Singleton methods, both na
instance, one marked public, returning an IServerManager, the other m
package-friendly (so that no one outside of com.javageeks.gjas can call on
taking an IServerManager instance, provide the basic get/set behavior. The
instance method also performs a quick check to ensure that it hasn’t been ca
before. If it has, that’s a definite programmer error, and it throws a RuntimeExcep
to that effect.

177

We’ve also added a few additional helper methods that provide commonly used
functionality for ServerManagers—parseInputStream parses an InputStream for
a class name and its associated arguments, and parseArg parses a String argument
for the class name and any contained arguments within it. This allows us to fire off
the ServerManager from the command line as

java com.javageeks.gjas.LocalServerManager “HelloAgainService 5 Hello!”

tored
es.

ing

g).

ictio-
oth-
y the
or by
ager’s
iated
uits.
GJAS

or by creating a servers.loader file, and placing the directives in there:

/*

 * servers.loader: Load a HelloAgainService instance

 */

HelloAgainService 5 “Hello, world, from GJAS!”

Supporting both approaches gives us additional flexibility, and since it’s all refac
into ServerManager.java, it comes along for free for all IServerManager instanc

 //===

 // IServerManager-inherited methods (implementations)

 //

 /**

 * Shut the entire system down, usually in preparation for terminat

 * this VM (or perhaps for doing a complete shutdown/restart cyclin

 * Effectively, this is the same as calling getServices to get all

 * Servers’ instanceIDs, then calling removeService on each one.

 */

 public void shutdown()

 {

 log("Entering ServerManager.shutdown()");

 // Get a list of all the running instances, and try to

 // removeService on each one.

 //

 String[] svcs = getServices();

 for (int i=0; i<svcs.length; i++)

 {

 log("Shutting down " + svcs[i]);

 removeService(svcs[i]);

 }

 log("Exiting ServerManager.shutdown()");

 }

The shutdown method iterates through every IServer in the m_servers d
nary, calling removeService on each one. Shutdown, in and of itself, does n
ing to terminate the JVM in which LocalServerManager is running—the only wa
LocalServerManager can completely exit is either by a call to System.exit,
the last active non-daemon Thread terminating. If fired from LocalServerMan
main method, this is not an issue—stopping all Services will kill their assoc
Threads, and main’s Thread will die as soon as the code that called shutdown q

ROL

 /**
 * Add the loaded Service to the list of Servers and start it
 */
 public IServer addService(Service svc, String[] args)
 {
 log("Entering ServerManager.addService()");

 try

ail

nce
; for
ce it
178 CHAPTER 7 CONT

 {
 log("Service " + svc.toString() + "(" +
 svc.getClass().getName() + " " +
 svc.getClass().getClassLoader().toString() +
 ") created");

 // Wrap our Service up in a LocalServer wrapper object
 IServer svr = new LocalServer(svc);

 // Drop it in our Dictionary of Servers....
 m_servers.put(svr.getInstanceID(), svr);

 // Start it; if the start fails, remove it
 if (svr.start(args))
 {
 log("Service started");
 return svr;
 }
 else
 {
 // Log the exception (if any) that caused the Service to f
 PrintWriter pw = new PrintWriter(getLogStream());
 svr.getLastError().printStackTrace(pw);
 pw.flush();

 removeService(svr.getInstanceID());
 return null;
 }
 }
 catch (Throwable ex)
 {
 // Something "wrong" happened; in a production system, you
 // probably want to do something a bit more proactive here.
 PrintWriter pw = new PrintWriter(getLogStream());
 ex.printStackTrace(pw);
 pw.flush();
 return null;
 }

 finally
 {
 log("Exiting ServerManager.addService()");
 }
 }

The addService method, when called, wraps the Service instance into an insta
of IServer; in this case, LocalServer. We’ll get to the LocalServer class later
now, accept that it provides the standard IServer access to the Service instan

179

wraps. We then put the IServer instance into a dictionary of IServers (called
m_servers), identified by the Service’s getInstanceID return value. This is all
that’s necessary to hold the Service—we call the IServer’s start method (which in
turn passes directly into the Service’s start method), passing in the array of Strings
that was passed in to addService, and all should be well. In the event that the Ser-
vice fails to start, we note it, and call removeService on it to get rid of it.

r.
be
ning
er

e the
ves it
g the
GJAS

 /**
 * Attempt to stop (if necessary) and remove an instance of a Serve
 * Because it’s possible that multiple Servers of a given type can
 * running simultaneously (for example, sockets-based Services liste
 * on multiple ports), we need to have the user identify which Serv
 * they wish shut down by using the Server instance’s instanceID.
 */
 public void removeService(String instanceID)
 {
 try
 {
 log("Entering ServerManager.removeService()");

 // Find the service given by ’instanceID’
 //
 IServer svr = getService(instanceID);
 if (svr != null)
 {
 // If it’s still running, order it to stop
 //
 String svrState = svr.getState();
 if (svrState != Service.STOPPED && svrState !=
 Service.PAUSED)
 svr.stop();

 // Remove it from the Dictionary
 //
 log("Removing " + instanceID + " from system.");
 m_servers.remove(instanceID);
 }
 }
 finally
 {
 log("Exiting ServerManager.removeService()");
 }
 }

The removeService method takes the String passed in, uses it to retriev
IServer instance from the m_servers dictionary of IServers, and remo
from the dictionary. Before removing it, it calls stop on the IServer, givin
Service a chance to perform any shutdown processing necessary.

 /**
 * Try to kill the Service--don’t try to stop() it
 */

ROL

 public void killService(String instanceID)

 {

 m_servers.remove(instanceID);

 System.gc();

 }

The killService method, however, is the mean-and-nasty version of removeSer-
 dic-
n in
c is
iters
l get
ice
ven
y to
ely-

);)

s an
ned
g a

nd

urn
180 CHAPTER 7 CONT

vice. Instead of calling stop on the Service, it removes it from the m_servers
tionary, and makes a call to the gc method of System, to force a garbage collectio
an attempt to reclaim the now-garbage Service and IServer instances. While g
not guaranteed to reclaim the Service on this pass (which means that Service-wr
can’t depend on this when building Services), there’s a likely chance the Service wil
finalized here and now, thus removing the Service for all time. The killServ
method is intended as a last-resort method, only. Terminating a Service like this, e
with the presence of finalizer methods, can do serious damage to the JVM’s abilit
reclaim resources over time, and should always be viewed as an only-if-absolut
necessary decision, in much the same manner as the Thread stop is.

 /**

 * Obtain a list of every Server instance running in the system.

 */

 public String[] getServices()

 {

 log("Entering ServerManager.getServices()");

 String[] svrArray = new String[m_servers.size()];

 int ctr = 0; String list = new String("{\n");

 for (java.util.Enumeration e = m_servers.keys(); e.hasMoreElements(

 {

 svrArray[ctr] = (String)e.nextElement();

 list += " " + svrArray[ctr++] + "\n";

 }

 list +="}";

 log("Exiting ServerManager.getServices(); list = " + list);

 return svrArray;

 }

The getServices method, on the other hand, requires a bit more work. It use
Enumeration returned from m_servers to build an array of Strings to be retur
to the caller. Note that it also echoes this list of Services to the log, providin
convenient debugging aid. The array of Strings is then returned.

 /**

 * Obtain a reference to a Server instance by ID. If it can’t be fou

 * (perhaps it’s shut down since the user obtained the ID?), then ret

 * a null instance.

 */

 public IServer getService(String instanceID)

 {

181

 return (IServer)m_servers.get(instanceID);

 }

The getService method, given what we saw in addService, is about as simple
as they come—it takes the passed-in String, and asks the dictionary of IServers
for the IServer instance answering to that title. The dictionary either returns
null, indicating it’s never heard of the IServer by that name, or it returns the

());
GJAS

IServer instance.

 public void log(String msg)

 {

 if (m_log != null)

 {

 StringBuffer m = new StringBuffer();

 m.append(new Date());

 m.append(" [");

 m.append(Thread.currentThread().toString());

 m.append("]: ");

 m.append(msg);

 m_log.println(m);

 System.out.println(m);

 m_log.flush();

 }

 }

 public void log(Exception ex)

 {

 if (m_log != null)

 {

 log("Exception raised: " + ex.toString());

 PrintWriter pw = new PrintWriter(getLogStream());

 pw.println(new Date() + " Exception raised: " + ex.toString

 ex.printStackTrace(pw);

 pw.flush();

 }

 }

 public void error(String msg)

 {

 if (m_err != null)

 {

 StringBuffer m = new StringBuffer();

 m.append(new Date());

 m.append(" [");

 m.append(Thread.currentThread().toString());

 m.append("]: *** ERROR *** ");

 m.append(msg);

 m_err.println(m);

 m_err.flush();

 }

 }

 public void error(Exception ex)

ROL

 {

 if (m_err != null)

 {

 error(": Exception raised: " + ex.toString());

 PrintWriter pw = new PrintWriter(getErrStream());

 pw.println(new Date() + " Exception raised: " + ex.toString());

 ex.printStackTrace(pw);
182 CHAPTER 7 CONT

 pw.flush();

 }

 }

 //===

 // LocalServerManager-specific methods

 //

 /**

 * Return the OutputStream used for writing to the log.

 */

 public OutputStream getLogStream()

 {

 return m_logStream;

 }

 /**

 * Set the OutputStream used for writing to the log.

 */

 public void setLogStream(OutputStream os)

 {

 m_logStream = os;

 if (m_logStream != null)

 m_log = new PrintWriter(m_logStream);

 else

 m_log = null;

 }

 /**

 * Return the OutputStream used for writing errors.

 */

 public OutputStream getErrStream()

 {

 return m_errStream;

 }

 /**

 * Set the OutputStream used for writing errors. On your head

 * be the consequences if you set this to null!

 */

 public void setErrStream(OutputStream os)

 {

 m_errStream = os;

 if (m_errStream != null)

 m_err = new PrintWriter(m_errStream);

 else

 m_err = null;

 }

183

The log and error methods write String and Exception objects to their respective
OutputStreams. LocalServerManager also provides getLogStream, setLogStream,
getErrorStream, and setErrorStream methods to get and set the log and
error OutputStream objects, so that users within the JVM in which the LocalServ-
erManager is running can redirect output where desired.

 // main not shown here; see LocalServerManager.java for details

Serv-
ffec-

at, as
rmal
e-fly
 how

class,

ve
GJAS

Finally, LocalServerManager provides a main method as a means of using Local
erManager directly from the command line; however, we’ll see later other (more e
tive and/or efficient) ways of kicking off the GJAS backplane.

 // Internal data
 //
 private Dictionary m_servers = new Hashtable();

 private OutputStream m_logStream = null;
 private OutputStream m_errStream = System.err;
 private PrintWriter m_log = null;
 private PrintWriter m_err = new PrintWriter(m_errStream);
}

There’s nothing really earth-shattering about LocalServerManager.java; note th
pointed out in the javadoc class comment block, this implementation uses the no
system ClassLoader to load all Services, so that the dynamic upgrade on-th
approach isn’t possible, since we can’t unload the system ClassLoader. We’ll see
to make use of that later in this chapter.

To go along with the LocalServerManager, listing 7.1 shows LocalServer
some of which we talked about in chapter 4:

/**
 * Server wraps the Service instance, using Future calls to help preser
 * the responsiveness and robustness of the ServerManager.
 */
public class LocalServer
 implements IServer
{
 // Prevent no-arg object instantiation
 //
 private LocalServer()
 {}

 /**
 * Construct a Server around a Service instance.
 */
 public LocalServer(Service svc)
 {
 m_service = svc;
 }

Listing 7.1 Code for LocalServer

ROL

 /**

 * Start the wrapped Service instance. Services have 15 seconds in
 * which to either initialize, or else start a thread to perform the
 * necessary initialization and return. If a Service fails to respond

 * within 15 seconds of the start of its start call, the Server and/or
 * ServerManager are free to destroy it.
 */

 public boolean start(final String[] args)

it

y

);

e

184 CHAPTER 7 CONT

 {
 // We want to fire off a Thread to make the start() call, and wa

 // up to 15 seconds to see if we return. If we don’t by the time
 // the 15 seconds are up, we assume the Service has run off into
 // Limbo and needs to be killed. (Most Services of any complexit

 // will need to fire off their own Thread to do their work, so
 // their start() methods should come back pretty quickly.)
 //

 try
 {
 FutureResult futureResult = new FutureResult();

 Runnable cmd = futureResult.setter(new Callable()
 {
 public Object call()

 {
 try
 {

 m_service.start(args);
 ServerManager.instance().log(
 m_service.getClass().getName() + ": started"

 }
 catch (Exception ex)
 {

 m_exception = ex;
 ServerManager.instance().log(ex);
 }

 return null;
 }
 });

 new ThreadedExecutor().execute(cmd);
 futureResult.timedGet(15*1000);
 // we want to wait 15 seconds, no more.

 return true;
 }
 catch (TimeoutException tEx)

 {
 m_exception = tEx;

 // The Service ran out of time starting up; kill it, note th
 // failure to start, and return
 //

 ServerManager.instance().log(tEx);
 }
 catch (InterruptedException iEx)

185

 {

 m_exception = iEx;

 // For some reason, the thread doing the call failed; note the

 // failure to start, and return
 //
 ServerManager.instance().log(iEx);

 }

kage,
esult
hout
ither

 with
GJAS

 catch (InvocationTargetException itEx)

 {
 m_exception = itEx;

 // Java Reflection failed; note the failure, and return
 //
 ServerManager.instance().log(itEx);

 }
 catch (Exception ex)

 {
 m_exception = ex;

 ServerManager.instance().log(ex);
 }
 return false;

 }

 // stop(), pause(), resume(), getState() and getInstanceID()

 // all are simple variations on start(), above, and are not
 // shown here

 public void kill()
 {

 m_service = null;
 System.gc();
 }

 public Exception getLastError()
 {

 return m_exception;
 }

 // Internal data
 //
 private Service m_service = null;

 private Exception m_exception = null;
}

If you look at the LocalServer.java code in the com.javageeks.gjas pac
you’ll notice that most of the length deals with using Threads (via Lea’s FutureR
class from the Concurrent class library) to isolate the calls into the Service wit
blocking the entire system should the call hang or disappear. Everything else is e
straightforward, or scaffolding to support the Service operations.

At this point, we’ve presented the basic skeleton for a running GJAS system,
one notable exception: we have no Services with which to test it!

ROL

7.1.2 Example: HelloService

We start with the GJAS-equivalent of the canonical first program written for any
new system. HelloService simply writes “Hello, world!” to the console when it is
started (listing 7.2).

Listing 7.2 Code for HelloService
186 CHAPTER 7 CONT

package com.javageeks.gjas.services.sample;

import com.javageeks.gjas.*;

public class HelloService

 implements Service
{
 public HelloService()

 { }

 public void start(String[] args)
 throws Exception
 {

 // We’re starting
 //
 m_state = STARTING;

 // Print out “Hello, world!”

 //
 System.out.println(“Hello, world! –-From, HelloService”);

 // We write the contents of args to the console, one line

 // per element in the array
 //
 for (int i=0; i<args.length; i++)
 System.out.println("\t" + args[i]);

 // We're running
 //
 m_state = RUNNING;
 }

 public void stop()
 throws Exception
 {

 // We're stopping
 //
 m_state = STOPPING;

 System.out.println("HelloService: stop()");

 // We've stopped
 //
 m_state = STOPPED;
 }

 public void pause()
 throws Exception
 {

187

 // We’re pausing

 //

 m_state = PAUSING;

 System.out.println("HelloService: pause()");

 // We’ve paused

 //

, the
 con-
o we
de is

oSer-

ne:
TESTING THE LOCALSERVER IMPLEMENTATION

 m_state = PAUSED;

 }

 public void resume()

 throws Exception

 {

 // We’re resuming

 //

 m_state = RESUMING;

 System.out.println("HelloService: resuming()");

 // We’ve started up again

 //

 m_state = RUNNING;

 }

 public String getState()

 {

 return m_state;

 }

 public String getInstanceID()

 throws Exception

 {

 return getClass() + ":" + "1.0";

 }

 private String m_state = STOPPED;

}

The code is fairly simple—the member m_state holds our current status
method start iterates through the args array, writing each argument to the
sole, and stop, pause, and resume write out a message to the console, just s
know it’s being called correctly, before returning. In fact, the majority of the co
spent shifting the various values of m_state to reflect the status of the Hell
vice instance.

Having written it, we need to test it.

7.2 TESTING THE LOCALSERVER
IMPLEMENTATION

Testing LocalServer is as simple as executing the following from the command li

ROL

C:\> java com.javageeks.gjas.LocalServer
 com.javageeks.gjas.services.samples.HelloService

Tue Jun 01 03:53:19 PDT 1999 [Thread[main,5,main]]:
 Entering LocalServerManager.main()

Tue Jun 01 03:53:20 PDT 1999 [Thread[main,5,main]]:
 Entering ServerManager.addService()

Tue Jun 01 03:53:20 PDT 1999 [Thread[main,5,main]]: Service

ello,

ager
 was
sed

r get

er-

gs)

ss to
er is
ded
r, so
mic
188 CHAPTER 7 CONT

 com.javageeks.gjas.services.samples.HelloService@74ff6010(

 com.javageeks.gjas.services.samples.HelloService

 sun.misc.Launcher$AppClassLoader@85f606f) created

Hello, world! --From, HelloService

Tue Jun 01 03:53:20 PDT 1999 [Thread[Thread-1,5,main]]:
com.javageeks.gjas.services.samples.HelloService: started

Tue Jun 01 03:53:20 PDT 1999 [Thread[main,5,main]]: Service started

Tue Jun 01 03:53:20 PDT 1999 [Thread[main,5,main]]:
 Exiting ServerManager.addService()

Tue Jun 01 03:53:20 PDT 1999 [Thread[main,5,main]]:
 Exiting LocalServerManager.main()

There, right in between all the ServerManager.log() output, is the “H
world!” message from HelloService.

One concern is the ClassLoader report we get from the LocalServerMan
when it adds the Service. In the example, the ClassLoader used to load the Service
a bootstrap (Launcher$sun.misc.AppClassLoader). If the system ClassLoader is u
to load the Service, once the Class is defined within that ClassLoader, it will neve
reloaded if the .class file changes on disk.

The reason for this is obvious, once you look into the ServerManager’s addS
viceFromLocal method:

 public static IServer addServiceFromLocal(String svcName, String[] ar

 {

 try

 {

 Service svc = (Service)Class.forName(svcName).newInstance();

 return addService(svc, args);

 }

 catch (Exception ex)

 {

 error(ex);

 return null;

 }

 }

When the class name is finally determined, we use the forName method of Cla
retrieve the compiled bytecode; as pointed out in chapter 2, if no other ClassLoad
used to load the Class, then forName uses the ClassLoader for the currently loa
class. In this case, the bootstrap ClassLoader was used to load LocalServerManage
it is also used to load the HelloService class. This is bad, since it prevents the dyna
updates mechanism we discussed in chapter 2 from working.

189

For now, this oversight is acceptable, since we now know about it, but solving the
problem is a bit trickier than you might first imagine. For those who can’t wait, how-
ever, change the previous code to read instead:

String loaderDir = System.getProperty("gjas.loaderDir");
if (loaderDir == null)
 LoaderDir = System.getProperty("user.home");

 the
lass-
ss-

vices

ation
RBA
ingle
cess,

e

EXECSERVICE

ClassLoader cl = new FileSystemClassLoader(loaderDir);
Service svc = (Service)cl.loadClass(classname).newInstance();
ServerManager.addService(svc, argsArray);

This code creates a FileSystemClassLoader (from chapter 2) each time to load
requested class from disk, thereby placing each Service instance into its own C
Loader. Make certain you add the appropriate "import com.javageeks.cla
loader.*" statements, too, or the code won’t compile.

Let’s try one more sample service, then move on to more sophisticated Ser
involving the Threading techniques from the last chapter.

7.3 EXECSERVICE

At times, it will be useful to have a Service that merely fires off another applic
when the system is started. (Examples might include the RMI registry, a CO
NamingService daemon, and so on.) ExecService will do just that—accept a s
parameter as its argument, use the Runtime.exec facilities to create the pro
and pipe its output to the console window (listing 7.3).

import java.io.*;

public class ExecService
 implements com.javageeks.gjas.Service
{
 // Internal data
 //
 private String m_state = STOPPED;
 private String m_cmdLine = null;

 public ExecService(String commandLine)
 {
 m_cmdLine = commandLine;
 }

 public void start()
 throws Exception
 {
 // We’re starting
 //
 m_state = STARTING;

 // We expect at least one argument--the text of the command lin
 // to fire off

Listing 7.3 Code for ExecService

ROL

 //

 if (m_cmdLine == null)

 {

 m_state = STOPPED;

 throw new IllegalArgumentException();

 }

 // Start the Process, and capture its output
190 CHAPTER 7 CONT

 //

 Process p = Runtime.getRuntime().exec(m_cmdLine);

 InputStream procOut = p.getInputStream();

 InputStream procErr = p.getErrorStream();

 while (true)

 {

 try

 {

 int exitVal = p.exitValue();

 // If we didn’t throw an exception on that call, then

 // the Process has terminated. Capture what remaining

 // output might be in stdout or stderr, display it,

 // and return

 //

 // Capture and display stderr output

 //

 int errAvail = procErr.available();

 byte[] errBytes = new byte[errAvail];

 int bytesRead = procErr.read(errBytes);

 if (bytesRead > 0)

 {

 String sb = new String(errBytes);

 System.out.print(sb);

 //err.print(sb);

 //err.flush();

 }

 // Capture and display stderr output

 //

 int outAvail = procOut.available();

 byte[] outBytes = new byte[outAvail];

 bytesRead = procOut.read(outBytes);

 if (bytesRead > 0)

 {

 String sb = new String(outBytes);

 System.out.print(sb);

 //err.print(sb);

 //err.flush();

 }

 break;

 }

191

 catch (IllegalThreadStateException ex)

 {

 // Not terminated yet, so display output

 //

 // Capture and display stderr output

 //

 int errAvail = procErr.available();
EXECSERVICE

 byte[] errBytes = new byte[errAvail];

 int bytesRead = procErr.read(errBytes);

 if (bytesRead > 0)

 {

 String sb = new String(errBytes);

 System.out.print(sb);

 //err.print(sb);

 //err.flush();

 }

 // Capture and display stderr output

 //

 int outAvail = procOut.available();

 byte[] outBytes = new byte[outAvail];

 bytesRead = procOut.read(outBytes);

 if (bytesRead > 0)

 {

 String sb = new String(outBytes);

 System.out.print(sb);

 //err.print(sb);

 //err.flush();

 }

 }

 }

 // We’re running

 //

 m_state = RUNNING;

 }

 public void stop()

 throws Exception

 {

 // We’re stopping

 //

 m_state = STOPPING;

 // We’ve stopped

 //

 m_state = STOPPED;

 }

 public void pause()

 throws Exception

 {

 // We’re pausing

ROL

 //
 m_state = PAUSING;

 // We’ve paused
 //
 m_state = PAUSED;
 }
 public void resume()

fact,
me-
hen
s in
1

ject
ture
into
Pro-
 the
cess
cess
ded.
that
ocal

sible
192 CHAPTER 7 CONT

 throws Exception
 {
 // We’re resuming
 //
 m_state = RESUMING;

 // We’ve started up again
 //
 m_state = RUNNING;
 }

 public String getState()
 {
 return m_state;
 }

 public String getInstanceID()
 throws Exception
 {
 return getClass() + ":1.0:" + System.currentTimeMillis();
 }
}

You can see that a majority of it looks like the HelloService we just wrote. In
except for the start method, the two Services are almost identical. This is so
what to be expected, since both are essentially one-shot deals: do your thing w
you start, and spend the rest of the time idling. One noticeable difference come
ExecService’s constructor, which expects the command line to execute on startup.

ExecService’s complexity comes in the start method. We create a Process ob
with the constructor-passed String as our command line to execute. We then cap
the Process’s stdout and stderr (standard output and standard error) streams
java.io.InputStream objects. Next, because we want to reroute the output from the
cess to our console window, we have to poll the Process object for an exit value. If
Process object throws an IllegalThreadStateException, it means the Pro
is still running so we capture the output and echo it to our local console. If the Pro
object honors the exitValue call and returns normally, it means the Process en
So we still have to capture the remaining output, echo it, then quit the loop. Note
while you could capture the Process’s input stream and feed it keystrokes from our l

1 This means that, in order to use ExecService, you have to subclass it; this is obviously not a fea
long-term solution.

193

console window, this system is intended to be running somewhere in a dark closet, with
no user with whom to interact. That also means we should probably capture the output
to someplace other than the console window, but this works for now. We can always
change it later if we feel the need.

By the way, here’s one additional note for users of ExecService on a Win32
(Win95/98/NT) system. If you want to fire off a series of shell commands (like COPY

iring
 Sun

AND
vior,
 with
e cre-
.

most
h to
 into
read

to by

es to
de is
HELLOAGAINSERVICE

or DIR), place the commands in a batch file and fire off the batch file, instead of f
off the command shell with a /C argument and the command to run. Because the
JVM does not deal well with Runtime.exec calls with arguments of “COMM
/C DIR”, you’ll effectively hang the system. If you absolutely had to have this beha
you’d need to modify ExecService to expect the command in an array of Strings,
the command in the args[0] position, and any command-line arguments to th
ated process in args[1] and beyond. That, I leave as an exercise for the reader

7.4 HELLOAGAINSERVICE

Threads can also be applied on an individual Service level. In fact, this is where
of the threading work will occur—Services will want their own thread in whic
run, so as to be 100 percent available, instead of only when ServerManager calls
them. The basic pattern most Services will follow will be to fire off their own th
in start, kill the thread in stop, and have the thread pause itself when told
pause and resume when told to by resume.

HelloAgainService (listing 7.4), like its ancestor, HelloService, simply serv
verify that we can, in fact, do these things within the framework given. The co
as follows:

/**
 * HelloAgainService
 */
public class HelloAgainService
 implements Service, Runnable
{
 // Internal members
 //
 private int m_interval = 5; // in seconds
 private boolean m_paused = false;
 private Thread m_thread = null;
 private String m_message = “Hello, again!”;

 private String m_state = STOPPED;
 private static int s_instanceCt = 0;

 public HelloAgainService()
 {
 m_thread = new Thread(this);
 }

Listing 7.4 Code for HelloAgainService

ROL

 //

 // Service interface methods

 //

 public void start()

 throws Exception

 {

 // We’re starting
194 CHAPTER 7 CONT

 //

 m_state = STARTING;

 // Start our thread

 //

 m_thread.start();

 // We’re running

 //

 m_state = RUNNING;

 }

 public void stop()

 throws Exception

 {

 // We’re stopping

 //

 m_state = STOPPING;

 // Stop our thread

 //

 m_thread.interrupt();

 m_thread.join();

 // Wait for thread to finish, which releases us

 // We’ve stopped

 //

 m_state = STOPPED;

 }

 public void pause()

 throws Exception

 {

 // We’re pausing

 //

 m_state = PAUSING;

 // Set the ’paused’ member to true, which causes the run() loop

 // below to skip its message

 //

 m_paused = true;

 // We’ve paused

 //

 m_state = PAUSED;

 }

 public void resume()

 throws Exception

 {

195

 // We’re resuming
 //

 m_state = RESUMING;

 // Set the ’paused’ member to false, which causes the run()

 // loop below to display its message
 //
 m_paused = false;

ped,
HELLOAGAINSERVICE

 // We’ve started up again
 //
 m_state = RUNNING;
 }

 public String getState()
 {
 return m_state;

 }

 public String getInstanceID()
 throws Exception
 {

 return getClass() + ":1.0:" + System.currentTimeMillis();
 }

 //
 // Runnable interface methods
 //
 /**
 * Method called by Thread.start()

 */
 public void run()
 {
 try
 {

 while (!Thread.currentThread.isInterrupted())
 {
 Thread.sleep(m_interval * 1000);
 if (!m_paused)
 System.out.println(m_message);

 }
 }
 catch (InterruptedException ex)
 {
 System.out.println("Going away now....");

 }
 }
}

Most of the HelloAgainService is scaffolding for the Service as a whole:

• the m_state member to store the Service’s status (started, starting, stop
stopping, and so on)

• the m_paused member to indicate the pause/resume status of the thread

ROL

• start to initialize and start the thread
• stop to interrupt and wait for the thread to die
• pause and resume to set the value of m_paused appropriately

and so forth. This is code that will need to be written for each and every Service that
wants to make use of threads. Being the disciples of object-orientation that we are,
this should raise an immediate red flag.

eads
ome
ow-
y.
196 CHAPTER 7 CONT

7.4.1 ThreadServer

Since this is all the code that any Service that wants to fire off its own worker thr
will need to write, let’s try to create a base class from which we can extend to do s
of this drudgery (listing 7.5). As with any reuse-through-inheritance approach, h
ever, there’s only so much we can do in the base class with any degree of reliabilit

/**
 * ThreadedServer
 */
public abstract class ThreadedServer
 implements Service
{
 // Internal data
 //
 private Thread m_thread = null;
 private Runnable m_runnable = null;
 private String m_state = STOPPED;
 protected boolean m_paused = false;
 protected boolean m_shouldStop = false;

 public void start()
 throws Exception
 {
 // We’re starting
 //
 if (!getState().equals(STARTING))
 setState(STARTING);

 // Start our thread
 //
 if (m_thread == null)
 m_thread = new Thread(new ThreadGroup(this.toString()),
 m_runnable, getClass().getName());
 m_thread.start();

 // We’re running
 //
 setState(RUNNING);
 }
 public void stop()
 throws Exception

Listing 7.5 Code for ThreadServer

197

 {

 // We’re stopping

 //

 if (!getState().equals(STOPPING))

 setState(STOPPING);

 // Sanity-check--did the Thread fail to initialize?

 //

be

in

ack
HELLOAGAINSERVICE

 if (m_thread == null)

 return;

 // First we’ll try the easy way

 //

 m_shouldStop = true;

 // Stop our thread; this assumes that the thread is written to

 // sensitive to interrupts (that is, it checks isInterrupted()

 // a timely fashion). If it doesn’t respond within 10 seconds,

 // notify the system so a user can perhaps kill() it.

 //

 ServerManager.log(

 "Asking thread " + m_thread + " to stop.");

 m_thread.interrupt();

 m_thread.join(10 * 1000);

 // Wait for thread to finish for 10 seconds; if we’re not b

 // by then, we’ll move on

 if (m_thread.isAlive())

 {

 ServerManager.log(

 "ThreadedServer for " + getClass().getName() + ": " +

 "Thread refuses to stop within 10 seconds.");

 return;

 }

 // We’ve stopped

 //

 setState(STOPPED);

 }

 public void kill()

 {

 // Sanity-check--did the Thread fail to initialize?

 //

 if (m_thread == null)

 return;

 // If we tried to stop, or thought we stopped, and the thread

 // is still alive, kill it. Note that this implementation WILL

 // generate deprecation warnings due to the call to stop(); if

 // this bothers you, comment this entire method out.

 if ((getState().equals(STOPPED) && m_thread.isAlive()) ||

 (getState().equals(STOPPING) && m_thread.isAlive()))

 {

 ServerManager.log(

ROL

 "ThreadedServer for " + getClass().getName() + ":" +

 "Calling stop() on Thread.");

 m_thread.stop();

 setState(STOPPED);

 }

 }

 public void pause()
198 CHAPTER 7 CONT

 throws Exception

 {

 // We’re pausing

 //

 if (!getState().equals(PAUSING))

 setState(PAUSING);

 // Sanity-check--did the Thread fail to initialize?

 //

 if (m_thread == null)

 return;

 // Set the ’paused’ member to true

 //

 m_paused = true;

 // If you prefer a more decisive approach, and don’t mind

 // deprecation warnings, then uncomment the following block

 /*

 m_thread.suspend();

 */

 // We’ve paused

 //

 setState(PAUSED);

 }

 public void resume()

 throws Exception

 {

 // We’re resuming

 //

 if (!getState().equals(RESUMING))

 setState(RESUMING);

 // Sanity-check--did the Thread fail to initialize?

 //

 if (m_thread == null)

 return;

 // Set the ’paused’ member to false

 //

 m_paused = false;

 // If you prefer a more decisive approach, and don’t mind

 // deprecation warnings, then uncomment the following block

 /*

 m_thread.resume();

199

 */

 // We’ve started up again

 //

 setState(RESUMING);

 }

 public String getState()
HELLOAGAINSERVICE

 {

 return m_state;

 }

 public void setState(String val)

 {

 m_state = val;

 }

 public String getInstanceID()

 throws Exception

 {

 return getClass() + ":" + "1.0" + ":"

 + System.currentTimeMillis();

 }

 public boolean isPaused()

 {

 return m_paused;

 }

 public boolean shouldStop()

 {

 return m_shouldStop;

 }

 public void setRunnable(Runnable runnable)

 throws IllegalThreadStateException

 {

 if (m_thread != null && m_thread.isAlive())

 throw new IllegalThreadStateException();

 m_runnable = runnable;

 }

 public void setThread(Thread thread)

 throws IllegalThreadStateException

 {

 if (m_thread != null && m_thread.isAlive())

 throw new IllegalThreadStateException();

 m_thread = thread;

 }

 public Thread getThread()

 {

 return m_thread;

 }

}

ROL

A large amount of functionality has been factored back into this abstract base class, but
it’s not quite a cure-all. For example, if a client extends this class, overrides start, but
fails to call up to the ThreadedServer implementation of it, then all bets are off regarding
the state, the thread’s status, and so forth. Additionally, extending this means that a class
can no longer extend any other class, such as RemoteUnicastObject (for RMI servers).

ThreadedServer also provides a number of hooks to allow for customization of its
od,

sub-
n be
 off,
par-
nce.
ead-
200 CHAPTER 7 CONT

threading policy. First, it takes a Runnable instance via its setRunnable meth
meaning that a ThreadedServer could be used on its own (as opposed to being
classed) to provide this separate-thread behavior. Additionally, the Thread itself ca
specified by calling setThread on the ThreadedServer instance and firing that
instead of allowing ThreadedServer to create its own Thread. This can be useful if a
ticular system wants to group all of its Threads under a ThreadGroup, for convenie

To see how to use it, let’s rewrite the HelloAgainService above using the Thr
edServer as a base class:

import com.javageeks.gjas.services.ThreadedServer;

public class OneMoreHelloService extends ThreadedServer

{

 private String m_message = "Hello, once more!";

 private long m_interval = 5;

 public void start()

 throws Exception

 {

 setRunnable(new Runnable()

 {

 public void run()

 {

 try

 {

 while (!Thread.currentThread().isInterrupted())

 {

 Thread.sleep(m_interval * 1000);

 if (!OneMoreHelloService.this.isPaused())

 System.out.println(m_message);

 }

 }

 catch (InterruptedException ex)

 {

 System.out.println("Going away now....");

 }

 }

 });

 super.start();

 }

}

201

Not bad. We’ve managed to cut the code down somewhat significantly. One problem
we still have, however, is that the ServerManager is static and inflexible; we can’t add
new Services after the LocalServerManager has started. Let’s fix that right away.

7.4.2 Example: ConsoleControlService

One thing we’d like to do is be able to control the ServerManager via some mecha-
 sys-
ignal
ave a
HELLOAGAINSERVICE

nism other than a file (listing 7.6). For example, we’d like to be able to bring the
tem down in some kind of ordered, controlled fashion and not via a break s
(CTRL-C/CTRL-D to the console window in NT or UNIX). Since we already h
console window running, why not use it?

/**
 * ConsoleControlService:
 */
public class ConsoleControlService extends ThreadedServer
 implements Runnable
{
 public void start(String[] args)
 throws Exception
 {
 setRunnable(this);

 super.start(args);
 }

 public void run()
 {
 try
 {
 // Set up
 BufferedReader in =
 new BufferedReader(
 new InputStreamReader(System.in));

 System.out.print("ServerManager >");
 for (String line = in.readLine();
 !line.equals("quit");
 line = in.readLine())
 {
 ServerManager.log(this.toString() +
 ": ’" + line + "’");
 if (line.trim().equals("shutdown"))
 {
 ServerManager.shutdown();
 //return;
 }
 else if (line.trim().startsWith("start "))
 {
 // Extract classname

Listing 7.6 Code for ConsoleControlService

ROL

 String currentLine =

 line.substring(6, line.length());

 if (currentLine.indexOf(" ") < 0)

 {

 // Classname appeared by itself, so there are

 // no additional args to parse

 String classname = currentLine;

202 CHAPTER 7 CONT

 ServerManager.log(

 "ConsoleControlService.run(): " +

 "Calling ServerManager.addService(" +

 classname + ", null)");

 ServerManager.addService(

 classname, null);

 }

 else

 {

 ServerManager.log(

 "ConsoleControlService.run: " +

 "Any service started by the this service "+

 "cannot have args; sorry.");

 }

 }

 else if (line.trim().startsWith("list"))

 {

 String[] svcs =

 ServerManager.getServices();

 System.out.println("Services: {");

 for (int i=0; i<svcs.length; i++)

 System.out.println(" " + svcs[i]);

 System.out.println("}");

 }

 else if (line.trim().startsWith("remove "))

 {

 // Parse argument, confirm removal,

 // call ServerManager.removeService()

 }

 else if (line.trim().startsWith("threads"))

 {

 // List all threads running in the JVM

 //

 // Find the ultimate ThreadGroup parent

 ThreadGroup ancestor =

 Thread.currentThread().getThreadGroup();

 while (ancestor.getParent() != null)

 ancestor = ancestor.getParent();

 // List all threads

 int ct = ancestor.activeCount();

 ct += ct/2;

 Thread[] array = new Thread[ct];

203

 ancestor.enumerate(array, true);

 for (int i=0; i<array.length; i++)

 {

 if (array[i] != null)

 {

 System.out.println(array[i].toString());

 }

ad of
sole-
ually
ion.

ead.
nters
ne is
pro-

s the
st"

 and
g

stead
com-
, and
ly, in
e the

Con-
g the
HELLOAGAINSERVICE

 }

 }

 else

 {

 System.out.println("Unrecognized command: " +

 line);

 }

 System.out.print("ServerManager >");

 }

 }

 catch (java.io.IOException IOEx)

 { }

 }

}

Here we see a slightly different approach from the previous HelloAgainService; inste
creating an anonymous Runnable class and passing that into setRunnable, Con
ControlService implements Runnable and passes in this. Either way works eq
well, but this approach seems more clear when run gets more complex, in my opin

Going over the code in detail, we find:

• start calls setRunnable(this), then calls up the chain to start the thr
• run creates a BufferedReader around the InputStream System.in, then e

an infinite for loop, reading input from the console window. As each li
entered, run checks to see if it recognizes the first word, and if so, takes ap
priate action. shutdown calls ServerManager.shutdown. "start" take
class name to instantiate and feeds it to ServerManager.addService. "li
writes out a list of each Service currently executing within the system,
"threads" lists all the threads (including system threads) currently runnin

Why not have ServerManager itself read and write to the console window, in
of a Service? Principally, because it helps encourage modularization between the
ponents in the system. ServerManager is responsible only for managing Servers
not the console window. It also validates the idea (which we’ll explore more ful
subsequent chapters) that controlling the ServerManager can be done from outsid
ServerManager itself.

One quirk of having this console control as a Service is that because Console
trolService is a user thread, calling ServerManager.shutdown doesn’t brin

ROL

system down completely, because ConsoleControlService is still running.2 In order to
bring it down completely, you must first issue a shutdown command, followed by a
quit to exit the ConsoleControlService run loop. This gives the administrator the
opportunity to verify that the Services running have completely shut down (or not).

The easiest way to terminate ConsoleControlService during shutdown is to cre-
ate a daemon thread to do the input, and have the ConsoleCreateService thread wait

urs,
on

ther
e to

ead-

op.
204 CHAPTER 7 CONT

to be interrupted, or to have the daemon thread exit. Once either condition occ
it can exit cleanly. You could set the ConsoleCreateService thread itself to be a daem
thread, without adding the second thread, but this means that the second the o
user threads exit, the JVM terminates without even the kindness of a final messag
the console screen.

The solution, of course, is to use two threads: the one spun off for us by Thr
edServer, and a daemon thread to do the actual work. (Listing 7.7).

class ConsoleThread extends Thread
{
 public ConsoleThread()
 {
 setDaemon(true);
 }

 public void run()
 {
 try
 {
 // Set up
 BufferedReader in =
 new BufferedReader(
 new InputStreamReader(System.in));

 System.out.print("ServerManager >");
 for (String line = in.readLine();
 !line.equals("quit");
 line = in.readLine())
 {
 ServerManager.log(this.toString() +
 ": ’" + line + "’");
 if (line.trim().equals("shutdown"))

 {
 ServerManager.shutdown();
 //return;
 }
 else if (line.trim().startsWith("start "))
 {
 // Extract classname

2 Calling interrupt on the thread doesn’t break it out of the readLine call in the top of the lo

Listing 7.7 Code to terminate ConsoleControlService

205

 String currentLine =
 line.substring(6, line.length());

 if (currentLine.indexOf(" ") < 0)
 {
 // Classname appeared by itself, so there are
 // no additional args to parse
 String classname = currentLine;

HELLOAGAINSERVICE

 ServerManager.log(
 "ConsoleControlService.run(): " +
 "Calling ServerManager.addService(" +

 classname + ", null)");
 ServerManager.addService(
 classname, null);
 }
 else

 {
 ServerManager.log(
 "ConsoleControlService.run: " +
 "Any service started by the this service "+
 "cannot have args; sorry.");
 }

 }
 else if (line.trim().startsWith("list"))
 {
 String[] svcs =
 ServerManager.getServices();

 System.out.println("Services: {");
 for (int i=0; i<svcs.length; i++)
 System.out.println(" " + svcs[i]);
 System.out.println("}");

 }
 else if (line.trim().startsWith("remove "))
 {
 // Parse argument, confirm removal,
 // call ServerManager.removeService()
 }

 else if (line.trim().startsWith("threads"))
 {
 // List all threads running in the JVM
 //

 // Find the ultimate ThreadGroup parent
 ThreadGroup ancestor =
 Thread.currentThread().getThreadGroup();
 while (ancestor.getParent() != null)

 ancestor = ancestor.getParent();

 // List all threads
 int ct = ancestor.activeCount();
 ct += ct/2;
 Thread[] array = new Thread[ct];
 ancestor.enumerate(array, true);

ROL

 for (int i=0; i<array.length; i++)

 {

 if (array[i] != null)

 {

 System.out.println(array[i].toString());

 }

 }

 }
206 CHAPTER 7 CONT

 else

 {

 System.out.println("Unrecognized command: " +

 line);

 }

 System.out.print("ServerManager >");

 }

 }

 catch (java.io.IOException IOEx)

 { }

 }

}

/**

 * ConsoleControlService:

 */

public class ConsoleControlService extends ThreadedServer

 implements Runnable

{

 public void start()

 throws Exception

 {

 setRunnable(this);

 super.start();

 }

 public void run()

 {

 ConsoleThread t = new ConsoleThread();

 t.start();

 try

 {

 // Block until the console is closed

 t.join();

 }

 catch (InterruptedException intEx)

 {

 // Do nothing but return

 return;

 }

 }

}

207

Not bad at all. We now have some black-box reusable code to do independently
threaded Services, and we have a console by which we can control the ServerManager
to load, unload, or list Services.

Now, however, let’s move on from Service implementations, and look at a more
interesting—and useful—IServerManager implementation.
HELLOAGAINSERVICE

C H A P T E R 8

Remote control

8.1 RMI implementation 209
8.2 Other implementations 218
8.3 Necessary improvements 219
8.4 Additional reading 224
loy-
om
the
 or
hat
Remember, one of our goals with all this was zero administration and/or zero dep
ment. One of the facets of zero administration is the ability to control the server fr
anyplace—not just sitting in front of the machine running the server, but from
administrator’s cubicle, the administrator’s house, even the administrator’s PDA
laptop, using a cellular link. This sort of remote control normally isn’t something t

a developer would build into a custom server application, but since we’re building a

 if it’s

 in a
use a
rator
ow-

e call

gy. It
 one
alled

sends
208

generic server backplane, and since all applications will inherit this functionality
there, it’s worth the effort.

In this particular case, we can provide generic remote control functionality
variety of ways. In the next chapter, we’ll see a SocketControlService that will
standard socket to present a text-based menu of options and allow an administ
to use a command line socket client to connect and drive the server remotely. H
ever, we can get even more sophisticated than that, using Java’s remote procedur
technology, RMI.

RMI, contrary to most peoples’ beliefs, is not a distributed object technolo
doesn’t really know anything about objects at all. Instead, RMI is about allowing
JVM to make remote method calls on an object living within another. The c
object unpacks the arguments, performs the request, marshals up the result, and

209

the result back over the socket. This is the same behavior provided by older RPC tech-
nologies, such as ONC RPC and Microsoft/DCE RPC.

Due to RMI’s omnipresent nature within Java, however, it’s an ideal means for
“remote-izing” (for lack of a better word) the ServerManager. Essentially, we’ll make
the ServerManager system RMI-capable by creating a remote interface with a concrete
implementation that in turn wraps an instance of LocalServerManager to do the real

ager

bject
er-
 the

ctual
ods,
 not

se to
roxy

other
ISer-
rsion
is is
RMI IMPLEMENTATION

work. We’ll also have to create a local proxy to the RMI-exported ServerMan
instance. (Figure 8.1).

As you can see, the RMIServerManagerServer instance is the actual RMI-server o
to which instances of RMIServerManager will connect. Using the IRemoteServ
Manager interface, RMIServerManager clients can perform the same calls on
remote ServerManager as they could on a local one. What’s more, because the a
IServerManager instance is buried beneath the ServerManager.java static meth
any Services or other code that reference the IServerManager Singleton do
even know they’re talking to a remote instance.

8.1 RMI IMPLEMENTATION

RMIServerManager, the implementation of IServerManager that clients will u
call upon a remote IServerManager instance, is essentially an exercise in the P
design pattern.

The pattern’s intent is to provide a surrogate or placeholder with which an
object can control access to it. Things get tricky when we do this; we want the
verManager-implementing instance to be in the client JVM, so the server ve
doesn’t necessarily have to conform to the IServerManager interface. Th

Figure 8.1 RMIServerManager and RMIServerManagerServer

ROL

because the server version will provide its own Remote-extending interface that pro-
vides the same behavior as the IServerManager interface.

We start by examining the IRemoteServerManager interface (listing 8.1). It’s
more than just the IServerManager interface, since it also exposes the methods for
IServer-implementing classes, as well; the reason for this will become clear a bit later
in this section.
210 CHAPTER 8 REMOTE CONT

public interface IRemoteServerManager

 extends java.rmi.Remote

{

 //===

 // These methods provide surrogate access for ServerManager

 // functionality

 public void remoteShutdown()

 throws RemoteException;

 public IServer remoteAddService(Service svc, String[] args)

 throws RemoteException;

 public void remoteRemoveService(String instanceID)

 throws RemoteException;

 public void remoteKillService(String instanceID)

 throws RemoteException;

 public String[] remoteGetServices()

 throws RemoteException;

 public IServer remoteGetService(String instanceID)

 throws RemoteException;

 public void remoteDeployService(String serviceName,

 ClassLoaderStrategy strategy)

 public IServer remoteAddService(String svcName,

 String[] args)

 throws RemoteException;

 public void remoteLog(String msg)

 throws RemoteException;

 public void remoteLog(Exception ex)

 throws RemoteException;

 public void remoteError(String msg)

 throws RemoteException;

 public void remoteError(Exception ex)

 throws RemoteException;

 //===

 // These methods provide access for IServer

 // functionality

 public boolean start(long ID, String[] args)

 throws RemoteException;

 public boolean stop(long ID)

 throws RemoteException;

 public boolean pause(long ID)

Listing 8.1 Code for IRemoteServerManager interface

211

 throws RemoteException;

 public boolean resume(long ID)

 throws RemoteException;

 public void kill(long ID)

 throws RemoteException;

 public String getState(long ID)

 throws RemoteException;

ovide
hods

labil-
ndis-
bject
 due
eters

rt an
erver
 per-
ISer-
t, the
st of

e, we
erver
erver
erver

an-
er to
top
 the

ocket.
RMI IMPLEMENTATION

 public String getInstanceID(long ID)

 throws RemoteException;

 public Exception getLastError(long ID)

 throws RemoteException;

 public static final String RMI_LOOKUPNAME =

 "javageeks.com/RMIServerManager:1.0.0";

}

Observant readers will notice that not only does IRemoteServerManager pr
remote versions of all the IServerManager methods, but also the IServer met
with an added ID parameter. What gives?

One principal problem with many distributed object systems is that of sca
ity—as an object system grows, objects tend to call between each other in an i
criminate fashion. This is fine within a local machine, but should a distributed o
system attempt to mimic this behavior, the object system will quickly bog down
to the high overhead of network traffic and marshaling/unmarshaling of param
on both sides of the call.

A naïve implementation of the RMIServer class would create and expo
instance of an RMIServerServer object, to correspond directly with the RMIS
object handed back to the client from an addService call. Unfortunately, 99.9
cent of the IServer’s lifetime is spent doing nothing. Most clients hold on to the
ver return value for potential use in the future, not constant use now. As a resul
server has now spent valuable resources1 to provide an object that will spend mo
its time doing nothing.

Instead, within the RMI ServerManager implementation we’re building her
have the server export only a single object—the RMIRemoteServerManagerS
(which we haven’t seen yet), and that object provides both ServerManager and S
services. The RMIRemoteServerManagerServer maintains a collection of RMIS
instances, identified by numeric IDs, and they know about the RMIServerM
agerServer instance and its specific ID number. Thus, an attempt by an RMIServ
stop its wrapped Service turns into a call into the RMIServerManagerServer’s s
method with an ID parameter of 5, or whatever corresponds to the ID within
RMIServer instance on the client.

1 The most expensive of which is the memory for the object and the CPU cycles to listen on the active s

ROL

This is a clear violation of the object’s know-how to perform its own behavior’s
principle, which object purists will argue, violates encapsulation. I won’t argue any of
these points, except to say that at times, object purism must be sacrificed on the altar
of actual usability. It’s a sad fact that what usually works out better for the user, is
harder for the developer to do.

Within the RMIServerManagerServer code (which is far too long to be displayed
ager

ce as
value
ISer-
erver
lient

gn

will

r

to

cur.

ry

,

296)

 136

rs,
212 CHAPTER 8 REMOTE CONT

here), we wrap an instance of the LocalServerManager to do the actual ServerMan
work, and we wrap and “remote-ize” access to this LocalServerManager instan
appropriate. For example, the RMIServerManagerServer takes the IServer return
from the LocalServerManager’s addService call, puts the IServer into the RM
verManagerServer’s HashMap of Server instances, and hands back an RMIS
instance (which is fully Serializable, and so doesn’t need to be exported to the c
according to the rules of RMI):

public class RMIServerManagerServer extends UnicastRemoteObject

 implements IRemoteServerManager

{

 // . . .

 /**

 * Add the loaded Service to the list of Servers and start it.

 * We throw away the return value from the LocalServerManager call

 * (the LocalServer instance) because we need to construct an

 * RMIServer instance to give back to the RMI caller.

 */

 public IServer remoteAddService(Service svc, String[] args)

 throws RemoteException

 {

 // Do the normal addService thing

 IServer svr = m_serverMgr.addService(svc, args);

 // Create our RMI Proxy

 long ID = m_serverCt++;

 RMIServer rmiSvr = new RMIServer(this, ID);

 m_serverMap.put(Long.toString(ID), svr);

 // Careful readers will note that this has an inherent desi

 // flaw; when we get above the maximum count of a long, we

 // wrap around, with the possibility that an existing Serve

 // could be overwritten! However, my experience has led me

 // believe that very rarely, if ever, will this actually oc

 // Consider the mathematics--if a new Server were added eve

 // second, it would take 2^64 seconds before overlap occurs

 // and the human civilization hasn’t been in existence that

 // long! Consider the mathematics: 2^32 seconds (4,234,967,

 // is 71582788 minutes, or 1193046 hours or 49,710 days, or

 // years! And Java uses 64-bit long types, which is 136 yea

 // squared, or roughly 18,500 years!

 return rmiSvr;

 }

213

 // . . .

 // Internal data

 //

 private LocalServerManager m_serverMgr;

 private long m_serverCt = 0;

 private HashMap m_serverMap = new HashMap();

}

opri-
tored

code,
s our
want

an-
ck of

an-
ses in
RMI IMPLEMENTATION

Correspondingly, when a call comes in from a remote RMIServer, with the appr
ate ID, we need to forward the call on to the appropriate local IServer instance s
within that map of Servers:

public class RMIServerManagerServer extends UnicastRemoteObject

 implements IRemoteServerManager

{

 // . . .

 /**

 *

 */

 public boolean start(long ID, String[] args)

 throws RemoteException

 {

 IServer svr = (IServer)m_serverMap.get(Long.toString(ID));

 return svr.start(args);

 }

 // . . .

}

Notice how we don’t specify that we’re using a LocalServer class within the start
even though we know that we’re using a LocalServerManager implementation a
ServerManager. We do this deliberately, because we never know when we may
RMIServerManagerServer to instead wrap an instance of another type of IServerM
ager. In fact, the entire RMIServerManagerServer class is built around this la
knowledge of the actual IServerManager it is “remote-izing”; the RMIServerM
agerServer constructor sets the IServerManager it wraps, and its main method pas
the LocalServerManager instance it will use by default:

public class RMIServerManagerServer extends UnicastRemoteObject

 implements IRemoteServerManager

{

 public RMIServerManagerServer(IServerManager svrMgr)

 throws RemoteException

 {

 m_serverMgr = svrMgr;

 }

 // . . .

 public static void main (String args[])

 throws Exception

ROL

 {

 // Create an instance of RMIServerManagerServer

 RMIServerManagerServer svr =
 new RMIServerManagerServer(new LocalServerManager());

 // Bind & export it

 Naming.bind(IRemoteServerManager.RMI_LOOKUPNAME, svr);

 svr.remoteLog("RMIServerManagerServer bound to registry");

an-
other

 pro-
an-

ME);

f the
f the
ange
ovid-
f the
rned,
214 CHAPTER 8 REMOTE CONT

 }

}

Because we maintain the encapsulation that IServerManager offers, RMIServerM
agerServer can in turn wrap any other type IServerManager instance, even an
RMIServerManager/RMIServerManagerServer pair.

It’s somewhat anticlimactic by this point, but the RMIServerManager class
vides the client-side shim code that forwards the request on to the RMIServerM
agerServer instance exported on the server:

public class RMIServerManager

 implements IServerManager

{

 // Internal data
 //

 IRemoteServerManager m_rmiSvrMgr;

 public RMIServerManager(String host)

 throws Exception
 {

 // Set up ServerManager Singleton

 ServerManager.instance(this);

 // Connect to server; throw RuntimeException if that fails
 //System.out.println("In RMIServerManager--attempting lookup");

 IRemoteServerManager remoteSvrMgr =

 (IRemoteServerManager)Naming.lookup(

 "rmi://" + host + "/" + IRemoteServerManager.RMI_LOOKUPNA
 //System.out.println("In RMIServerManager--lookup complete");

 m_rmiSvrMgr = remoteSvrMgr;

 }

We do the classic RMI thing in the constructor by taking a String parameter o
host name to contact, and attempt to find it via the RMI lookup method o
Naming class, passing in the RMI URL. This particular sequence of steps may ch
in the very, very near future. JNDI is fast becoming the Java-approved way of pr
ing exported-name services, such as that provided by the RMI Naming class. I
lookup call fails, we’re in deep trouble as far as the RMIServerManager is conce
so we make no pretense at hiding it. We throw the Exception back to the caller.

 public void shutdown()

 {
 try

 {

215

 m_rmiSvrMgr.remoteShutdown();

 }

 catch (java.rmi.RemoteException remoteEx)

 {

 throw new RuntimeException(remoteEx.toString());

 }

 }

hich,
rver-
if we
t it;
ime-

ately,
f the
RMI
f its
face,
tion

o the
ng.
VMs;
n Ol’
s the

rvers,
ique,
, too?
uni-
on’t
t the
ether
RMI IMPLEMENTATION

 public IServer addService(Service svc, String[] args)

 {

 try

 {

 return m_rmiSvrMgr.remoteAddService(svc, args);

 }

 catch (java.rmi.RemoteException remoteEx)

 {

 throw new RuntimeException(remoteEx.toString());

 }

 }

 // . . . (Other methods omitted for brevity)

Notice how all the IServerManager-inherited methods (only one of w
addService, is listed here) simply forward the request on to the IRemoteSe
Manager instance we got back in the constructor. Notice, in particular, that
catch a RemoteException from the client, we don’t really do anything abou
instead, I package up the RemoteException’s message into an instance of Runt
Exception, and throw that back out.

This is another point of personal preference and coding style. Unfortun
java.rmi.RemoteException extends the standard Java Exception class, instead o
RuntimeException class, which means that any method that wants to call an
method must either catch the RemoteException type, or declare it as part o
throws clause. Doing the latter, unfortunately, breaks the IServerManager inter
since Java (correctly) doesn’t allow inherited methods to throw differing excep
types. The first reaction might be, then, to simply add throws RemoteException t
methods declared in IServerManager; unfortunately, this would be flat-out wro

Remember, RMI is simply one method of making objects distributable across J
in addition to RMI, we have the option of using JMS, CORBA, or even POS (Plai
Sockets) as a middleware alternative. Declaring the IServerManager interface expose
fact that we use RMI under the hood, and plainly breaks encapsulation. CORBA se
for example, do not throw java.rmi.RemoteExceptions, but their own, un
exception types. Should we declare IServerManager to throw those exception types

Declaring the base interface (IServerManager) to throw any type of comm
cations-protocol exception forces clients to handle exceptions that they really d
care about. The client using IServerManager doesn’t care, and needn’t know, tha
ServerManager in question is over a TCP/IP wire; all the client cares about is wh
or not the request succeeded.

ROL

Let’s continue looking at code.

 public static void main (String args[])
 throws Exception
 {
 if (args.length < 1)
 {
 System.out.println("Usage: java RMIServerManager <hostname>");

;

216 CHAPTER 8 REMOTE CONT

 return;
 }

 // Create (and register) the RMIServerManager
 new RMIServerManager(args[0]);

 ServerManager.log("Entering RMIServerManager.main()");

 // Parse command-line arguments, if any
 //
 for (int argc=1; argc < args.length; argc++)
 {
 if (args[argc].startsWith("@"))
 {
 // The "@" argument indicates the file we should
 // parse for services to execute
 try
 {
 String arg = args[argc];
 String filename =
 arg.substring(arg.indexOf("@")+1, arg.length())
 FileInputStream fis =
 new FileInputStream(filename);
 ServerManager.parseInputStream(fis);
 }
 catch (Exception ex)
 {
 // Ignore it and move on

 ex.printStackTrace();
 }
 }
 else if ("TEST".equals(args[argc]))
 {
 // Deploy a Service, then try to add it.
 try
 {
 // Look for "TestService.class" in the current
 // directory
 String filename = "TestService.class";
 java.io.FileInputStream fis =
 new java.io.FileInputStream(filename);

 byte[] bytes = new byte[fis.available()];
 fis.read(bytes);

 // Create a HashtableClassLoader

217

 com.javageeks.classloader.HashtableClassLoader

 hcl = new HashtableClassLoader();
 hcl.putClass("TestService", bytes);

 // Deploy it

 ServerManager.deployService("TestService", hcl);

 // Now add the Service

argu-
e file
uick

ould
 call;
n the
ity to
e the
ither

 case,

ome-
reate
s the
hen,
RMI IMPLEMENTATION

 IServer svr =
 ServerManager.addService("TestService",

 new String[0]);
 if (svr == null)

 {

 System.out.println("Test failed!");
 }

 }
 catch (Exception ex)

 {

 ex.printStackTrace();
 }

 }
 else

 {
 ServerManager.parseArg(args[argc]);

 }

 }

 ServerManager.log("Exiting RMIServerManager.main()");
 }

}

The main method looks fairly straightforward—if "TEST" is not present as an
ment, do much the same thing as we did in LocalServerManager: parse th
behind the "@" character, and load those services. If "TEST" is present, do a q
check to ensure that everything works the way it should, and exit.

8.1.1 Analysis

Let’s talk more about the RMI-to-IServerManager adapter methods. Ideally, we sh
do something more intelligent with the error condition returned from the RMI
however, knowing what to do is highly dependent on knowing what’s wrong i
first place. Even then, having that knowledge doesn’t immediately lead to the abil
affect the outcome. If, for example, the RemoteException was thrown becaus
server instance can’t be found on the remote machine, it’s a good indicator that e
the machine isn’t available, or the server process isn’t up and running. In either
there’s nothing that a client can do about it except exit and try again.

For those developers who believe that the client can and should do s
thing about the situation, one approach to solve this problem would be to c
a NestedRuntimeException class that extends RuntimeException, and hold
actual Exception thrown as a parameter within the NestedRuntimeException. T

ROL

within the catch block of these methods, instead of throwing a RuntimeException,
the RMIServerManager can throw a NestedRuntimeException, with the RemoteEx-
ception passed in. Then, on the client side, the client can catch NestedRuntimeEx-
ceptions, inspect the nested Exception, and decide what action to take from there.

In this case, more work needs to be done within the try/catch block of
RMIServerManager. For example, in the current implementation, RMIServerMan-

ance
on it
ll try

 pro-
 the

pt to
ithin
ds to
if it’s
wn.
y are
r, as
 user
gain,

stent,
ISer-
ote-
ther

those
RMI,
 that

e will
nges,

nol-
with-
r sys-
t acts
xy to
er, a
218 CHAPTER 8 REMOTE CONT

ager assumes an optimisitic attitude, and attempts to call on the server inst
regardless of what went on before. If the client catches the RuntimeExcepti
threw because the server wasn’t there a few seconds ago, it doesn’t care—it wi
again when called to do so.

This overly optimistic approach needs to be rethought when attempting to
vide the client with more intelligence regarding remote operations—should
RMIServerManager zero out the IRemoteServerManager instance and attem
reconnect via another call to lookup? Possibly, but this means more work w
RMIServerManager’s try/catch blocks, since now the RMIServerManager nee
test the IRemoteServerManager instance on each call and attempt the lookup
null, and set the instance to null in the event of a RemoteException being thro

All in all, it’s been my experience that problems with remote connectivit
often not correctable by the client, and can only be communicated to the use
opposed to being fixed within the client application. Usually this consists of the
either reattempting the connection, perhaps by firing up the client application a
or else contacting Tech Support to find out why the server is down.

What is of more importance to the enterprise developer is maintaining a consi
location-transparent and protocol-independent interface for interacting with the
verManager; for that reason, GJAS encapsulates away the knowledge of any Rem
Exception (or other protocol-specific error type) and keeps its interface pure. O
developers or development shops may disagree with this approach, especially
which have already standardized on their middleware protocol (sockets, CORBA,
and so forth). This is fine, so long as the full import of that decision is realized, in
making that middleware protocol visible to the client in turn means that the cod
require major reconstructive surgery if and when that middleware decision cha
as it is likely to do.

8.2 OTHER IMPLEMENTATIONS

RMI is not, by any stretch of the imagination, the only remote-method-call tech
ogy available to Java. For starters, there are CORBA, JMS, and straight Sockets-
Serialization. Any of these could be adapted to “remote-ize” the ServerManage
tem in the same way. By creating an IServerManager-implementing subclass tha
as a proxy to the appropriate server object (as RMIServerManager serves as a pro
the RMIServerManagerServer), you could easily create a CORBAServerManag
JMSServerManager, a SocketServerManager, and so on.

219

Further, we don’t have to stop with just those technologies available to Java. By
using JNI, as shown in chapter 16, we can make C++-only middleware technologies
available to us, as well—Microsoft named pipes, UNIX shared memory, even MacOS’s
AppleEvents. If it’s a remote-capable technology, we can make it available to us as a
means of controlling or participating in the ServerManager from anywhere.

cov-
assed
if the
xcep-
code
 pro-
ebase
s—if
eeds
rver,

latest

es—
here
pro-
is an
iting
here
 web
 RMI

iding
 code
TTP

ning
hink-
r will
 pre-
der a
ilities
r, the
ding
NECESSARY IMPROVEMENTS

8.3 NECESSARY IMPROVEMENTS

Unfortunately, making the ServerManager remote capable exposes the flaw we un
ered earlier, but in a worse way. Right now, when a Service is serialized and p
“over the wire” to the RMIServerManagerServer in the addService method,
class isn’t known on the other side, the RMIServerManagerServer will throw an e
tion and refuse to bring in the class. Normally, RMI downloads unfamiliar
through its annotated codebase URL property—a URL which is provided by the
grammer as a URL to contact for .class files and the like if the RMI server’s cod
doesn’t already have the code. This is what provides RMI’s thin-client capabilitie
it doesn’t have the code locally, it’ll connect to the URL, ask for the .class code it n
and use that. As soon as a developer or administrator updates the code on the se
the next time the client connects to the RMI server, it automatically retrieves the
version of the code. Zero deployment has never been easier.

It might seem, at first, that we can simply make use of this approach ourselv
we provide the RMI system with an annotated codebase, and it should all work. T
are a number of problems with this thinking. To start, RMI expects to use the ap
priate protocol to contact the annotated codebase URL; that means if the URL
http: protocol URL, then RMI will expect to have a web server on the other end wa
to receive HTTP requests. When we’re in the standard client/server approach, w
the client is requesting the new code of the server, this is trivial. Either a simple
server can rest on the RMI server machine to dispense the necessary code, or, if the
client is an applet, the applet’s web host can act as the RMI class host, as well.

This would mean that, since in our case it’s the client, not the server, prov
the code, we’d need to have an HTTP server running on the client to provide the
desired. This isn’t a major problem. In chapter 9, we’ll see how we can create an H
server in about 400 lines of code, since we’d just open a socket on the client, liste
for requests from the server on the usual port (80). The problem with this line of t
ing, however, is that the client isn’t going to remain alive forever, and the serve
need that code in a completely nondeterministic way; we have no way of knowing
cisely when or how often those code requests will come in. For example, consi
hypothetical Service we call AService. As part of its duties, AService uses the BUt
class to do its work. When we send the AService class over the wire to the serve
server will immediately request the BUtilities code as part of its normal ClassLoa
mechanism. This is all well and good.

ROL

But if the AService class doesn’t directly refer to the BUtilities code, but instead
loads the BUtilities class by name, we have a problem. When AService is serialized and
sent over, BUtilities won’t go with it; it’s not directly referred to anywhere within
AService. The only time BUtilities will be requested of the client is when AService
actually executes the code that loads the BUtilities class by name, and that could con-
ceivably be hours, days, weeks, or months after the client initially uploads the Service.

inary
nism
 exe-

ter 2
ed to

an-
 sys-

 as a
ed to
ce to
cond
 Ser-

y the
rver-

act as
rver-
rver-

ers to

com-
220 CHAPTER 8 REMOTE CONT

By that time, the client that originally provided the Service will be long gone.
What we need is to provide a way for clients to either provide the code, in b

form, for the ServerManager to use when and how it needs it, or provide a mecha
by which the ServerManager can obtain the code it needs to finish the loading and
cuting of the Service. We can provide both in one mechanism.

To do this, we add two new methods to the IServerManager interface:

public interface IServerManager

{

 // . . . (as before)

 public void deployService(String serviceName,

 ClassLoaderStrategy strategy);

 public IServer addService(String svcName, String[] args);

}

The first, deployService, takes a ClassLoaderStrategy instance from chap
and a name of a Service to bind it to. This way, when the ServerManager is ask
load the Service whose name is the same as the serviceName parameter, IServerM
ager can use the ClassLoaderStrategy to load the Service instance, instead of the
tem ClassLoader. But since addService currently takes a Service instance
parameter (implying that the class has already been loaded and resolved), we ne
add an overloaded version of addService that takes the name of the Servi
load, so that the ServerManager can do the loading instead of the client. This se
version of addService will be the more popular method to use to add a new
vice, since it requires less work on the part of the client.

Now that we’ve modified the base interface, of course, we need to modif
classes that implement it. In turn, we’ll have to modify the classes that support the Se
Manager system (thinking specifically of ServerManager.java), as well as any that
Proxies to the ServerManager instance (such as IRemoteServerManager, RMISe
Manager, and RMIServerManagerServer). We’ll go over the details of the LocalSe
Manager implementation, but I’ll leave it to the reader to follow up with the oth
see how it’s done there.

LocalServerManager only needs to add the two new methods to become
pletely compliant. Their implementation is as follows:

public class LocalServerManager

 implements IServerManager

{

 // . . . (As before)

221

 /**

 * Place a ClassLoaderStrategy into the service-loaders map,

 * so subsequent addService() calls can use the loader to

 * retrieve the necessary code.

 */

 public void deployService(String serviceName,

 ClassLoaderStrategy strategy)

 {
NECESSARY IMPROVEMENTS

 log("Entering ServerManager.deployService");

 m_serviceLoaders.put(serviceName, strategy);

 log("Exiting ServerManager.deployService");

 }

 /**

 * Add a Service by name; this presumes that the Service has

 * already been deployed to this ServerManager via the

 * deployService method.

 */

 public IServer addService(String svcName, String[] args)

 {

 try

 {

 log("Entering ServerManager.addService(String, String[])");

 // Get the ClassLoaderStrategy corresponding to the

 // service name

 ClassLoaderStrategy strat =

 (ClassLoaderStrategy)m_serviceLoaders.get(svcName);

 if (strat == null)

 {

 return null;

 }

 StrategyClassLoader scl =

 new StrategyClassLoader(strat);

 Service svc =

 (Service)scl.loadClass(svcName).newInstance();

 return addService(svc, args);

 }

 catch (Exception ex)

 {

 error(ex);

 return null;

 }

 finally

 {

 log("Exiting ServerManager.addService(String, String[])");

 }

 }

 // Internal data

 //

 // . . . (as before)

ROL

 private HashMap m_serviceLoaders = new HashMap();

}

Notice how the concepts from the ClassLoaders chapter are coming together here to
give us an unparalleled amount of flexibility. For example, we can specify that the
ServerManager is to load the Service from a relational database by using the JDBC-
ClassLoader we’ll write later:

e the
r.
, for
hich

ng of
 any-
ager

r and

able-
 into
ere’s
ps-I-
, cre-
rsive
222 CHAPTER 8 REMOTE CONT

ClassLoaderStrategy strat =

 new JDBCClassLoader(/* details omitted */);

ServerManager.deployService(“MyService”, strat);

// . . .

ServerManager.addService(“MyService”);

Now, when the ServerManager wants to load the MyService class, it will us
ClassLoaderStrategy instance strat, which happens to be our JDBCClassLoade

Remember, our requirement was twofold: provide the code, in binary form
the ServerManager to use when and how it needs it, or provide a mechanism by w
the ServerManager can obtain the code it needs to finish the loading and executi
the Service. We’ve got the second part down cold. We can load the code from
where we choose, when we choose, and how we choose, by giving the ServerMan
the ClassLoaderStrategy we want it to use.

We can achieve the first by loading all the code into a HashtableClassLoade
handing that to the ServerManager to use for our particular Service:

String filename = "TestService.class";

java.io.FileInputStream fis =

 new java.io.FileInputStream(filename);

byte[] bytes = new byte[fis.available()];

fis.read(bytes);

// Create a HashtableClassLoader

com.javageeks.classloader.HashtableClassLoader hcl =

 new HashtableClassLoader();

hcl.putClass("TestService", bytes);

// Deploy it

ServerManager.deployService("TestService", hcl);

// Now add the Service

IServer svr = ServerManager.addService("TestService", new String[0]);

In this particular case, we’re only loading the TestService class into the Hasht
ClassLoader. If it in turn requires other classes, we’d need to load them by hand
the HashtableClassLoader, too. This is a potential source of errors, since th
nothing programmatic preventing the developer from making this kind of “oo
forgot-to-load-a-class-into-the-Hashtable” mistake, but if it becomes a problem
ate a deployServiceJar method on IServerManager that performs the recu

223

class-check necessary to ensure all the classes are in the .jar file or the normal CLASS-
PATH/Extensions ClassLoader.

One final change is necessary to make all this work remotely: previously, Class-
LoaderStrategy wasn’t Serializable, which means sending the ClassLoaderStrategy
across the wire won’t work correctly. By marking the ClassLoaderStrategy as Serializ-
able, we can send ClassLoaderStrategy instances from one JVM to the other, thus solv-

n the
h the
man-
er by
ager

rrent
er to
ice.

rver-

an-
int is
 over
:

an-
alled
t’s all

lass-
letely
e the
lass-
hat’s
rever

ingly.
NECESSARY IMPROVEMENTS

ing that problem without too much trouble.
With all this code behind us now, we need to test it to be sure it all works. I

sample code bundle, as a peer to the “Lib” directory, is a “Test” directory in whic
TestService.java file sits. (See the source code on the publisher's website at www.
ning.com/neward3.) Compile this file. We’re going to test the RMIServerManag
giving it the special command-line parameter TEST. When the RMIServerMan
finds this parameter, it tries to load the code for the TestService class from the cu
directory, places it into a HashtableClassLoader, deploys this HashtableClassLoad
the remote RMIServerManagerServer, and then tries to add the TestService serv

From the “Lib” directory, start the RMI registry:2

start rmiregistry

Then, once the RMI registry is started, from the same directory, start the RMISe
ManagerServer:

java com.javageeks.gjas.RMIServerManagerServer

This will block the current console window; wait until the message “RMIServerM
agerServer bound to registry” appears, then open a new console. The next po
critical: make certain that the “Lib” directory is in your CLASSPATH,3 and move
to the “Test” directory. Fire up the RMIServerManager with the TEST parameter

java com.javageeks.gjas.RMIServerManager localhost TEST

And, after a few moments, you should see a flurry of activity on the RMIServerM
agerServer console, demonstrating that the RMIServerManagerServer is being c
to deploy the HashtableClassLoader and add the TestService instance, and that i
happening from within a unique ClassLoader.

Take a moment to consider what we’ve accomplished. By specifying the C
LoaderStrategy to use when loading a particular Service, we’ve managed to comp
remove all Deployment issues from moving code to the server. Now, we can forc
ServerManager to pull code from anywhere, and the client who specified the C
LoaderStrategy can be long gone when it actually happens. Zero deployment. W
more, administrators have complete control over the ServerManager from whe
they happen to sit. Zero administration.

2 The commands given are for Windows NT/9x systems; UNIX-heads will need to adjust accord
3 Or the compiled .jar file with the GJAS code is in your Extensions directory.

ROL

Now that we’ve got Services running in the ServerManager, let’s set up the ability
to reconfigure them after they’ve started.

8.4 ADDITIONAL READING

• Andy Krumel, “Revolutionary RMI: Dynamic class loading and behavior
objects.” JavaWorld, (Dec. 1998). Available at http://www.javaworld.com/jw-

ically
what
lessly
g to

ploy-
 net-
224 CHAPTER 8 REMOTE CONT

12-1998/jw-12-enterprise.html.
This article describes how RMI uses the annoted codebase to automat
download new classes, and demonstrates how this can be used to provide
the author calls behavior objects. He describes as “the capability to effort
pass true objects (data and code) between virtual machines without havin
distribute the supporting class files.” It’s basically the same tenet as zero de
ment, except he uses it within the context of a running application (his
worked “scribble” example).

C H A P T E R 9

Neward9_06_12.fm Page 225 Tuesday, June 13, 2000 11:45 AM
Configuration
9.1 Java models 225
9.2 Summary 236
t consider
configura-
echanisms
32 Regis-

d con-
Application configuration is typically an area that most developers do no
during the design, implementation, and testing of an application; if any
tion is necessary, developers will typically lean toward tried-and-true m
such as .INI, .properties files, or platform-specific methods such as the Win
try. Rarely, if ever, will a developer stop to consider if this application will
tialized

ations:
ethod,

stances,
ute) of
rospect
sary to

 can be
ustom-
e Bean
n if the
225

 nee
figuration from a remote site, or whether configuration will need to be reini
without terminating the application, or even if it should be reread on the fly.

9.1 JAVA MODELS

Java models have two basic models for doing configuration of objects/applic
JavaBeans and Servlets. In a JavaBeans environment, each Bean exposes a m
getPropertyDescriptors , which returns an array of PropertyDescriptor in
each of which carries information about a particular Property (exposed attrib
that Bean type. A JavaBeans-enabled development environment can then Int
the Bean, retrieving the Properties and, optionally, any PropertyDialogs neces
display the Bean’s properties.

This approach carries a couple of advantages. First, because the Property
any actual Java object, the PropertyDialog allows Bean developers to create a c
ized Dialog for displaying and/or obtaining the value of the Property of th
instance. This, in turn, allows Beans to be of any complexity and any type, eve

ATION

Bean’s Property type is a custom object designed specifically for that Bean. Secondly,
because all knowledge about the Bean is obtained at run time, no versioning or infor-
mation dependency exists between the Bean and the environment. The environment
discovers the Bean’s Properties each time the Bean is hosted there. If a new version of

us ver-

nded a
 passed
 to the

doesn’t
 some

e same
t with-

ocation
s using
uced as
thering
ooking
 to do

AS ser-

ties the

perties
 end to
 sanity-

e types
e con-

d even

Neward9_06_12.fm Page 226 Tuesday, June 13, 2000 11:45 AM
226 CHAPTER 9 CONFIGUR

the Bean is loaded, the new Properties are loaded without any regard to previo
sions of that Bean; it’s always a new Bean.

The other approach is the Servlet approach, in which each Servlet is ha
ContextInfo instance, where interesting information about the Servlet’s host is
to the Servlet for perusal. The Servlet can then pass certain information back
server, for the server to examine as it sees fit.

This approach carries the advantage of location transparency—the Servlet
have any guarantee that the ContextInfo is from a server in this JVM, or from
other. Even if in the current version, the server and the Servlet coreside in th
JVM, a future version of the server can add load balancing or clustering suppor
out requiring modification to the Servlet’s configuration mechanism.

A truly generic configuration mechanism wants to provide both options: l
transparency (which will become even more important in distributed system
RMI, CORBA or EJB), and property opacity (so that new types can be introd
Property types without requiring recompilation or redesign of the property-ga
mechanism). The JavaBeans mechanism gives us the Property opacity we’re l
for; the Servlet mechanism gives us the location transparency. What we need
now is combine the two into a single mechanism, if that’s possible.

9.1.1 Interface: ConfigProperty and ConfigProperties

To start with, we need to identify the things that make up a property for a GJ
vice; the list I use is as follows:

• Name
The property needs to have a name to identify it from the other proper
service uses; for example, port, message, and so on.

• Type
The property needs to be able to describe the type of its value; some pro
will be Strings, some will be Integers, and so on. This is so that any front
the configuration mechanism (Swing applet, Servlet, etc.) knows how to
check the value entered to ensure the user isn’t specifying a bad value.

• Compatible types
The property optionally should be able to specify a list of compatibl
that are acceptable as values, as well; for example, an Integer value can b
verted from Shorts, Longs, Floats and Doubles (with rounding), an
Strings (by parsing).

• Value
The property needs to have a value tacked onto it.

227

• Description
The property should have some sort of descriptive string to go with the property
name, so that the configuration front end can provide an explanation about the
property other than just its name. For example, a port property might have

ideally,
ert the

 9.1.

Neward9_06_12.fm Page 227 Tuesday, June 13, 2000 11:45 AM
JAVA MODELS

“TCP/IP socket port to use to listen for incoming requests.”
• Parser

Very often, configuration settings will be stored and/or sent as Strings;
we’d like to have the configuration mechanism provide a way to conv
String value to its native (byte, Boolean, and so forth) value.

With that in mind, let’s take a first swipe at the ConfigProperty class in listing

/**
* Class to provide configuration information to interested parties

*/

public class ConfigProperty
implements Serializable

{

// Internal implementation
//

private String m_name = null;

private String m_classType = null;
private String[] m_compatibleTypes = new String[0];

private Serializable m_value = null;
private String m_desc = null;

private transient Method m_parseMethod = null;

private String m_parseMethodClass = null;

private String m_parseMethodSig = null;

public ConfigProperty()
{ }

public ConfigProperty(String name, Object value, String desc)

{
setBaseInfo(name, value.getClass(), null, desc, null);

}

public ConfigProperty(String name, Class classType,
String[] compatibleTypes, String desc,

Method parser)
{

setBaseInfo(name, classType, compatibleTypes, desc, parser);

}
public ConfigProperty(String name, Class classType,

String[] compatibleTypes,

Serializable value, String desc,
Method parser)

{

setBaseInfo(name, classType, compatibleTypes, desc, parser);
m_value = value;

}

Listing 9.1 Code for ConfigProperty

ATION

public void setBaseInfo(String name, Class classType,

String[] compatibleTypes, String desc,

Method parser)

{

m_name = name;

Neward9_06_12.fm Page 228 Tuesday, June 13, 2000 11:45 AM
228 CHAPTER 9 CONFIGUR

m_classType = classType.toString();

m_compatibleTypes = compatibleTypes;

if (m_compatibleTypes == null)

{

m_compatibleTypes = new String[0];

}

m_desc = desc;

if (parser)

{

m_parseMethod = parser;

m_parseMethodClass = m_parseMethod.getDeclaringClass();

m_parseMethodSig = m_parseMethod.toString();

}

}

public String getName()

{

return new String(m_name);

}

public String getClassType()

{

return new String(m_classType);

}

public String[] getCompatibleTypes()

{

String[] ret = new String[m_compatibleTypes.length];

for (int i=0; i<ret.length; i++)

{

ret[i] = new String(m_compatibleTypes[i]);

}

return ret;

}

public String getDescription()

{

return new String(m_desc);

}

public Serializable getValue()

{

return m_value;

}

public String getValueClass()

{

return m_value.getClass().toString();

}

public void setValue(Serializable value)

{

229

String valueClass = value.getClass().toString();

// If it's the exact type, we're OK

if (valueClass.equals(m_classType))

{

m_value = value;

Neward9_06_12.fm Page 229 Tuesday, June 13, 2000 11:45 AM
JAVA MODELS

return;

}

// If the names match exactly, we're OK

for (int i=0; i<m_compatibleTypes.length; i++)

{

if (m_compatibleTypes[i].equals(valueClass))

{

m_value = value;

return;

}

}

// If we're still here, the value failed to convert

throw new RuntimeException(“Value failed to convert”);

}

public void setValue(String stringifiedValue)

{

// Test for parsers already in place (those types already

// provided by Java; this will work for 95% of the time)

// java.lang.* types

if (m_classType.equals(String.class.toString()))

{

m_value = strigifiedValue;

}

else if (m_classType.equals(StringBuffer.class.toString()))

{

m_value = new StringBuffer(stringifiedValue);

}

else if (m_classType.equals(Boolean.class.toString()))

{

m_value = new Boolean(stringifiedValue);

}

else if (m_classType.equals(Byte.class.toString()))

{

m_value = new Byte(stringifiedValue);

}

else if (m_classType.equals(Character.class.toString()))

{

m_value = new Character(stringifiedValue);

}

else if (m_classType.equals(Double.class.toString()))

{

m_value = new Double(stringifiedValue);

}

else if (m_classType.equals(Float.class.toString()))

ATION

{

m_value = new Float(stringifiedValue);

}

else if (m_classType.equals(Integer.class.toString()))

{

Neward9_06_12.fm Page 230 Tuesday, June 13, 2000 11:45 AM
230 CHAPTER 9 CONFIGUR

m_value = new Integer(stringifiedValue);

}

else if (m_classType.equals(Long.class.toString()))

{

m_value = new Long(stringifiedValue);
}

else if (m_classType.equals(Short.class.toString()))

{

m_value = new Short(stringifiedValue);

}

// java.math.* types

else if (m_classType.equals(BigDecimal.class.toString()))

{

m_value = new BigDecimal(stringifiedValue);

}

else if (m_classType.equals(BigInteger.class.toString()))
{

m_value = new BigInteger(stringifiedValue);

}

// java.util.* types

else if (m_classType.equals(Date.class.toString()))

{

m_value = new Date(df.parse(stringifiedValue));

}

// Well, it's not a "standard" type, so we've got to

// try and parse it

else

{
try

{

// We have to parse the stringified value

if (m_parseMethod == null &&

m_parseMethodClass != null &&

m_parseMethodSig != null)

{

Clas s c = Class.forName(m_parseMethodClass);

Method[] methods =

c.getDeclaredMethods();

for (int i=0; i<methods.length; i++)
{

String methString = methods[i].toString();

if (methString.equals(m_parseMethodSig))

{

m_parseMethod = methods[i];

break;

}

}

231

}

if (m_parseMethod == null)

{

// We tried; nothing more to do

return;

nation;
 simple

e sepa-
e need
ay, the

uits the
’t been
r form.

Neward9_06_12.fm Page 231 Tuesday, June 13, 2000 11:45 AM
JAVA MODELS

}

// Is it static, or virtual?

int mods = m_parseMethod.getModifiers();

Object instance = null;

if (mods & Modifier.STATIC)

{

// We can call the Method directly; no instance

// needed in order to do so

}

else

{

// We have to try and instantiate the Class type

// in order to call on the Method

Clas s c = Class.forName(m_parseMethodClass);

instance = c.newInstance();

}

Object[] args = new Object[]

{

stringifiedValue

};

m_value = (Serializable)

m_parseMethod.invoke(instance, args);

}

catch (Exception ex)

{

// We can't do anything with it; just give up

}

}

}

}

As you can see, it’s not a trivial implementation by any stretch of the imagi
ConfigProperty is intended to be as complex as necessary in order to make it as
as possible for users.

The basic intent of the ConfigProperty interface is simple. Because we’r
rating the actual configuration mechanism from the thing being configured, w
to describe the configuration parameters (properties) in a generic way. That w
mechanism can interpret the information and present it in a manner that best s
configuration front end. Remember, the actual configuration mechanism hasn
specified yet, and shouldn’t be assumed to be via HTML, Applet, or any othe

ATION

By doing this, we ensure that any configuration mechanism can adequately configure
any running Service.

We want ConfigProperty to be a location-transparent class; that is, we shouldn’t
care from the calling side whether this ConfigProperty instance came to us from a Ser-

t, we’ll
y other

ow the
nately,
 result,
re the
onfig-
n nec-

urce of
od—if
ke it.
dealing
gle col-
gProp-
refer to
psulate
 identi-
ods for
 store a
 a File-

w let’s
lable to
equires
fo

uld be a
a. Then,
d of that
 was dif-

Neward9_06_12.fm Page 232 Tuesday, June 13, 2000 11:45 AM
232 CHAPTER 9 CONFIGUR

vice locally to this JVM, or from across the wire. In order to best support tha
mark ConfigProperty as Serializable, so that instances of it can be sent to an
JVM in existence.

A couple of oddities may stand out from the code—to start with, notice h
m_parseMethod member is marked transient . The Method class, unfortu
is not Serializable, so it’s not going to move from one JVM to another.1 As a
the members m_parseMethodClass and m_parseMethodSig captu
Method instance’s declaring Class and the method signature. Then, if this C
Property is serialized and sent to another JVM, at least we have the informatio
essary to rebuild the Method instance when we need it. This, in turn, is the so
much of the complexity in the String form of the setValue meth
m_parseMethod is null , we attempt to rebuild the Method instance and invo

At this point, we’ve established support for individual properties, but
with them as a group is more awkward. What we really want, in fact, is a sin
lection-class instance that we can pass back and forth, containing all the Confi
erty instances for a given Service. Thus, we create the ConfigProperties class (
the web site for the code), also marked Serializable for easy transmission, to enca
the collection of ConfigProperty instances. ConfigProperties performs almost
cally to the Properties class from the java.lang package, except no meth
reading or writing to file are provided. If a configuration mechanism wants to
ConfigProperties instance to disk, for example, it can simply serialize the data to
OutputStream.

We’ve established the means by which we can get and set Properties; no
establish precisely how Services make those properties (names and values) avai
the configuration mechanisms that want to present or modify them. Doing so r
a modification to the GJAS system, the addition of two methods, getConfigIn
and setConfigInfo , to the Service interface:

public interface Service extends java.io.Serializable

{

// . . .

/**

* Return the Properties configuration information

1 Some may argue that, because Method represents a specific Java method (which in C++ co
“function pointer”), it could mark the Class name and method signature as its Serializable dat
when deserialized, it could rebuild the Method instance, throwing an exception that the Metho
name and signature wasn’t found. This way, if the recipient lacked the Class, or the Class itself
ferent from the source JVM, Method could signal the error without destroying the JVM.

233

*/

public ConfigProperties getConfigInfo();
/**

* Set the Properties configuration information
*/

es in or
rver or
g any-
 could

ding in
ame>”
ven be
nteract
e only

sented
lace—
espite

e shape
inished
 reader
eader’s
ing sys-
in later
n other

ces can
bundle
tCon-

Neward9_06_12.fm Page 233 Tuesday, June 13, 2000 11:45 AM
JAVA MODELS

public void setConfigInfo(ConfigProperties info);
}

The corresponding modifications must be made to IServer (to pass the instanc
out as necessary) and to any IServer-implementing classes, such as LocalSe
RMIServer. Notice how we’ve studiously managed to avoid actually specifyin
thing about that opaque configuration service. The configuration information
be coming from a text file on disk, with the configuration mechanism respon
recognition of a UNIX signal (the infamous “killall –HUP <process-n
approach), or it could be a servlet-based HTML-driven approach. We could e
responding to a native Control Panel applet on WindowsNT, using JNI to i
with the ServerManager. We don’t care how the information was configured, w
care that new configuration information is present and needs to be picked up.

It may strike readers as odd that we’re making changes to code we just pre
a few chapters ago. This is to demonstrate how most server development takes p
incrementally and in accordance with changing needs and/or requirements. D
most book authors’ professions that software must be allowed to evolve and tak
in incremental fashion, just about every book published presents its code in its f
form, without showing the steps along the way. It’s my hope that showing the
how this modification affects the rest of the system in turn heightens the r
appreciation for the ripple effect that takes place when modification of an exist
tem takes place. This, in turn, should explain the need for the steps we’ll take
chapters to avoid this domino effect of change, in the GJAS system as well as i
systems we build.

9.1.2 Usage

Using the ConfigProperty system is fairly straightforward (listing 9.2). Servi
store the ConfigProperty instances as individual members of the Service, and
them up into a ConfigProperties instance as necessary when sending them (ge
figInfo) and pick out the values when receiving them (setConfigInfo).

public class MyService

implements Service
{

// Internal data
//

private ConfigProperty myFirstProperty =
new ConfigProperty(“myFirstProperty”, new String(“”),

“The first property to configure”);

Listing 9.2 Code for using ConfigProperty

ATION

private ConfigProperty myNextProperty =

new ConfigProperty(“myNextProperty”, new String(“”),

“The next property to configure”);

// . . .

om the
Service
ds two

back to

e exact
 be an
assume
perties
.

ent the
uration
figura-
Service
n front
 to the

Neward9_06_12.fm Page 234 Tuesday, June 13, 2000 11:45 AM
234 CHAPTER 9 CONFIGUR

public ConfigProperties getConfigInfo()

{

return new ConfigProperties(new ConfigProperty[]

{

myFirstProperty, myNextProperty

});

}

public void setConfigInfo(ConfigProperties configInfo)

{

ConfigProperty tmp;

tmp = configInfo.get(“myFirstProperty”);

if (tmp != null)

myFirstProperty.setValue(tmp.getValue());

tmp = configInfo.get(“myNextProperty”);

if (tmp != null)

myNextProperty.setValue(tmp.getValue());

// Re-initialize service configuration, if necessary

}

}

Another approach is to use more standard value types and extract the values fr
ConfigProperties sent in to the Service in setConfigInfo . Precisely how the
uses these ConfigProperty instances is not important, so long as it understan
simple rules:

• Do not assume the ConfigProperty passed out in getConfigInfo comes
you in setConfigInfo .
Because the ConfigProperties instance may be Serialized and sent out, th
instance of ConfigProperty that comes in via setConfigInfo may
entirely separate instance, with the original unchanged. Services must
that, inside of setConfigInfo , the ConfigProperty and ConfigPro
instances are entirely separate with no relationship to the one(s) passed out

• Do not assume that the ConfigProperties instance is entirely acceptable.
A variety of conditions exist, beyond the Service’s control, that may prev
ConfigProperties instance from containing all of the Services config
information, or, more likely, containing more than just this Service’s con
tion information. For example, a developer may later subclass your
instance and expect additional properties to be sent in, or the configuratio
end may only send those values which were changed by the administrator

235

Service. Either way, don’t throw away old values until you’re sure you have new
ones to replace them.

These are actually good rules-of-thumb for any interaction with a development
framework. Always assume somebody will come in behind you and do something you

nce the
r that.

r inter-
perties.
ockets,
n RMI-
 which
ore or

ng raw
lize the

lPanel,
Server-
 native
M and
gration
hereby
l) with
traliza-
ion.
s to an

mation
 a good
n, only
n. The
uration
settings
ator, or
ervices,
d, typ-

a front-
in their
putting
strators

Neward9_06_12.fm Page 235 Tuesday, June 13, 2000 11:45 AM
JAVA MODELS

hadn’t expected, even in classes that you’re sure will never get subclassed. O
code is complete, you have no control over what happens to or around it afte

 Code defensively.

9.1.3 Configuration front ends

On the CD is a SwingControlPanel, an application that displays a Swing use
face about each of the Services loaded, and their corresponding ConfigPro
The SwingControlPanel can connect to a GJAS instance through standard s
using the SocketControlService presented in chapter 10, by using RMI and a
ControlService, or by using CORBA and a CORBAControlService. The means by
the SwingControlPanel communicates with the ServerManager instance is m
less irrelevant. So long as the communication mechanism understands sendi
bytes from sender to destination and back again, we can serialize and deseria
configuration information without a problem.

Other front ends are certainly possible. One would be a ServletContro
which uses an HTTP Servlet hosted within a web browser to connect to the
Manager and configure/control the loaded Services. Another version would be a
Win32 ControlPanel application (applet), using JNI Invocation to create a JV
communicate with the ServerManager on the other end. Doing this sort of inte
reduces the system administrator’s need for Java applications on the machine, t
making use of an already established environment (the Win32 Control Pane
which the administrator is already familiar. Less learning curve and greater cen
tion of administrative functions means a bigger shift towards zero administrat

Some readers may wonder why we don’t simply store configuration setting
RDBMS, or disk file, or any of the other commonly used configuration infor
repository systems. Nothing prevents us from doing so, and, in fact, it is quite
idea because administrators won’t want to spend time configuring an applicatio
to have to reconfigure the entire thing again when the application goes dow
point of this mechanism, however, is that a front end is free to store the config
information anywhere it chooses; a ServletControlPanel may choose to save the
in a local file (serializing all settings to disk) on command from the administr
a custom front end may read the ConfigProperties settings from all running S
store them to an RDBMS, and provide them when requested to the Services loade
ically on application start-up. This is all functionality that’s easily possible from
end application, thus providing the administrator with the maximum flexibility
setup. Security concerns, for starters, may dissuade system administrators from
configuration information into an RDBMS where, presumably, database admini

ATION

have complete and total access. Correspondingly, a company may want to encrypt the
configuration information with a particular private key before storing it to file or
RDBMS; either way, the front end is responsible for this storage/retrieval, and can be
customized as necessary. The configuration mechanism itself doesn’t care, so long as the

er-side
tion of
ion by
 (using
ship is
eClient
anager

ice that
l of the
control
 future
Server-
anager-

 GJAS,
elf, the
w con-
decide.
fo
ing up
 If two
nd file-
roperty
cess of
e con-

y given
 made.

Neward9_06_12.fm Page 236 Tuesday, June 13, 2000 11:45 AM
236 CHAPTER 9 CONFIGUR

data is in ConfigProperties format when received by the recipient Service.

9.2 SUMMARY

This chapter presented the necessity of building control mechanisms for serv
applications. In addition to describing the basic framework and implementa
the GJAS system, we discussed how we can better achieve zero administrat
developing a system in which control of the system can be maintained remotely
RMI). Note that the RMIServerManager/RMIServerManagerServer partner
different from a Service such as a RMIControlService/RMIControlServic
partnership. In the first case, we are creating a remote proxy to the ServerM
itself. In the second case (not discussed here), we are creating a standard Serv
must be loaded within the ServerManager, thus providing the necessary contro
ServerManager instance in order for the Client to successfully connect and
the ServerManager. The distinction is a subtle one, but one which provides for
enhancements (such as fusing load-balancing/clustering support into the RMI
Manager system, by having each machine connecting to the RMIServerM
Server become an available node in the cluster for executing Services).

Next, we built a generic configuration mechanism, ostensibly for use within
but in all practical cases, usable by any Java application. Note that, in and of its
configuration mechanism offers no real promises to its callers about when or ho
figuration information is parsed or read; that is up to the recipient application to
Services can either reread and reconfigure precisely when the setConfigIn
method is called, or reread the configuration values as necessary in code, pick
changes as they occur. This second approach carries a synchronization danger.
configuration settings depend on one another (for example, working directory a
name), the setConfigInfo and any other methods accessing those ConfigP
instances must be synchronized to prevent reading one while the other is in pro
being modified. If not, the potential exists that a system administrator might b
figuring an application to use a new directory in which the filename originall
doesn’t exist, and the application attempts to look for it before the changes are

C H A P T E R 1 0

Neward10_06_12.fm Page 237 Tuesday, June 13, 2000 11:54 AM
Sockets
10.1 Simple socket services 237
10.2 Encapsulation and refactoring 247
10.3 Connection and

ConnectionManager 255

10.4 Advanced Socket services 273
10.5 Summary 281
10.6 Additional reading 282
ckets pro-
 a JVM to
hine) in a
ide accep-
Java’s rich support for the Internet stems from its integral support for so
gramming. The core package java.net provides an easy way to allow
communicate with other machines (or with other JVMs on the same mac
scalable, robust fashion. The portable nature of sockets and their industryw
lessly,
muni-

rSocket
code to
Server-
ing.”)

sure of
othing
rifying
etwork
service,
237

tance guarantee that heterogenous networks will be able to communicate seam
and Java’s built-in support for sockets makes it an ideal language for socket com
cations programming.

Just about every Java book written covers how to use Java’s Socket and Serve
classes. For that reason, I’m assuming that you already know how to write Java
use sockets. If you’re unfamiliar with how to program with Java’s Socket and
Socket classes, I recommend Java Network Programming. (See “Additional read

10.1 SIMPLE SOCKET SERVICES

Some of the basic Internet services are present simply to provide some mea
diagnostic ability when setting up a TCP/IP network. Ping, for example, does n
except provide a port where a ping client can attempt to connect, thereby ve
that the machine can be seen over a TCP/IP network. This helps TCP/IP n
administrators when ensuring that a machine is configured correctly. Another

CKETS

Echo, echoes back to the client any input it receives from the client. The Date service
sends back the current date and time on the server and disconnects the connection.

All of these services share one common characteristic. They are trivial to write, and
having them in GJAS serves the same purpose as they do for TCP/IP administrators:

the cli-
 server

 testing

Neward10_06_12.fm Page 238 Tuesday, June 13, 2000 11:54 AM
238 CHAPTER 10 SO

to verify that GJAS is, in fact, doing what it’s supposed to do.

10.1.1 SocketClient

Before we dive into the server side of sockets, let’s take a second and see how
ent side of socket programming looks (listing 10.1). Because connecting to a
socket is universal, the socket client application we build here will be useful in
any and all socket-based servers we build later in the chapter.

import java.io.*;
import java.net.*;

/**
* This thread reads from the socket and writes the bytes received to the

* console window.
*/

class SocketToConsoleThread extends Thread
{

public SocketToConsoleThread(Socket s)
{

m_socket = s;

setDaemon(true);

// Necessary to work around some platforms
setPriority(Thread.currentThread().getPriority()+1);

}

public void run()

{
try

{
// Set up the necessary Reader from the Socket

Reader fromSocket =
new InputStreamReader(m_socket.getInputStream());

// Set up the necessary Writer to the Console window
Writer toUser =

new PrintWriter(new OutputStreamWriter(System.out));

int c;

char[] buffer = new char[1024];
while ((c = fromSocket.read(buffer)) != -1)

{
toUser.write(buffer, 0, c);

toUser.flush();
}

}

Listing 10.1 Code for a SocketClient

239

catch (java.io.IOException ioEx)

{

ioEx.printStackTrace();

return;

}

Neward10_06_12.fm Page 239 Tuesday, June 13, 2000 11:54 AM
SIMPLE SOCKET SERVICES

}

Socket m_socket;

}

/**

* This thread reads from the console window and writes

* the received keystrokes to the socket.

*/

class ConsoleToSocketThread extends Thread

{

public ConsoleToSocketThread(Socket s)

{

m_socket = s;

setDaemon(true);

}

public void run()

{

try

{

BufferedReader fromUser =

new BufferedReader(new InputStreamReader(System.in));

PrintWriter toSocket =

new PrintWriter(new OutputStreamWriter(

m_socket.getOutputStream()));

String line;

while ((line = fromUser.readLine()) != null)

{

toSocket.println(line);

toSocket.flush();

}

}

catch (java.io.IOException ioEx)

{

ioEx.printStackTrace();

return;

}

}

Socket m_socket;

}

/**

* Client: connect to <host> on port <port>

*/

public class Client

CKETS

{

public static void main(String[] args)

throws Exception

{

if (args.length < 1)

java.
 to the
m the
onsole

menta-
read at
ds, and
g we’ll

wn-an-
class to

able, in-

tion.

Neward10_06_12.fm Page 240 Tuesday, June 13, 2000 11:54 AM
240 CHAPTER 10 SO

{

System.out.println("Usage: java Client <hostname:port>");

return;

}

// Parse out hostname and port

String host = args[0].substring(0, args[0].indexOf(":"));

Integer port =

new Integer(args[0].substring(args[0].indexOf(":")+1,

args[0].length()));

System.out.println("Connecting t o " + host + ":" + port);

Socket socket = new Socket(host, port.intValue());

SocketToConsoleThread s2c = new SocketToConsoleThread(socket);

s2c.start();

ConsoleToSocketThread c2s = new ConsoleToSocketThread(socket);

c2s.start();

s2c.join();

}

}

The Client class is the central driver. The ConsoleToSocket class extends
lang.Thread, 1 and provides a link from the console window’s input stream
connected socket. The SocketToConsole class, in similar fashion, reads fro
socket and echoes to the console window’s output stream. The SocketToC
thread has its priority boosted by one due to problems with some JVM imple
tions that force all threads executing at the same priority level to block if one th
that same level attempts to read from standard input.2 Client starts both threa
then calls join to block until the SocketToConsole thread returns, meanin
continue to interact until the Server disconnects from the client.

In fact, this “run-a-Thread-to-pull-from-an-InputStream-and-send-do
OutputStream” concept is common enough to merit the design of a specific
do precisely that (listing 10.2); thus, we create the ThreadedPipeStream class.

1 This would seem to contradict what I say in chapter 5, where I advocate implementing Runn
stead of extending Thread, but bear with me. This is part of the refinement process.

2 From Java Examples in a Nutshell, by David Flanagan, in the GenericClient.java implementa

241

/**

* ThreadedPipeStream: reads from an InputStream, sends the received

* data down the given OutputStream.

Listing 10.2 Code for the ThreadedPipeStream Class

Neward10_06_12.fm Page 241 Tuesday, June 13, 2000 11:54 AM
SIMPLE SOCKET SERVICES

*/

public class ThreadedPipeStream

implements Runnable

{

// Internal data

private Thread m_thread;

private InputStream m_from;

private OutputStream m_to;

private Exception m_lastException;

public ThreadedPipeStream(InputStream in,

OutputStream out,

Thread thread)

{

m_thread = thread;

m_from = in;

m_to = out;

}

public ThreadedPipeStream(InputStream in,

OutputStream out)

{

m_from = in;

m_to = out;

// Create our Thread

m_thread = new Thread(this);

m_thread.setDaemon(true);

m_thread.setName(toString());

m_thread.setPriority(Thread.currentThread().getPriority()+1);

}

/**

* Convenience method to save from having to reimplement all the

* Thread methods: start(), stop(), resume(), interrupt(), and

* so forth. Should probably put those methods in here at some

* point.

*/

public Thread getThread()

{

return m_thread;

}

public String toString()

{

return new String("ThreadedPipeStream:" +

m_from.toString() + ":" +

m_to.toString());

}

CKETS

public void run()

{

try

{

// Set up the necessary Reader from the Socket

tation;
hread-

readed-
 source
ypes as
 makes

Neward10_06_12.fm Page 242 Tuesday, June 13, 2000 11:54 AM
242 CHAPTER 10 SO

Reader from =

new InputStreamReader(m_from);

// Set up the necessary Writer to the Console window

Writer to =

new PrintWriter(m_to);

int c;

char[] buffer = new char[1024];

while ((c = from.read(buffer)) != -1)

{

to.write(buffer, 0, c);

to.flush();

}

}

catch (IOException ioEx)

{

m_lastException = ioEx;

ioEx.printStackTrace();

}

}

}

ThreadedPipeStream allows for a certain amount of flexibility in its implemen
by allowing users to specify the Thread to use, we can hook in to any custom T
processing scheme the client has going; if no explicit Thread is provided, Th
PipeStream creates its own. By using InputStream and OutputStream as the
and destination to use, we also make it possible to use any of the Java I/O t
source or sink, whether it be Socket, Console, or anything else. This, in turn,
the Client implementation much simpler:

/**

* Client: connect to <host> on port <port>

*

* Componentized implementation

*/

public class Client

{

public static void main(String[] args)

throws Exception

{

if (args.length < 1)

{

System.out.println("Usage: java Client <hostname:port>");

return;

}

243

// Parse out hostname and port

String host;

Integer port;
host = args[0].substring(0, args[0].indexOf(":"));

port = new Integer(args[0].substring(args[0].indexOf(":")+1,

evelop-
is con-

later.
such as
.man-

apter),

Neward10_06_12.fm Page 243 Tuesday, June 13, 2000 11:54 AM
SIMPLE SOCKET SERVICES

args[0].length()));

System.out.println("Connecting t o " + host + ":" + port);

Socket socket = new Socket(host, port.intValue());

ThreadedPipeStream socketToConsole =
new ThreadedPipeStream(socket.getInputStream(),

System.out);

socketToConsole.getThread().start();

ThreadedPipeStream consoleToSocket =

new ThreadedPipeStream(System.in,

socket.getOutputStream());
consoleToSocket.getThread().start();

socketToConsole.getThread().join();
}

}

Once again, the act of creating a reusable component in turn leads to less d
ment required later: zero development at its finest. We’ll use this class (and th
cept of feeding an OutputStream with the contents of an InputStream) again

To test, run the Client against a well-known web server on port 80, one
this book’s support web site (www.javageeks.com) or Manning’s web site (www
ning.com). If you type in the HTTP header sent by the client (see later in this ch
you should get back the full HTML file for that URL.

10.1.2 EchoService

Listing 10.3 demonstrates how an Echo-like service looks inside the GJAS system.

/**

* EchoService simply echoes back the input it receives to the client.

*/
public class EchoService

extends com.javageeks.gjas.services.ThreadedServer

implements Runnable
{

public void start()

throws Exception
{

setRunnable(this);

super.start();

}

Listing 10.3 Code for EchoService

CKETS

public void run()

{
try

{
ServerSocket svrSocket = new ServerSocket(7);

ply call
 Then,
 to our
 port),
l a new
 We set
om the
the cli-
ection.

Neward10_06_12.fm Page 244 Tuesday, June 13, 2000 11:54 AM
244 CHAPTER 10 SO

Socket socket;

while ((socket = svrSocket.accept()) != null)
{

ServerManager.instance().log("Socket accepted");

Reader fromSocket =
new InputStreamReader(socket.getInputStream());

Writer toSocket =
new OutputStreamWriter(socket.getOutputStream());

try
{

char[] buffer = new char[1024];
int c;

while ((c = fromSocket.read(buffer)) != -1)
{

toSocket.write(buffer, 0, c);
toSocket.flush();

}
}

catch (Exception ex)
{ }

socket.close();

ServerManager.instance().log("Socket closed");

}
}

catch (java.io.IOException ioEx)
{

ioEx.printStackTrace();
return;

}
}

}

The implementation of the EchoService is straightforward. In start , we sim
the ThreadedServer’s setRunnable method with this as the parameter.
when the ThreadedServer calls the associated start method, control passes
run method. In that, we create a ServerSocket on port 7 (the RFC-mandated
we enter an infinite loop, blocking inside the ServerSocket’s accept call unti
connection from a client comes in and we return with a new Socket instance.
up a Writer to point to the OutputStream of the Socket, a Reader to pull fr
InputStream of the Socket, then enter a new while loop to pull input from
ent and write it back down the socket until the client terminates the conn
When that happens, we close the Socket and return.

245

This is not the world’s most scalable implementation of the Echo service. Specif-
ically, any requests for the Echo service that come in while the service is already occu-
pied with a previous client will block until the first client terminates the connection.
This means that we cannot service more than one Echo connection at a time, which

Neward10_06_12.fm Page 245 Tuesday, June 13, 2000 11:54 AM
SIMPLE SOCKET SERVICES

is obviously not a scalable solution.

10.1.3 TimeService

TimeService is another easy service to implement:

/**

* TimeService simply echoes back the input it receives to the client.
*/

public class TimeService extends ThreadedServer
implements Runnable

{
public void start()

throws Exception
{

setRunnable(this);

super.start();
}

public void run()

{
try

{
ServerSocket svrSocket = new ServerSocket(7002);

Socket socket;
while ((socket = svrSocket.accept()) != null)

{
ServerManager.instance().log("Socket accepted");

Reader fromSocket =

new InputStreamReader(socket.getInputStream());
PrintWriter toSocket =

new PrintWriter(
new OutputStreamWriter(

socket.getOutputStream()));

toSocket.println(new Date());
// Date's default constructor constructs a Date

// with the current date/time; Date.toString()
// converts the date/time to readable format

toSocket.flush();

socket.close();

ServerManager.instance().log("Socket closed");

}
}

catch (java.io.IOException ioEx)

CKETS

{

ioEx.printStackTrace();

return;

}

}

eep the
nt date

ly non-
forcing
wever,
onnec-
 which
d close.

sockets
 in that
ly one,
tate on
tage of
h con-

nnects.
 to the
e is any
send it
cols are
 as well
umber

anning
n com-
he pilot
emains
n com-
t offers
 object

stributed

Neward10_06_12.fm Page 246 Tuesday, June 13, 2000 11:54 AM
246 CHAPTER 10 SO

}

TimeService is even less work than the EchoService, since we don’t need to k
Socket connection alive until the client quits. After the service sends the curre
and time on the server, we close the Socket and wait for the next connection.

Here, as with EchoService, you can see that the TimeService is also inherent
scalable. As with EchoService, we can only handle one concurrent connection,
any others to block until we’re finished with the first. Unlike EchoService, ho
chances are small (until we get into a large number of attempted concurrent c
tions) that we will actually have a performance problem, due to the speed with
we can deal with each connection—just get the date, send it down the Socket, an

10.1.4 Analysis

This also demonstrates an important difference between two approaches to
programming: dedicated and stateless. The EchoService is a dedicated service
so long as the client remains connected to the Socket, we service one, and on
client. More sophisticated dedicated services would maintain some form of s
behalf of the client, in a one-to-one fashion. This approach carries the advan
being simple to understand, and offers the best performance on behalf of eac
nected client. No waiting necessary.

TimeService, on the other hand, simply services the client request and disco
If the client wishes the time on the server again, the client must reconnect
TimeService on a new connection. One drawback to this approach is that if ther
context that must be maintained across requests, the client must track it and re
on each new request. This is, in turn, offset by the fact that most stateless proto
more scalable (they spend no time idling, waiting for additional client requests),
as more efficient (a single TimeService instance can provide services for a large n
of clients before requiring another TimeService instance to assist).

To see the difference, let’s draw an analogy.3 You are a business traveler pl
a trip. In a dedicated service, you have a plane that is for your use only. You ca
mand it to go anywhere, you can leave your bags on board, and you can have t
make the odd trip for you while you’re meeting with clients. But the plane r
dedicated to your use only. As convenient as this is, it does not scale well whe
pared to stateless services—the use of commercial airlines or taxicabs. The firs
more direct control to the client (you), but it requires that the resource (the

3 Analogy loosely borrowed from Roger Sessions COM and DCOM: Microsoft’s vision for Di
Objects (John Wiley and Sons, 1997).

247

server, the limousine, the private plane) sit idle during those times when the client is
not using it. To draw out the final comparison, the private plane will get you from A
to B faster, since it doesn’t make any additional stops along the way, but it requires
one plane per customer. At that ratio, most commercial airlines would be bankrupt

hey do

ple ser-
ference
hods:

de out

acking
ed with
ass that
et that

umber
n of its
e first,
 meth-
ivatives

ockets.

Neward10_06_12.fm Page 247 Tuesday, June 13, 2000 11:54 AM
ENCAPSULATION AND REFACTORING

long before they were able to move 100 people across the country, the way t
now with jumbo jets and fixed routes.

One thing you might have noticed as we moved through these admittedly sim
vices is that much of the code for both looked alike. For example, the only real dif
between EchoService and TimeService was this sequence of lines in the run met

// EchoService.run:

try
{

char[] buffer = new char[1024];
int c;

while ((c = fromSocket.read(buffer)) != -1)
{

toSocket.write(buffer, 0, c);
toSocket.flush();

}
}

catch (Exception ex)
{ }

// TimeService.run:
toSocket.println(new Date());

toSocket.flush();

Any time this is apparent, it means there has to be some way of refactoring co
to a base class or a component.

10.2 ENCAPSULATION AND REFACTORING

As you probably guessed, we can elevate some common tasks into a base class. L
any real originality, I choose to call this base class SocketServer, not to be confus
the java.net class ServerSocket; the first is the ThreadedServer-derivative cl
provides base functionality for sockets-based services; the second is a sock
receives client connections and hands back Socket instances for use.4

10.2.1 SocketServer

Realistically, SocketServer needs only one piece of information (the port n
which with to initialize the ServerSocket) and requires only one customizatio
clients (what to do once the client connects). We express this in two ways: for th
we provide a constructor that takes the port as an argument as well as get /set
ods to manipulate it, and for the second, we create an abstract method that der

4 SocketServer encapsulates most of the need for clients or Service-writers to deal with ServerS

CKETS

must implement in order to compile. We extend ThreadedServer (from chapter 4) to
allow the ServerSocket (listing 10.4) to block without concern for the main thread.
Because the support and/or overhead for creating the thread can be encapsulated in
the base class, derived classes have to focus only on the actual socket functionality.

Neward10_06_12.fm Page 248 Tuesday, June 13, 2000 11:54 AM
248 CHAPTER 10 SO

package com.javageeks.gjas.services;

import com.javageeks.gjas.ServerManager;

import com.javageeks.gjas.ConfigProperties;

import com.javageeks.gjas.ConfigProperty;

import java.io.*;

import java.net.*;
import java.util.*;

/**

* SocketServer: abstract base class refactoring common behavior when

* writing a service to handle clients via sockets. Derived Services

* are expected to override serve and provide a port number

* to use as our server socket either via the setPort
* method or via a "port" property to setConfigInfo

*/

public abstract class SocketServer extends ThreadedServer

{

// Nested Runnable class

class SocketServerRunner
implements Runnable

{

public void run()

{

Socket socket = null;

// Start our (nearly) infinite loop waiting for connection
// requests from clients

//

while (true) //(!Thread.currentThread().isInterrupted())

{

try

{
socket = m_serverSocket.accept();

ServerManager.log(

getClass().getName() + ": Socket accepted");

// Calling getInetAddress() can cause machines

// not on a network to block for up to 15 minutes

// due to a "feature" within Microsoft's implementation

// of sockets. If your machine is on a TCP/IP network,
// comment out the following lines for a bit more

// information in the log regarding the connection.

//

//ServerManager.instance().log(

Listing 10.4 Code for SocketServer

249

// getClass().getName() + ":" +

// "Socket accepted from " +

// socket.getInetAddress());

// Pass it to the derived class

serve(socket);

Neward10_06_12.fm Page 249 Tuesday, June 13, 2000 11:54 AM
ENCAPSULATION AND REFACTORING

// Derived class is responsible for closing it, since

// if we close it, deriveds won't be able to deal with

// the socket in a separate thread, if they so choose.

}

catch (InterruptedIOException ex)

{

if (shouldStop())

return;

else

continue;

}

catch (Throwable t)

{

ServerManager.log(

"Exception thrown from serve() on socket " +

socket + ":");

ServerManager.log(t.toString());

}

}

}

}

// Constants

//

protected static final String PORT_PROP = "port";

protected static final String TIMEOUT_PROP = "timeout";

// Internal data

//

protected ServerSocket m_serverSocket;

private ConfigProperty propPort =

new ConfigProperty(PORT_PROP,

new Integer(0),

"TCP/IP socket to use");

private ConfigProperty propTimeout =

new ConfigProperty(TIMEOUT_PROP,

new Integer(5 * 1000),

"Milliseconds before " +

"hanging up on client");

private ConfigProperties configInfo =

new ConfigProperties(new ConfigProperty[]

{

propTimeout,

propPort

});

CKETS

/**

* Constructor, taking no arguments. The port number on which to

* listen must be specified (either through the args argument to

* start or via setPort).

*/

Neward10_06_12.fm Page 250 Tuesday, June 13, 2000 11:54 AM
250 CHAPTER 10 SO

public SocketServer()

{

// Do nothing

}

/**

* Constructor, taking the port number on which to listen as the

* sole argument.

*/

public SocketServer(int port)

{

setPort(port);

}

/**

* Start the SocketServer

*/

public void start()

throws Exception

{

setState(STARTING);

int port = ((Integer)propPort.getValue()).intValue();

int timeout = ((Number)propTimeout.getValue()).intValue();

// We've GOT to have a port # by now, or we can't create

// the ServerSocket.

if (port == 0)

throw new java.net.ConnectException(

"SocketServer must have a port argument!");

ServerManager.log(

getClass().getName() + ".start(): " +

"Opening ServerSocket on por t " + port);

m_serverSocket = new ServerSocket(port);

// Configure the ServerSocket so we don't block indefinitely

// inside of accept()

try

{

m_serverSocket.setSoTimeout(timeout);

// Only wait for m_timeout milliseconds before coming back

}

catch(SocketException ex)

{

ServerManager.log(ex);

return;

}

catch (IOException ex)

{

251

ServerManager.log(ex);

}

// Set the Runnable instance

//

setRunnable(new SocketServerRunner());

Neward10_06_12.fm Page 251 Tuesday, June 13, 2000 11:54 AM
ENCAPSULATION AND REFACTORING

// Call up to the base class (ThreadedServer) to let it do

// its ancestor thing

//

super.start();

}

/**

*

*/

public void stop()

throws Exception

{

// First call up the chain, to make the Thread (in which

// we're listening to the ServerSocket) stop.

super.stop();

// Close the ServerSocket

m_serverSocket.close();

}

// pause() and resume() are a little poorly defined here; if

// we have pause() and resume() close and reopen the socket,

// respectively, they have no differentiation from start()

// and stop(). On top of that, ThreadedServer already defines

// pause() and resume() to pause and resume the Thread, so

// additional redefinition would seem to be unnecessary

// here.

/**

*

*/

public ConfigProperties getConfigInfo()

{

return configInfo;

}

/**

*

*/

public void setConfigInfo(ConfigProperties props)

{

// We need to do a couple of things here; if the port or

// the timeout values change, we need to shut down the

// socket and open it again using the new values

if (((Integer)configInfo.get(PORT_PROP).getValue()).intValue() !=

((Integer)props.get(PORT_PROP).getValue()).intValue() ||

((Number)configInfo.get(TIMEOUT_PROP).getValue()).intValue() !=

((Number)configInfo.get(TIMEOUT_PROP).getValue()).intValue())

{

CKETS

try

{

ServerManager.log("Stopping Service: reconfigure");

stop();

plex of
ing on

 to rep-
 giving

Neward10_06_12.fm Page 252 Tuesday, June 13, 2000 11:54 AM
252 CHAPTER 10 SO

// Read the new values

ServerManager.log("Re-reading config values");

configInfo.set(props);

// Restart the Service

ServerManager.log("Restarting Service");

start();

}

catch (Exception ex)

{

ServerManager.error(ex);

}

}

}

/**

* Return the port we accept clients on.

*/

public int getPort()

{

return ((Integer)propPort.getValue()).intValue();

}

/**

* Set the port number we plan to accept clients on; has no effect

* after the service is started.

*/

public void setPort(int newPort)

{

propPort.setValue(new Integer(newPort));

}

/**

* Derived services must override this method. Once a client has

* connected to us, this method is called to "do the work" of

* handling the connection.

*/

public abstract void serve(Socket socket)

throws Exception;

}

SocketServer is a fairly straightforward implementation, but it’s the most com
the ones we’ve done so far, so a few moments to explain precisely what’s go
within its various parts is necessary.

To start with, notice that SocketServer uses two ConfigProperty instances
resent the port on which we are to listen, as well as the timeout period before

253

up on the client and closing the Socket. These are both specified as Integers, although
any Number-extending class would work, since Number provides an intValue
method.5 Note also that within the SocketServer’s setConfigInfo method, we stop
the SocketServer, copy over the new values passed in, then re-start the Server. This is

on sys-
r stop/

lt con-
n con-

vents a
 calling
 set-
ng.
t of the

ation.
class or
o. We
hy we

type of

: either
e han-
 forth.
om the
eption,
 would
 query

anager
ervice),
 try to
 throw

t-
unner,
s each
erve .
instead

, and

Neward10_06_12.fm Page 253 Tuesday, June 13, 2000 11:54 AM
ENCAPSULATION AND REFACTORING

precisely what we intended to happen when we designed the whole Configurati
tem. The Service gets its new values, and can either reread them on the fly, o
reread/restart, as necessary for each Service.

SocketServer also specifies two constructors. One is the standard defau
structor; the other is a constructor intended for subclasses to call within their ow
structors, allowing for convenient setting of the port property. Nothing pre
derived Service from calling SocketServer’s base constructor and later either
SocketServer’s setPort method directly, or else modifying the value through
ConfigInfo , but this provides a simple way to configure the port for listeni

SocketServer’s start method, however, is by far the most interesting par
class. It first extracts the port and timeout values from its configuration inform
Should port be zero (which indicates it wasn’t specified by either the Service
the system administrator before starting), there’s nothing SocketServer can d
can’t continue. We throw a java.net.ConnectException indicating w
threw it. In a more interactive system, we would probably make this its own
Exception class, but I choose not to for a reason.

Normally, when an Exception is thrown, it falls into one of two categories
the client can do something about it, or the client can’t. Exceptions that can b
dled include such as improper URL specifications, improper filenames, and so
In those situations, the client can reasonably catch the exception, and deduce fr
type whether it can correct the problem. For example, with a FileNotFoundExc
the code can pop up a dialog to the user asking if the filename is correct, and
the user like to create a new file. With a MalformedURLException, we can again
the user if the URL is correct.

With this, however, there’s not much we can do—we can’t expect ServerM
to be able to correct the action (it’s not supposed to know anything about the S
so the actual type of Exception thrown is fairly irrelevant. It’s not going to
undertake corrective action based on the type, as we would in client code. So we
a type that’s close enough, and continue.

Once the ServerSocket is created, we then call the ThreadedServer.se
Runnable method with an instance of the inner Runnable class SocketServerR
whose run method spins in an infinite while loop blocking on accept . A
request comes in, it passes the local Socket off to an abstract method called s
Note that we could pass in the InputStream and OutputStream from Socket

5 The semantics of the java.lang.Number class say that an int will be returned from intValue

that so long as a class honors Number’s interface, we’re okay in using it for port values.

CKETS

of the Socket itself, but Socket carries with it some information for which derived
classes might have a use, and it’s marginally simpler to pass in the Socket instead of
the I/O streams.

We mark serve as abstract because I don’t want to have a default implementation
ritance
reate a
f those
 Doing
hrough
rveable
antages

affold-

Neward10_06_12.fm Page 254 Tuesday, June 13, 2000 11:54 AM
254 CHAPTER 10 SO

for it. The whole point of SocketServer is to serve as an implementation-inhe
base class; creating a SocketServer on its own would be pointless. We could c
Serveable interface, with the serve method as its own method, and take one o
in the SocketServer constructor, instead of using implementation-inheritance.
so would be more awkward, since specifying the name of the service to load (t
the configuration information) would also have to have the name of the Se
instance to create at the same time. Nevertheless, there are some definite adv
to this approach, and we’ll do something just like this in the next section.

10.2.2 Example: Echo2Service

Let’s see what EchoService looks like now that we’ve refactored some of the sc
ing code regarding sockets into the base SocketServer class:

import java.io.*;

import java.net.Socket;

public class Echo2Service

extends com.javageeks.gjas.services.SocketServer

{

public Echo2Service()

{

super(7);

}

/**

* Handle a connection

*/

public void serve(Socket socket)

throws Exception

{

Reader fromSocket =

new InputStreamReader(socket.getInputStream());

Writer toSocket =

new OutputStreamWriter(socket.getOutputStream());

char[] buffer = new char[1024];

int c;

while ((c = fromSocket.read(buffer)) != -1)

{

toSocket.write(buffer, 0, c);

toSocket.flush();

}

}

}

255

If you compare this version to the version a few pages back, we’ve added functional-
ity—not only can we specify one via SocketServer’s default configuration information
handling, but we default to 7 if one isn’t specified—while reducing the number of
lines in the code. This is definitely moving in the right direction.

ecuting
request
h dedi-
putting
 at the

t. Con-
anager
s Con-
imple-
er will
tion of
revent
er will
essary)

ection-
 two of
ber on
antiate
threads
r Con-
ber of

worthy
g class

rt from
trategy

 most of
te. How-
Connec-
ich is the
te across

Neward10_06_12.fm Page 255 Tuesday, June 13, 2000 11:54 AM
CONNECTION AND CONNECTIONMANAGER

10.3 CONNECTION AND CONNECTIONMANAGER

SocketServer suffers from the same problem as its predecessors. Because it is ex
within its own thread, each request is serialized. We must finish with the first
before we can move on the next. This is no good, especially when dealing wit
cated Services like EchoService. We’ve effectively undone all our hard work
Threads into the system to go right back to a single-client system, at least
Socket level.

Before we dive into the code, let me describe precisely what is being buil
nectionManager (listing 10.5) will create Connection instances, just as ServerM
creates Service instances. The idea is that if a user creates a class that implement
nection, we can plug them into ConnectionManager just as we plug Service-
menting classes into ServerManager and it all just works. ConnectionManag
farm out each Connection to a separate Thread in order to achieve paralleliza
client responses, up to a user-definable set number of Threads (in order to p
denial-of-service attacks from crippling the entire JVM). ConnectionManag
also, therefore, be responsible for shutting down these Connections (if nec
when the stop request comes through.6

Once ServerManager creates the ConnectionManager instance, Conn
Manager must now obtain three pieces of information in order to continue,
which are vital to its ability to function. First, it needs to know the port num
which to listen (required), and it needs to know the name of the Class to inst
in order to handle the client request (also required). Optionally, it also has a
argument, which indicates the number of threads to create in the thread pool fo
nections. If no argument is specified, then it is assumed that an infinite num
Threads can be created, which is dangerous in any but the most secure and trust
environments. In addition, because the loading of the Connection-implementin
is critical if ConnectionManager is to support the whole load-on-the-fly suppo
chapter 2, we also provide an optional loader property, which is a ClassLoaderS
instance to use to load the Connection class when starting.

6 In the source code available on the publisher’s web site, this is actually not implemented, since
these Services are stateless anyway, and will not require more than a second or two to comple
ever, ConnectionManager is still responsible for the Connections it maintains. If you write a
tion that takes longer (and won’t seriously muck things up if you kill it halfway through, wh
other reason I didn’t implement it), then you need to have ConnectionManager.stop itera
each Thread and call stop on it.

CKETS

Got it? Let’s take a look at the code, then:

Listing 10.5 Code for ConnectionManager

Neward10_06_12.fm Page 256 Tuesday, June 13, 2000 11:54 AM
256 CHAPTER 10 SO

package com.javageeks.gjas.services;

import com.javageeks.gjas.*;

import com.javageeks.classloader.ClassLoaderStrategy;

import com.javageeks.classloader.StrategyClassLoader;

import EDU.oswego.cs.dl.util.concurrent.Callable;

import EDU.oswego.cs.dl.util.concurrent.Executor;

import EDU.oswego.cs.dl.util.concurrent.ThreadFactory;

import EDU.oswego.cs.dl.util.concurrent.ThreadFactoryUser;

import EDU.oswego.cs.dl.util.concurrent.PooledExecutor;

import EDU.oswego.cs.dl.util.concurrent.ThreadedExecutor;

import EDU.oswego.cs.dl.util.concurrent.DirectExecutor;

import java.io.InputStream;

import java.io.OutputStream;

import java.io.IOException;

import java.net.ServerSocket;

import java.net.Socket;

import java.util.Vector;

/**

* ConnectionAdapter is an Adapter (see the GOF book) class that ties

* together a Connection instance and a Thread to run it in. Java purists

* will immediately cringe at the use of the non-private member fields in

* this class, and claim that they should be initialized via a constructor

* instead of by direct manipulation (see run() in ConnectionManager). I

* won't argue that they could be initialized that way. However, because

* ConnectionAdapter isn't intended as a reusable component, but as an

* integral part of the ConnectionManager component (it began life as an

* anonymous class inside of ConnectionManager, that's how tightly these

* two are tied together), and therefore subject to some relaxation of the

* "normal" rules regarding encapsulation.

*

* One interesting trick it makes use of is the "Runnable finish;" field.

* ConnectionManager sets this field to an anonymous Runnable class instance

* that ConnectionAdapter must call before it shuts down completely; this

* is what helps ConnectionManager keep track of the Connections still

* outstanding. I could have, certainly, simply exposed the m_connections

* Vector in ConnectionManager through methods like "add(Connection c)" and

* "remove(Connection c)", but even then there could be more than one

* ConnectionManager running, so I would have had to have a ConnectionManager

* reference in ConnectionAdapter, as well. This is more elegant, in my

* opinion, and keeps the "cleanup" logic in the precise place where it

* should be--in the ConnectionManager class code.

*/

class ConnectionAdapter

implements Runnable

{

257

public void run()

{

try

{

connection.serve(socket);

Neward10_06_12.fm Page 257 Tuesday, June 13, 2000 11:54 AM
CONNECTION AND CONNECTIONMANAGER

socket.close();

finish.run();

}

catch (InterruptedException intEx)

{

// Do nothing

}

catch (Exception ex)

{

ServerManager.instance().log(ex);

}

finally

{

// Close the Socket

try { socket.close(); }

catch(java.io.IOException ioEx) { }

ServerManager.instance().log(

getClass().getName() + ":" +

"Socket closed");

}

}

Connection connection;

Socket socket;

Runnable finish;

}

/**

* ConnectionManager is a ThreadedServer that specifically manages a single

* type of socket connection between this host and some anonymous client.

*/

public class ConnectionManager extends SocketServer

{

// Internal members

//

private Executor m_executor = null;

private Vector m_connections = new Vector();

private Class m_connectionClass = null;

private static int s_count = 0;

private ConfigProperty propThreads =

new ConfigProperty("threads", new Integer(1),

"Maximum number of threads to use");

private ConfigProperty propType =

new ConfigProperty("type", new String(""),

"Connection class to use");

private ConfigProperty propLoader =

CKETS

new ConfigProperty("loader", ClassLoaderStrategy.class,

null, null,

"ClassLoaderStrategy instance to use " +

"to load Connection instances",

null);

Neward10_06_12.fm Page 258 Tuesday, June 13, 2000 11:54 AM
258 CHAPTER 10 SO

private ConfigProperties m_configInfo =

new ConfigProperties(super.getConfigInfo(), new ConfigProperty[]

{

propThreads,

propType,

propLoader

});

/**

* Start the Service.

*/

public void start()

throws Exception

{

setState(STARTING);

ServerManager.log(

"ConnectionManager: Loaded by " +

getClass().getClassLoader().getClass().getName());

// Determine which Executor to use; unless the "threads"

// ConfigProperty has been modified, we default to using

// a ThreadedExecutor

switch (((Integer)propThreads.getValue()).intValue())

{

case 0:

m_executor = new ThreadedExecutor();

break;

case 1:

m_executor = new DirectExecutor();

break;

default:

Integer numThreads =

(Integer)propThreads.getValue();

m_executor =

new PooledExecutor(numThreads.intValue());

((PooledExecutor)m_executor).waitWhenBlocked();

break;

}

ServerManager.log(getClass().getName() + ": " +

"Executor : " + m_executor.toString());

// Determine Connection Class to use

String name = (String)propType.getValue();

if (name.equals(""))

{

throw new Exception("You must specify a \"type\" " +

"argument to ConnectionManager");

259

}

else

{

ServerManager.log(

getClass().getName() + ": Using " +

Neward10_06_12.fm Page 259 Tuesday, June 13, 2000 11:54 AM
CONNECTION AND CONNECTIONMANAGER

name + " as Connection type");

// Determine if we've been given a specialized

// ClassLoader instance to use; otherwise, just use

// whatever ClassLoader loaded us

ClassLoaderStrategy strat =

(ClassLoaderStrategy)propLoader.getValue();

if (strat == null)

{

ServerManager.log(

getClass().getName() + ": Using " +

getClass().getClassLoader().getClass().getName()

+ " as ClassLoader fo r " + name);

m_connectionClass = Class.forName(name);

}

else

{

ServerManager.log(

getClass().getName() + ": Using " +

strat.getClass().getName() + " as ClassLoader " +

"for " + name);

StrategyClassLoader scl =

new StrategyClassLoader(strat);

m_connectionClass = scl.loadClass(name);

}

}

// Create a ThreadFactory that gives us a bit more

// information in the Thread label; useful for tracing and

// debugging. We only need to do this where we're using

// Threads other than the 'main' Thread. (Both

// ThreadedExecutor and PooledExecutor are ThreadFactoryUser-

// implementing classes.)

if (m_executor instanceof ThreadFactoryUser)

{

((ThreadFactoryUser)m_executor).setThreadFactory(

new ThreadFactory()

{

public Thread newThread(Runnable cmd)

{

return new Thread(cmd,

m_connectionClass.getName() + s_count++);

}

});

}

// Call up the chain so SocketServer can do its thing

super.start();

CKETS

}

/**

*
*/

public ConfigProperties getConfigInfo()

Neward10_06_12.fm Page 260 Tuesday, June 13, 2000 11:54 AM
260 CHAPTER 10 SO

{

return m_configInfo;
}

/**
*

*/
public void setConfigInfo(ConfigProperties props)

{
m_configInfo.set(props);

}

/**
*

*/
public void serve(Socket socket)

throws Exception
{

// Create the Connection instance, place it in our list
final Connection connection =

(Connection)m_connectionClass.newInstance();
m_connections.addElement(connection);

// On each connection, create a new Runnable to be
// executed within the Executor to do the actual work

ConnectionAdapter ca = new ConnectionAdapter();
ca.connection = connection;

ca.socket = socket;
ca.finish = new Runnable()

{
public void run()

{
m_connections.removeElement(connection);

}
};

// The "finish" Runnable in ConnectionAdapter
// provides a Java-acceptable way of performing

// a callback into this object to remove the
// Connection object without having to (a) expose

// the m_connections Vector to outside use via
// "add" and/or "remove" methods, or (b) make

// the m_connections Vector package-available
// by reducing the 'private' access specifier to

// '' (nothing, which is package access).

m_executor.execute(ca);
}

}

261

Again, as with SocketServer, this class is nontrivial in parts.
First, take a look at the initialization of the ConfigProperties instance for the

ConnectionManager class. Because we want to preserve SocketServer’s configuration
information while at the same time adding our own, we use the ConfigProperties con-

roperty
time-

”, and
der ”
 String
specify
erty to

r (most
rn load

e con-
of). By
ager is

fers the
 attacks
 a max-

ection-
as only
Thread
 thread
nique).
eates a
stance

ad and
 placed
d (and

private
no way
ection
s Run-
 to the

rmance-

Neward10_06_12.fm Page 261 Tuesday, June 13, 2000 11:54 AM
CONNECTION AND CONNECTIONMANAGER

structor that takes both a ConfigProperties instance and an array of ConfigP
instances. This then gives ConnectionManager five properties: “port ” and “
out ”, which SocketServer will recognize and handle, and “threads ”, “type

“loader ”, which ConnectionManager itself will handle. Also, because the “loa

property is a nonbasic type (that is, it’s a ClassLoaderStrategy instance, not a
or an Integer), we use the longer form of the ConfigProperty constructor to
the type independently of the value. We set the value of the “loader ” prop
be null ; this means that the ClassLoader that loaded the ConnectionManage
likely the Java App/Ext-ClassLoader pair, the bootstrap ClassLoader) will in tu
the Connection-implementing class specified in “type ”.

Because ConnectionManager is responsible for the threading policy of th
nections, it uses Lea’s Executor classes to manage its thread pools (or lack there
default, the “threads ” property is set to 0, indicating that ConnectionMan
free to fire off a Thread per connect. This is the easiest setting to use, and of
best performance7 of the three, but opens up the possibility of denial-of-service
by malicious clients; instead, in an untrusted environment, it’s far safer to use
imum number of Threads in a ThreadPool.

In order to better help track down the threads during execution, Conn
Manager has its Executor use a custom ThreadFactory (a simple interface that h
one responsibility—return new Thread objects when asked) in order to set the
names to something meaningful. Here, ConnectionManager sets the name of the
to be that of the Connection type itself plus a static count (to keep the names u

On each connection, within the serve method, ConnectionManager cr
new instance of the Connection type, then creates a new ConnectionAdapter in
to go with it. ConnectionAdapter serves as the glue that ties the created Thre
the Connection instance together. It implements Runnable , allowing it to be
as the target of a Thread, and calls the Connection instance’s serve metho
catches any exceptions thrown from there, as well).

ConnectionManager stores each newly created Connection instance in a
Vector called m_connections . However, because ConnectionManager has
of knowing when the Connection is finished, it cannot remove the Conn
instance from the Vector. Instead, ConnectionManager creates an anonymou
nable instance to call remove on the Vector, and hands this Runnable instance

7 Using a fixed number requires some tuning, and using only one thread is certainly less perfo
friendly.

CKETS

ConnectionAdapter. Rather than place the Runnable instance (finish) within a
Thread, however, ConnectionAdapter calls its run directly.

This approach may seem odd to some Java programmers. In fact, it’s not a com-
mon idiom within Java to establish this kind of callback. Some would be tempted to

anager
ection-
have to
 correct
ility to
ample,
ection
ection-
anager,
ncapsu-
ection-
e with

 when-

e in the
mpler:

service,
 about

Neward10_06_12.fm Page 262 Tuesday, June 13, 2000 11:54 AM
262 CHAPTER 10 SO

provide addConnection and removeConnection methods to ConnectionM
and have the ConnectionAdapter call those. However, because multiple Conn
Manager instances can be running simultaneously, ConnectionAdapter would
have a reference to the ConnectionManager that created it in order to call on the
ConnectionManager. Moreover, it really isn’t ConnectionAdapter’s responsib
know what sort of internal bookkeeping ConnectionManager is doing. If, for ex
ConnectionManager later wants to track start and stop times for the Conn
instances, that’s ConnectionManager’s business, and has nothing to do with Conn
Adapter. By using this anonymous Runnable instance built within ConnectionM
the necessary cleanup measures required at the end of a Connection call remain e
lated within ConnectionManager. Within two tightly coupled classes such as Conn
Manager and ConnectionAdapter, this is likely less of a concern than it would b
less-coupled classes, but it never hurts to still try to practice good encapsulation
ever possible.

That’s it for ConnectionManager.

10.3.1 Example: EchoConnection

Once we’ve refactored all that code back into ConnectionManager, however, cod
corresponding service classes, like EchoConnection, should be much, much si

public class EchoConnection
implements Connection

{
public void serve(Socket socket)

throws Exception
{

Reader fromSocket =
new InputStreamReader(socket.getInputStream());

Writer toSocket =
new OutputStreamWriter(socket.getOutputStream());

char[] buffer = new char[1024];
int c;

while ((c = fromSocket.read(buffer)) != -1)

{
toSocket.write(buffer, 0, c);

toSocket.flush();
}

}
}

In twenty lines, we now have a socket service that fully implements the Echo
is scalable, and is trivial to maintain. What’s more, we don’t have to worry

263

opening the server port; we can open multiple Echo listeners on different ports,8 and
we can control the number of concurrent requests we can handle, all through param-
eters to the ConnectionManager’s configuration information.

Consider the ramifications of what we’ve done. We’ve managed to create a server
-proof,
 it now
tations.

ment a
P, let’s

ve into
n addi-
ing in

f that’s
 can be
inish it
 we are
ou can

sts and
nd the
se. The
tent of

se you.
 server
monly
es, and
asily be
be exe-

educe to
rvers use

usly not
ing end-
et and a
P is not

ication.

Neward10_06_12.fm Page 263 Tuesday, June 13, 2000 11:54 AM
CONNECTION AND CONNECTIONMANAGER

framework that requires all of twenty lines to implement a Thread-pooled, client
scalable socket-based client/server architecture. What’s more, as we’ll soon see,
becomes almost completely trivial to write sophisticated socket-based implemen

10.3.2 Example: HTTPConnection

The true test of the ConnectionManager system comes when we try to imple
more complex protocol. Since everybody is going nuts over the Web and HTT
see just how difficult it is to build an HTTP server. One caveat before we di
this: We are not going to build a full-fledged, production-quality web server. I
tion to being a topic that would require a book in itself, it would be head
entirely the wrong direction. You can buy (or download for free) web servers i
all you’re looking for. This is simply a demonstration to show you how easily it
done with the GJAS framework so far (listing 10.5); I’m not suggesting you f
off, although you could without too much trouble. Given that, however, when
finished, we will have a 100 percent HTTP 1.0-compliant HTTP server that y
easily extend (or incorporate) into your own projects.

The HTTP 1.0 protocol is a stateless protocol, consisting of client reque
server responses. A client sends a request consisting of a command, the URL, a
HTTP version it expects back, and waits while the server formulates the respon
response consists of a number of headers, followed by a blank line and the con
the resource requested.

Nowhere in this discussion do we ever mention HTML, which may surpri
HTML and HTTP aren’t as tightly integrated as one might suspect. An HTTP
can serve up all kinds of information beyond just HTML pages; XML is one com
discussed option. The key is that it must be a format the client knows, recogniz
understands how to present. HTML is perfect for this purpose, but it could e
anything else, including PDF files, PostScript files, or even script command to
cuted on the client.9

8 This is another way to achieve scalability. By having the server listen on multiple ports, we r
almost nothing the chance of a client not being able to reach a server. Internet Relay Chat se
this with great success.

9 Now there’s a switch. Asking the server to do things on the client? Fully possible, although obvio
from within your standard web browser. What’s more, it can make copying files around and do
user configuration a snap—just ask users to point their “ScriptClient” to the company intran
particular URL, and let the client interpret and execute the returned script. Remember, HTT
intrinsically tied to HTML, and could, in fact, be used in a variety of situations for commun

CKETS

Once the returning content is identified and ready to send back, we first write a
header indicating the HTTP version level we are sending back. In a more feature-filled
server, we would examine the HTTP header sent by the client and determine if the cli-
ent can support our highest-support HTTP version. Since there are only two versions

rk, not

ith the
e is for
 range

outside
e them
 simply
st as it

ithout
meters
-down-
s in less

10.6).

Neward10_06_12.fm Page 264 Tuesday, June 13, 2000 11:54 AM
264 CHAPTER 10 SO

of HTTP, 1.0 and 1.1, and we want to remain tightly focused on the framewo
the HTTP protocol, we only send back HTTP/1.0-compliant information.

After the “HTTP/1.0” string, we send back a return code that complies w
HTTP standard. Codes in the 200 range are generally “OK” codes, 300 rang
relocation or redirection codes, the 400 range is for client errors, and the 500
is for server errors. In order to make them easily reusable (in case we have code
of the HttpConnection class that wants to work with these constants), we mak
part of the HttpConstants interface, and anybody who wants to use them can
implement that interface. It’s a blatant misuse of the interface concept (at lea
was originally intended, anyway), but it works.

Note that this web server is rudimentary—it offers no POST support (w
which HTML forms are pretty useless), no URL parameter support (any para
will be assumed to be part of the URL file path), no cookie support, just basic file
load and file-system-browsing capabilities. Even so, it provides these capabilitie
than 500 lines of commented Java code, including about 75 constants lines (listing

/**

* A cheap way of doing #defines in Java; just implement this interface

* (which costs you nothing), and you can refer to them directly

*/

interface HttpConnectionConstants

{

// 2xx: "OK" response codes

public static final int HTTP_OK = 200;

public static final int HTTP_CREATED = 201;

public static final int HTTP_ACCEPTED = 202;

public static final int HTTP_NOT_AUTHORITATIVE = 203;

public static final int HTTP_NO_CONTENT = 204;

public static final int HTTP_RESET = 205;

public static final int HTTP_PARTIAL = 206;

// 3xx: relocation/redirect response codes

public static final int HTTP_MULT_CHOICE = 300;

public static final int HTTP_MOVED_PERM = 301;

public static final int HTTP_MOVED_TEMP = 302;

public static final int HTTP_SEE_OTHER = 303;

public static final int HTTP_NOT_MODIFIED = 304;

public static final int HTTP_USE_PROXY = 305;

// 4xx: client error codes

public static final int HTTP_BAD_REQUEST = 400;

public static final int HTTP_UNAUTHORIZED = 401;

Listing 10.6 Code demonstrating building a web server

265

public static final int HTTP_PAYMENT_REQUIRED = 402;

public static final int HTTP_FORBIDDEN = 403;

public static final int HTTP_NOT_FOUND = 404;

public static final int HTTP_BAD_METHOD = 405;

public static final int HTTP_NOT_ACCEPTABLE = 406;

Neward10_06_12.fm Page 265 Tuesday, June 13, 2000 11:54 AM
CONNECTION AND CONNECTIONMANAGER

public static final int HTTP_PROXY_AUTH = 407;

public static final int HTTP_CLIENT_TIMEOUT = 408;

public static final int HTTP_CONFLICT = 409;

public static final int HTTP_GONE = 410;

public static final int HTTP_LENGTH_REQUIRED = 411;

public static final int HTTP_PRECON_FAILED = 412;

public static final int HTTP_ENTITY_TOO_LARGE = 413;

public static final int HTTP_REQ_TOO_LONG = 414;

public static final int HTTP_UNSUPPORTED_TYPE = 415;

// 5xx: server error codes

public static final int HTTP_SERVER_ERROR = 500;

public static final int HTTP_INTERNAL_ERROR = 501;

public static final int HTTP_BAD_GATEWAY = 502;

public static final int HTTP_UNAVAILABLE = 503;

public static final int HTTP_GATEWAY_TIMEOUT = 504;

public static final int HTTP_VERSION = 505;

}

/**

* This class provides a simplistic HTTP/1.0 service; it uses only a single

* root (as opposed to other Web servers, which allow for multiple "virtual

* roots" in their setup), and offers only the most rudimentary of HTTP

* protocol services. Because HttpConnection is a transient type (that is,

* multiple HttpConnection instances will come and go without warning or

* guarantee), we use static instances to carry expensive resources (like

* the properties we use) from instance to instance without having to reload

* them each time.

*

* Much of this code is cribbed from the WebServer.java example from the

* JavaSoft site; however, if you're familiar with that code, you'll notice

* that this version is much smaller, owing to the fact that GJAS factors out

* much of the complexity unrelated to HTTP (like thread pools).

*/

public class HttpConnection

implements Connection, HttpConnectionConstants

{

static final String EOL = new String(new byte[] { (byte)'\r', (byte)'\n' });

/**

*

*/

public void serve(Socket socket)

throws Exception

{

// Before we even do anything, do we need to abort?

if (s_exception != null)

throw s_exception;

CKETS

// Get streams from the Socket

InputStream in = socket.getInputStream();

OutputStream out = socket.getOutputStream();

// Pick apart the URL sent; we only want the first line, really

Properties headers = new Properties(); // HTTP headers we send back

Neward10_06_12.fm Page 266 Tuesday, June 13, 2000 11:54 AM
266 CHAPTER 10 SO

try

{

// Pick out the request, load the content and the headers

parseRequest(in, headers);

// Send back our HTTP/1.0 response

sendResponse(out, headers);

}

catch (Exception ex)

{

// Send the server error back to the client

sendError(HTTP_SERVER_ERROR, ex.toString(), headers);

throw ex;

}

finally

{

// Send it back down the stream

out.flush();

in.close();

out.close();

}

}

/**

*

*/

public void parseRequest(InputStream in, Properties headers)

throws IOException

{

headers.put("_HTTPVersion", "1.0");

headers.put("Server", "GJAS-HttpConnection/1.0");

headers.put("Date", new Date());

// Pick out the command & URL in the incoming request

BufferedReader reader =

new BufferedReader(new InputStreamReader(in));

String line;

String clientCommand = null;

while ((line = reader.readLine()) != null)

{

if (line.startsWith("GET"))

{

clientCommand = line;

break;

}

}

if (clientCommand == null)

267

{

sendError(HTTP_BAD_METHOD, "Server only supports GET", headers);

return;

}

// Pick out the command & URL

Neward10_06_12.fm Page 267 Tuesday, June 13, 2000 11:54 AM
CONNECTION AND CONNECTIONMANAGER

String URL = clientCommand.substring(4);

URL = URL.substring(0, URL.indexOf(" "));

// Turn the URL into a local filename

File target;

if (URL.equals("/"))

{

target = new File(s_root.getCanonicalPath());

}

else

{

String filename = new String(URL.replace('/', File.separatorChar));

if (filename.startsWith(File.separator))

filename = filename.substring(1);

target = new File(s_root, filename);

}

// Find file/directory

if (!target.exists())

{

sendError(HTTP_BAD_REQUEST, "URL '" + URL + "' not found", headers);

return;

}

if (target.isDirectory())

{

File targetIndex = new File(target, "index.html");

if (targetIndex.exists())

{

// Send the file back

target = targetIndex;

headers.put("_ReturnCode", HTTP_O K + " OK");

headers.put("_Content", new FileInputStream(target));

headers.put("Last-modified", new Date(target.lastModified()));

headers.put("Content-length", new Long(target.length()));

headers.put("Content-type", "text/html");

}

else

{

// Send the contents of the directory back

String html = listDirectory(URL, target);

headers.put("_ReturnCode", HTTP_O K + " OK");

headers.put("_Content",

new ByteArrayInputStream(html.getBytes()));

headers.put("Last-modified", new Date());

headers.put("Content-length", new Long(html.length()));

headers.put("Content-type", "text/html");

CKETS

}

}

else

{

// Send the file back

Neward10_06_12.fm Page 268 Tuesday, June 13, 2000 11:54 AM
268 CHAPTER 10 SO

headers.put("_ReturnCode", HTTP_O K + " OK");

headers.put("_Content", new FileInputStream(target));

headers.put("Last-modified", new Date(target.lastModified()));

headers.put("Content-length", new Long(target.length()));

String fname = target.getName();

int ind = fname.lastIndexOf('.');

if (ind > 0)

headers.put("Content-type",

s_suffixMap.get(fname.substring(ind)));

else

headers.put("Content-type", "unknown/unknown");

}

}

private void sendError(int errCode, String errText, Properties headers)

{

headers.put("_ReturnCode", errCod e + " " + errText);

}

private String listDirectory(String URL, File dir)

throws IOException

{

StringBuffer ret = new StringBuffer();

// Header information

ret.append("<TITLE>Directory o f " + URL + "</TITLE>" + "\n<P>\n");

if (!dir.getCanonicalPath().equals(s_root.getCanonicalPath()))

ret.append("Up one directory
\n<P>\n\n");

// Print list of files

String[] list = dir.list();

for (int i=0; list != null && i<list.length; i++)

{

File item = new File(dir, list[i]);

if (item.isDirectory())

{

ret.append("" +

list[i] + "/
\n");

}

else

{

ret.append("" +

list[i] + "
\n");

}

}

// Print trailer

ret.append("<P><HR>
<I>" + new Date() + "</I>
");

ret.append("<I>Generated by the Generic Java Application Server, " +

269

getClass().getName() + " service</I>");

return new String(ret);

}

/**

Neward10_06_12.fm Page 269 Tuesday, June 13, 2000 11:54 AM
CONNECTION AND CONNECTIONMANAGER

*

*/

public void sendResponse(OutputStream os, Properties headers)

throws IOException

{

PrintWriter pw = new PrintWriter(os);

// Send HTTP/1.0 <retCode> <text> line

pw.print("HTTP/" + headers.get("_HTTPVersion") + " " +

headers.get("_ReturnCode"));

pw.write(EOL);

// Send headers, one at a time

for (Enumeration enum = headers.propertyNames();

enum.hasMoreElements();)

{

String key = (String)enum.nextElement();

// Skip the lines starting with an underscore; those are for

// HttpConnection internal use only

if (key.startsWith("_"))

continue;

// Otherwise, print the key, a colon, the property, and an EOL

pw.print(key + " : " + headers.get(key) + EOL);

}

// Write blank line after headers to mark end of headers section

pw.write(EOL);

pw.flush();

// Read the content from the specified InputStream, and send it down

InputStream content = (InputStream)headers.get("_Content");

if (content != null)

{

byte[] buffer = new byte[1024];

int nRead = 0;

while ((nRead = content.read(buffer)) != -1)

//pw.print(new String(buffer, 0, nRead));

os.write(buffer, 0, nRead);

// Write one more blank line, just for luck

pw.write(EOL);

}

// Ba-whoosh!

pw.flush();

}

// Internal members

CKETS

//

private static Exception s_exception = null;

// Reserved solely for exceptions generated from the static init block

private static Properties s_properties = null;

private static File s_root = null;

Neward10_06_12.fm Page 270 Tuesday, June 13, 2000 11:54 AM
270 CHAPTER 10 SO

private static Hashtable s_suffixMap = new Hashtable();

// Internal methods

//

/**

* Static initializer block--executed when this class is loaded into its

* namespace.

*/

static

{

// Load the s_properties instance with our http-properties file

loadProperties();

// Fill the suffix map with well-known file types

fillMap();

}

/**

*

*/

private static void loadProperties()

{

try

{

// Load the properties from disk

s_properties = new Properties();

InputStream propFileStream;

try

{

propFileStream = new FileInputStream(".http-properties");

s_properties.load(propFileStream);

s_properties.list(System.out);

propFileStream.close();

}

catch (IOException ioEx)

{ }

// Set up our instance data from the Properties read in

String r = s_properties.getProperty("http-root");

if (r != null)

{

s_root = new File(r);

if (!s_root.exists())

{

//s_exception =

new FileNotFoundException("Root doesn't exist!");

s_root = null;

}

}

271

// Use defaults

if (s_root == null)

s_root = new File(System.getProperty("user.dir"));

ServerManager.instance().log(

Neward10_06_12.fm Page 271 Tuesday, June 13, 2000 11:54 AM
CONNECTION AND CONNECTIONMANAGER

HttpConnection.class.getName() + ": http-root = " +

s_root.getCanonicalPath());

}

catch (IOException ioEx)

{

// Nothing to do, so just move on

s_exception = ioEx;

ServerManager.instance().log(ioEx);

}

}

/**

*

*/

private static void fillMap()

{

s_suffixMap.put("", "content/unknown");

s_suffixMap.put(".uu", "application/octet-stream");

s_suffixMap.put(".exe", "application/octet-stream");

s_suffixMap.put(".ps", "application/postscript");

s_suffixMap.put(".zip", "application/zip");

s_suffixMap.put(".sh", "application/x-shar");

s_suffixMap.put(".tar", "application/x-tar");

s_suffixMap.put(".snd", "audio/basic");

s_suffixMap.put(".au", "audio/basic");

s_suffixMap.put(".wav", "audio/x-wav");

s_suffixMap.put(".gif", "image/gif");

s_suffixMap.put(".jpg", "image/jpeg");

s_suffixMap.put(".jpeg", "image/jpeg");

s_suffixMap.put(".htm", "text/html");

s_suffixMap.put(".html", "text/html");

s_suffixMap.put(".txt", "text/plain");

s_suffixMap.put(".text", "text/plain");

s_suffixMap.put(".c", "text/plain");

s_suffixMap.put(".cc", "text/plain");

s_suffixMap.put(".cpp", "text/plain");

s_suffixMap.put(".c++", "text/plain");

s_suffixMap.put(".h", "text/plain");

s_suffixMap.put(".hh", "text/plain");

s_suffixMap.put(".hpp", "text/plain");

s_suffixMap.put(".h++", "text/plain");

s_suffixMap.put(".pl", "text/plain");

s_suffixMap.put(".java", "text/plain");

}

}

CKETS

It’s a rather lengthy swath of code (it weighs in at just over 400 lines in a text editor),
but think about what it represents—you now have complete control over how a web
server can act. This offers powerful implications for your enterprise projects. Think
about this. The web is one of the most powerful media by which to deliver informa-

d now

et envi-
 Servlet
r texts.
ncept:

of CGI
h they
ing up
 on top
scussed
torage-
a URL-
ck. (In

, fault-
erform
ample,
s via a

layer is
er, the
CP/IP,
n hide

onitor-
t to do
motely
ds like

engine,
r.” The
ng you
 just as

Neward10_06_12.fm Page 272 Tuesday, June 13, 2000 11:54 AM
272 CHAPTER 10 SO

tion across the Internet. Web servers are scalable, adaptable, and flexible, an
they’re a part of your programming arsenal.

10.3.3 Servlets

From the HttpConnection, it’s a short jump into providing a full-fledged Servl
ronment. As tempting as it would be, I’m not going to jump into Servlets, the
API, or example Servlets here, principally because Servlets are well covered in othe
Instead, I want to point out some interesting concepts underlying the Servlet co

• Servlets can be a poor man’s RMI.
Servlets are really all about communication—they’re a simple marriage
and HTTP, executing inside of a web server for best performance, althoug
don’t have to be inside the server. This also means that Servlets, by serv
files other than HTML documents, can serve as a simple middleware layer
of HTTP. For example, the RemoteStorageServer/RemoteStorageClient di
in chapter 12: instead of using straight sockets, we could make the RemoteS
Server a servlet, and no specialized client would be required—just open
Connection to the server, and deserialize the resulting stream coming ba
fact, this is precisely the concept behind HTTP tunneling in RMI.)

• Servlets can be a poor man’s EJB.
Because many Web servers already provide some form of load-balancing
tolerance and/or clustering support, servlets are sometimes called upon to p
in roles more appropriate to EJB servers, containers, and Beans. For ex
consider the ubiquitous n-tier business system. The client communicate
middleware layer to the database. In the J2EE model, the middleware
EJB layered on top of RMI/IIOP; in a lightweight version of this, howev
middleware layer is a collection of Servlets, layered on top of straight T
sending and receiving Serialized objects. In this approach, the database ca
behind the firewall, so long as the web server has access to it.

• A lightweight Servlet engine can provide easy monitoring/configuration.
If your enterprise application wants to be easily configurable and/or m
able, embedding an instance of a Servlet engine—along with the Servle
the actual configuration or monitoring—allows administrators to re
check on the progress or status of your enterprise application. If this soun
a lot of work, it’s not. New Atlanta, makers of the ServletExec servlet
makes freely available a lightweight servlet engine it calls “ServletDebugge
intent is to allow Java developers to easily debug their servlets (by allowi
to execute the Servlet inside of an IDE or other debugger), but it would be

273

simple to embed the ServletDebugger into your enterprise application and kick
off the Servlet to do the administrative work.

Servlets are capable of much, much more than this. The above examples should
s aren’t

pinion
ervlets

arefully
n Sun’s
imple-
 within
ple for
ncepts

dle EJB
ralized

server.”

pability
a boot-
ap class
ver can

e client
 of the
t must
ore of
 of the
 server
 Class-

ication
idates).
Ls with
 appli-

art and

Neward10_06_12.fm Page 273 Tuesday, June 13, 2000 11:54 AM
ADVANCED SOCKET SERVICES

start you thinking about servlets in an entirely new light. Remember, servlet
just about HTML—servlets are a basic communications layer.

In fact, I’ve come to believe that most Java developers have a backward o
of servlets: where they see Servlets as bringing Java into the web server, I see S
as bringing HTTP into the larger world of Java application servers. If you look c
at a number of the Servlet implementations on the market (such as JRun, or eve
own reference implementation, JSWDK), you’ll notice not only are they all
mented in Java, but even the basic Web-serving capabilities are done as a Servlet
the more generic server framework. This is partially why it’s becoming so sim
Web server vendors to become EJB server vendors. Because the fundamental co
behind the two are so similar, it’s trivial to adapt their server framework to han
containers and Beans. A web server is just a specialized form of the more gene
Application Server. Or, to put it in O-O parlance, “A web server IS-A application

10.4 ADVANCED SOCKET SERVICES

Having gone this far, let’s now see how we can take sockets even farther.

10.4.1 SocketClassLoader and SocketClassService

In chapter 2, we talked about Java’s ClassLoader facility giving developers the ca
to retrieve bytecode from any resource; this extends to sockets as well. Given
strap client on the user’s local disk (to load the Java run time and a small bootstr
that knows to use the customized ClassLoader to retrieve the next classes), a ser
then provide the latest, up-to-date bytecode to a client when requested.

Doing so requires effort on the part of both the client and the server—th
must use the SocketClassLoader class, and the server must have an instance
SocketClassConnection running to respond to the client’s request. The clien
know, at run time, the host name and port of the server, which is typically m
an administrative detail than a developmental one. The server must be informed
full class name to retrieve, which is sent by the client in a plaintext string. The
can then either find the class (possibly from local disk, possibly through another
Loader), or simply close the port, indicating the class couldn’t be found.

For more control, an HTTP-like protocol could be used to offer more verif
(headers with content-length and possibly Java version expected are good cand
For that matter, the HttpConnection code itself could be used, accepting UR
.class extensions as a request to send back the actual bytecode. However, for an
cation of any size distributed in this way, the server will be hit a lot as users st

CKETS

close the application; to add web-serving duties to the same server could bog both the
web site and the SocketClassConnection service down to the point of impotence.

The SocketClassLoader (listing 10.7), as you might imagine, is pretty straight-
forward, given what was presented in the chapter on ClassLoaders.

Neward10_06_12.fm Page 274 Tuesday, June 13, 2000 11:54 AM
274 CHAPTER 10 SO

/**
* SocketClassLoader retrieves bytecode for a given class via a

* HTTP-like protocol.
*/

public class SocketClassLoader extends ClassLoader
implements ClassLoaderStrategy

{
/**

* Constructor.
*

* @param host TCP/IP host name to contact
* @param port TCP/IP port to contact host on

*/
public SocketClassLoader(String host, int port)

{
this(SocketClassLoader.class.getClassLoader(), host, port);

}
/**

* Constructor.
*

* @param host TCP/IP host name to contact
* @param port TCP/IP port to contact host on

*/
public SocketClassLoader(ClassLoader parent,

String host, int port)
{

// Establish the parent ClassLoader
//

super(parent);

// Store off Socket settings

//
m_host = host;

m_port = port;
}

/**
* Return byte array (which will be turned into a Class instance

* via ClassLoader.defineClass) for class
*/

public byte[] findClassBytes(String className)
{

try
{

// Connect to the host on port

Listing 10.7 Code for SocketClassLoader

275

Socket socket = new Socket(m_host, m_port);

BufferedReader reader =

new BufferedReader(new InputStreamReader(

socket.getInputStream()));

PrintWriter writer =

Neward10_06_12.fm Page 275 Tuesday, June 13, 2000 11:54 AM
ADVANCED SOCKET SERVICES

new PrintWriter(socket.getOutputStream());

// Send the class name

writer.println("Classname:" + className);

writer.flush();

// Get back the resulting bytecode, or get nothing back (an error)

String line = reader.readLine();

if (line.equals("Error"))

return null;

else if (line.startsWith("Content-Length"))

{

// Find out how much we're expecting back

int colonLoc = line.indexOf(":");
Integer l =

new Integer(line.substring(colonLoc + 1, line.length()));

byte[] classBytes = new byte[l.intValue()];

// Throw away any data between

// our current point in the stream

// and the first magic number of the Java .class file ('CA')

while (reader.read() != (int)0xCA)

;

// We already pulled back the first magic number of the class,

// so manually insert it into the byte array. Read the rest

// from the socket

classBytes[0] = (byte)0xCA;

for (int i=1; i<classBytes.length; i++)

classBytes[i] = (byte)reader.read();

return classBytes;

}

else

return null;
}

catch (UnknownHostException uhEx)

{

return null;

}

catch (IOException ioEx)

{

return null;

}

}

/**

* Return URL for resource given by resourceName

*/

CKETS

public URL findResourceURL(String resourceName)

{

return null;

}

/**

Neward10_06_12.fm Page 276 Tuesday, June 13, 2000 11:54 AM
276 CHAPTER 10 SO

* Return Enumeration of resources corresponding to

* resourceName.

*/

public Enumeration findResourcesEnum(String resourceName)

{

return null;

}

/**

* Return full path to native library given by the name

* libraryName.

*/

public String findLibraryPath(String libraryName)

{

return null;

}

/**

* ClassLoader-overridden method to retrive the bytes

*/

public Class findClass(String className)

throws ClassNotFoundException

{

byte[] classBytes = findClassBytes(className);

if (classBytes==null)

{

throw new ClassNotFoundException();

}

return defineClass(className, classBytes, 0, classBytes.length);

}

// Internal members

//

String m_host;

int m_port;

// To test this effectively from the CD, copy

// SocketClassLoader.class to a directory elsewhere on your

// hard drive. Start GJAS in a separate directory,

// then run SocketClassLoader from the command-line.

public static void main(String[] args)

throws Exception

{

// If Hello.class exists in the current directory, the

// bootstrap ClassLoader, which is always given first crack,

// will pick it up and load the class, instead of the

// SocketClassLoader.

File file = new File("Hello.class");

277

if (file.exists())

System.out.println("Warning--Hello.class exists " +

"in the current directory.

SocketClassLoader will NOT be used " +

"to retrieve the file; the primordial ClassLoader will.");

e given
ok for
 string.
terface,
s from

t unit-
e class
lo.class
 There-
r point

 part to
rovide:

Neward10_06_12.fm Page 277 Tuesday, June 13, 2000 11:54 AM
ADVANCED SOCKET SERVICES

// Connect to the local host on port 8085 to see if Hello can be

// loaded.

SocketClassLoader scl = new SocketClassLoader("localhost", 8085);

Class cls = scl.loadClass("Hello");

Object h = cls.newInstance();

}

}

The mechanics of SocketClassLoader should be apparent. Open a Socket to th
host on the given port, send a string with the class name requested, and lo
either a “Content-Length” string followed by the class bytecode, or an “Error”
Note that SocketClassLoader also implements the ClassLoaderStrategy in
which in turn allows it to be used in all the ClassLoaderStrategy-related classe
chapter 2.

SocketClassLoader comes with a main , in order to allow for independen
testing and verification that the basic mechanism works. If you put th
Hello.class in the same directory as the SocketClassLoader class, and run it, Hel
will be picked up by the bootstrap ClassLoader, and not by SocketClassLoader.
fore, if you wish to run this test, copy the SocketClassLoader over to anothe
on your directory tree, and run it from there.

The SocketClassLoaderConnection is also fairly trivial, thanks in no small
the scaffolding that GJAS and the SocketServer and ConnectionManager classes p

/**

* SocketClassLoaderConnection

*/

public class SocketClassLoaderConnection

implements Connection

{

/**

* Send class bytecode, if it can be found, back down the socket.

*/

public void serve(Socket socket)

throws Exception

{

ServerManager.instance().log(

getClass().getName() + ".serve(): " +

"Entered");

InputStream in = socket.getInputStream();

OutputStream out = socket.getOutputStream();

BufferedReader br = new BufferedReader(new InputStreamReader(in));

CKETS

PrintWriter pw = new PrintWriter(out);

String classname = br.readLine();

classname =

classname.substring(classname.indexOf(":")+1,

classname.length());

nce, we
wn the
parated
yclass”,
 in the

Neward10_06_12.fm Page 278 Tuesday, June 13, 2000 11:54 AM
278 CHAPTER 10 SO

ServerManager.instance().log(

getClass().getName() + ".serve(): " +

"Request : " + classname);

System.out.println("Request : " + classname);

// Find the file on the disk

try

{

FileInputStream inFile =

new FileInputStream("./" + classname + ".class");

// Tell SocketClassLoader how much data to expect

pw.println("Content-Length:" + inFile.available());

pw.flush();

// We have to use OutputStream directly here, because Writer

// and PrintWriter have no methods to write out bytes

byte[] buffer = new byte[1024];

int nRead = 0;

while ((nRead = inFile.read(buffer)) != -1)

out.write(buffer, 0, nRead);

out.flush();

// Write one more blank line, just for luck

pw.write("\r\n");

}

catch (FileNotFoundException ex)

{

ServerManager.instance().log(

getClass().getName() + ".serve(): " +

"Error finding class file");

ServerManager.instance().log(ex);

pw.println("Error");

}

finally

{

pw.flush();

}

}

}

SocketClassLoaderConnection, again, shouldn’t present any surprises. In this insta
attempt to read the class as a file off of the local disk, and send the bytecode do
socket. Note that if the class is part of a package, then the filename must be a dot-se
filename on the disk; that is, if a request comes in for the class “mypackage.m
SocketClassLoaderConnection looks for a file called “mypackage.myclass.class”

279

local directory. This is not, by any means, the only way classes could be resolved.
SocketClassLoaderConnection could, in turn, use its own ClassLoader to load the
classes (perhaps even the JDBCClassLoader mentioned in chapter 2 and explored in
chapter 12). The actual mechanics of how SocketClassLoaderConnection resolves its

it back

uest on
rd the

f a fire-
nect, it
ecting,
nother
hread-

t.java a

 to the
irector-
al secu-
hat the
ossible.
achine
ins the
ill not
B” can

ertising
server),
 name,
edirect
uffling.
nce the
rticular
orCon-
red, by
irector-
achines
cerned,

Neward10_06_12.fm Page 279 Tuesday, June 13, 2000 11:54 AM
ADVANCED SOCKET SERVICES

requests is unimportant for the moment. Once it finds the bytecode, it sends
down the socket to the client SocketClassLoader for use.

10.4.2 Concept: RedirectorService

One interesting application of sockets is the ability to accept the incoming req
a socket. Then, instead of providing the behavior requested, in turn, forwa
request to a socket on another server. This is, in fact, the primary function o
wall proxy server. It’s a simple concept: when the Redirector receives a client-con
opens a new Socket connection to the host/port combination to which it is redir
and simply hooks up the Sockets’ InputStreams and OutputStreams to one a
via a custom class, ThreadedPipeStream, which is an abstraction of the spin-a-T
to-loop-over-input-and-fire-it-down-the-OutputStream concept used by Clien
few pages back.

Usage

One potential use for this is to place RedirectorService on a machine accessible
public (in this case, referring to any clients using the system), having the Red
Service redirect to a machine with sensitive data on it within a firewall or speci
rity zone. For companies with sensitive data, for example, it is imperative t
machine containing the sensitive data be hidden from public eye as much as p
Using a Redirector, the development group can advertise machine “A” as the m
to connect to, and silently redirect all queries to machine “B,” which conta
actual sensitive data. This protects “B” in two ways: first, malicious users w
know about “B,” believing instead that the data is contained on “A.” Secondly, “
be configured to ignore any and all requests from any machine other than “A.”

We can also help reduce administrative costs by this same method; by adv
machine “A” as the front end to a particular socket-based service (such as a web
and having it redirect to machine “B,” we can vary the actual configuration,
even IP address of machine “B,” as necessary, so long as “A” knows where to r
it. This provides a tremendous advantage during network rerouting or IP sh
It also begins to touch on the basic nature of fault-tolerance and/or clustering, si
redirector can now choose from machines “B,” “C,” “D,” or “E,” based on pa
criteria (clustering) or availability (fault-tolerance). In fact, by using the Redirect
nection, services which used to run on machine “A” can now silently be cluste
having “A” run the RedirectorConnection (or its clustering cousin, ClusterRed
Connection, not implemented here) and choosing between the clustered m
without having to even notify the clients of the switch. As far as clients are con
they continue to access and use “A” just as they always have.

CKETS

10.4.3 Concept: FilterService

A close cousin to RedirectorService is FilterService, which takes a FilterInputStream
and/or a FilterOutputStream instance as a parameter, and passes all input and output
through the filter before sending it on to its destination (the sender or the server).

f client
ing the
tput or
ery the
opriate
nto an

es in a
’t exist,
medi-

ively, it
e page,
t could
ection

e them

require-
e client.

on the
ecipher
 server

aps for
lso, the
Stream

o it can’t

 by far to
pression/

Neward10_06_12.fm Page 280 Tuesday, June 13, 2000 11:54 AM
280 CHAPTER 10 SO

Usage

FilterService can offer basic statistics-gathering support, such as number o
requests, length (in time) of each request, or even identification of clients mak
requests.10 Also, the filter allows for editing or translation of either input, ou
both. For example, a corporation wants to give its managers the ability to qu
database using English instead of SQL. A FilterService could be used, with appr
FilterInputStream/FilterOutputStreams that translates the English request i
SQL statement, to pass on to any standard SQL engine.11

Alternative ideas are:

• On-the-fly modification or generation of HTML.
For example, a FilterService could ping the URL of each HREF link it se
returned HTML document, to make sure each link exists; if the link doesn
it could silently modify the HTML to put “(Broken Link)” in red text im
ately after the HREF tag, or perhaps remove the link altogether. Alternat
could postprocess HTML, inserting corporate headers and footers onto th
or adding advertising banners on Internet pages, and so forth. Finally, i
even generate HTML from non-HTML sources; for example, a FilterConn
could take Java or C++ files returned from an HTTP server and translat
into color-syntax-highlighted HTML files for easier reading.

• On-the-fly compression or uncompression of data.
Data can be stored on the server in compressed form, to minimize storage
ments on the server, and uncompressed by a FilterService on its way back to th

• On-the-fly encryption/decryption of data.
As with the compression/uncompression idea, input can be decrypted
way in, and output can be encrypted on the way out, for the client to d
upon receipt. By doing it this way, as opposed to encrypting it within the
itself, the server can be accessed in unencrypted form directly (perh
debugging, or because sources within a firewall are implicitly trusted). A
encryption formats can change simply by changing the FilterOutput
instance placed within the FilterService.

10 At least, as much as TCP/IP allows, sophisticated hackers can always “spoof” an IP address, s
be relied upon confidently or for security issues.

11 This really isn’t well-suited to the streaming nature of InputStream/OutputStream. It’s easier
consider a sample implementation whereby we do byte-for-byte replacement, such as the com
decompression of data, for example.

281

• Censorship of sensitive data to untrusted clients.
The FilterService can also be used to monitor data being retrieved from the
server. FilterService looks for particular keywords or tags to determine if the docu-
ment is of a sensitive nature; if it is, and the client is untrusted, or the document

ock the
erhaps
vely, it
of the

ection
lugged
ce.
ection-
l, why

e is one
zation.
rovides
t-based
e code
instead

. Now,
 inter-
g code
classes,
ported,
ormant
gn and
cations

e using
itional
rs serv-
s Java’s
ternet-
-aware

Neward10_06_12.fm Page 281 Tuesday, June 13, 2000 11:54 AM
SUMMARY

is not permitted to be electronically transmitted, the FilterService can bl
output from returning (sending a generic error message instead and p
noting the requestor’s IP headers for administrative review). Alternati
could simply remove the sensitive portions and allow the remainder
response to be sent.

10.4.4 Other types

Certainly, the above are not the only possibilities when considering Conn
types. Any sockets-based communication protocol can be implemented and p
into the ConnectionManager system by implementing the Connection interfa

It may seem odd that there is any separation whatsoever between Conn
Manager and SocketServer; if the features of ConnectionManager are so usefu
not roll them into SocketServer and call it done with that? Principally, the issu
of design—have each class in the system provide one, and only one, speciali
SocketServer provides the basic socket functionality, ConnectionManager p
scalable socket functionality. This way, if a need arises where a particular socke
system wouldn’t want the multi-instanced nature of Connections (perhaps th
in turn uses non-thread-safe classes or legacy system code), it can choose to
extend SocketServer.

10.5 SUMMARY

In this chapter, we extended our reach and availability outside of the local JVM
through sockets, clients in other JVMs (either local or remote) can connect and
act with the server and its services. More importantly, the necessary scaffoldin
to support scalable socket-based solutions was placed within reusable base
leaving service-writers to focus more tightly on the precise service being sup
instead of on how to write sockets code. Then we built Internet-standard-conf
services, including a basic HTTP-conformant web server. Even better, the desi
implementation of these services are such that they could be used within appli
outside of GJAS without modification.

We’re not done with sockets, not by a long shot. In later chapters, we’ll b
SocketServer and ConnectionManager over and over again as we expose add
services to clients via sockets. Java’s ability to use sockets so effortlessly now offe
ers the ability to reach out and touch the world. In fact, the ubiquitous socket i
best (and, in fact, only platform-portable) way of achieving interprocess and in
work communications, and forms the foundation of every other Java network
system, such as Jini, JavaSpaces, or the Java Shared Data Toolkit.

CKETS

10.6 ADDITIONAL READING

• Merlin Hughes, Michael Shoffner, and Derek Hamner, Java Network Programming,
2nd Ed. (Manning Publications Co. 1999).

be con-
se you.

Neward10_06_12.fm Page 282 Tuesday, June 13, 2000 11:54 AM
282 CHAPTER 10 SO

This book covers every aspect of Java network programming, and should
sidered to be your first go-to book if the Socket and ServerSocket still confu

C H A P T E R 1 1

Neward11_06_12.fm Page 283 Tuesday, June 13, 2000 12:00 PM
Servlets

11.1 Relationship to sockets 283
11.2 Servlets and the n-tier application 292
11.3 Servlets as a poor man’s RMI 293

11.4 Summary 298

ks. On the
erve as the
ably to the
11.5 Additional reading 298

Servlets represent a particular place in the enterprise developer’s bag of tric
one hand, they represent an easy replacement for CGI scripts. They also s
fundamental heart of the JSP technology. Many people tie servlets irretriev

HTTP and HTML protocols; to do so, however, is to miss a huge part of their func-

rved as
 define

re. For
vlets in
r’s Java

terface
service,
283

tionality. Servlets are more than Java CGIs. In fact, the Servlet specification se
the testing ground for a number of the features that would eventually come to
the Enterprise Java Beans specification.

We’re not going to go over the basics of servlets or the Servlet API he
detailed explanation of the Servlet API, and good examples of how to use ser
general, see Alan Williamson’s Servlets By Example (Manning), or Jason Hunte
Servlet Programming (O’Reilly).

11.1 RELATIONSHIP TO SOCKETS

A servlet, fundamentally, holds the same relationship as the Connection in
from chapter 10. The servlet is called to service a particular request, performs the

VLETS

and, in the case of an HttpServlet, returns the necessary HTML to the socket. Con-
nection does the same thing. Interestingly enough, although the Servlet API does pro-
vide for the concept, servlets are rarely (if ever) seen outside of an HTTP context—the
Servlet API is flexible enough to accommodate ideas such as FTP Servlets, Telnet

vlets—
servlets
d upon
en if it
f pass-

Neward11_06_12.fm Page 284 Tuesday, June 13, 2000 12:00 PM
284 CHAPTER 11 SER

Servlets, and so on.
From a practical perspective, this means that theoretically, we could create ser

coding at the GenericServlet layer, instead of the HttpServlet layer, as most
do—that could be plugged into any generic application server, and be execute
request. In fact, this is how the JSWDK itself performs—each web request, ev
is for a standard static HTML page, is handled by a servlet. In fact, this kind o
through servlet would probably be similar to the following:

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class PassthroughServlet extends HttpServlet

{

private String docRoot;

public void init(ServletConfig config)

{

docRoot = config.getInitParameter("docRoot");

if (docRoot == null)

docRoot = ".";

}

public void doGet(HttpServletRequest req,

HttpServletResponse res)

throws ServletException, IOException

{

// Find file given on URL

String filename = req.getServletPath();

// Open it

FileInputStream fis = new FileInputStream(docRoot + "/" + filename);

// Send its contents back to the requester

OutputStream out = res.getOutputStream();

res.setContentType("text/html");

int ch;

while ((ch = fis.read()) != -1)

{

out.write(ch);

}

}

public void doPost(HttpServletRequest req,

HttpServletResponse res)

throws ServletException, IOException

{ doGet(req, res); }

}

285

As you can see, the servlet simply obtains the requested file (assuming this servlet is
associated with the extension .html and/or .htm—see the Servlet API specification or
the JSWDK 1.0.1 documentation for more details) and passes it directly through to
the servlet’s OutputStream instance. Notice how we use the getServletPath()

ember,

 about
ket and

rough-
 before
Servlet
ules to

Neward11_06_12.fm Page 285 Tuesday, June 13, 2000 12:00 PM
RELATIONSHIP TO SOCKETS

method to retrieve the file path requested, and use that, plus the docRoot m
to find the file requested and present it.

In fact, this concept is strikingly familiar. In the previous chapter, we talked
some of the more interesting things to do with sockets; specifically, a FilterSoc
a RedirectorSocket. Both are easily portable to the servlet arena.

11.1.1 CodeServlet: A filtering servlet

Filter-style servlets are the easier to implement, because we can take the PassTh
Servlet code base and tweak it just enough to do some manipulation of the text
we send it back down the pipe to the client. In this case, we’ll create a Code
(listing 11.1), which takes standard .java files and applies a simple series of r
transform the returned stream into a color-highlighted HTML form:

public class CodeServlet extends HttpServlet
{

private static Map handlerMap;

public interface FileHandler
{

public String handle(String file);
}

public static class JavaHandler
implements FileHandler

{
public void handle(HttpServletRequest req,

HttpServletResponse res)
{

// code to transform java source into (for starters)
// color-syntax-highlighted HTML markup

}
}

public void doGet(HttpServletRequest req,

HttpServletResponse res)
throws ServletException

{
// Find file given on URL

String filename = req.getServletPath();
for (Iterator iter = handlerMap.keySet().iterator(); iter.hasNext();)

{
String key = (String)iter.next();

if (filename.endsWith(key))
{

FileHandler fh = (FileHandler)handlerMap.get(key);

Listing 11.1 Code for CodeServlet

VLETS

fh.handle(req, res);

}
}

}

static

.java in
ile will
uld be
ith the

Neward11_06_12.fm Page 286 Tuesday, June 13, 2000 12:00 PM
286 CHAPTER 11 SER

{
handlerMap = new HashMap();

handlerMap.put(“java”, new JavaHandler());
}

// . . .

}

This isn’t rocket science. We map the CodeServlet over to extensions of type
the servlet engine, and any URL (within the Servlet’s zone) requesting a .java f
automatically be mapped onto the CodeServlet. In fact, CodeServlet co
extended to do any source file type simply by registering new FileHandlers w
CodeServlet in listing 11.1.

public class CodeServlet extends HttpServlet

{
// . . . as befor e . . .

/**

*
*/

public static class CPPHandler
implements FileHandler

{
public void handle(HttpServletRequest req,

HttpServletResponse res)
{

// code to mark up C++ code to provide (for starters)
// color syntax highlighting, for example

}
}

static
{

handlerMap = new HashMap();

// . . .

handlerMap.put(“cpp”, new CPPHandler());

handlerMap.put(“cc”, new CPPHandler());
handlerMap.put(“C”, new CPPHandler()); // some UNIXes use

// uppercase “.C” as
// the C++ extension

handlerMap.put(“hpp”, new CPPHandler());
handlerMap.put(“hh”, new CPPHandler());

handlerMap.put(“H”, new CPPHandler()); // ditto as “.C”
}

}

287

We could even recode the PassthroughServlet to be another type of handler within
the CodeServlet (which, by this point, is probably misnamed, since we’re now dealing
with types other than just programming source):
public class CodeServlet extends HttpServlet

nverted
 engine
der the
see the
point is
 servlet
ervices

g is cer-
, which
 a new
engine.
 a dif-

 had to
m the
e name

Neward11_06_12.fm Page 287 Tuesday, June 13, 2000 12:00 PM
RELATIONSHIP TO SOCKETS

{

// . . . as befor e . . .

/**
*

*/
public static class HTMLHandler

implements FileHandler
{

public void handle(HttpServletRequest req,
HttpServletResponse res)

{
// Simply pipe back

}
}

static
{

handlerMap = new HashMap();

// . . .

handlerMap.put(“html”, new HTMLHandler());
handlerMap.put(“htm”, new HTMLHandler());

}
}

By now, without a single change to the servlet engine supporting us, we have co
the servlet engine into a more-or-less functional web server, even if the servlet
itself doesn’t provide web-serving capabilities. It may seem strange to consi
idea of a servlet providing basic web-server functionality since most people
servlet in terms of wanting to get away from what the web server provides. The
that servlets aren’t necessarily tied directly to a web server; it’s possible to have a
executing inside of a generic application server (such as GJAS), providing web s
for that application server on port 80 (or any other port).

11.1.2 HeaderFooter: a redirecting servlet

We can also create a redirector servlet. Under the servlet model, while redirectin
tainly an applicable concept, a better or more interesting idea is servlet chaining
loosely follows the notion of redirection. Instead of redirecting the request to
URL or socket, we redirect the flow of control to a new servlet within the same

Under the Servlet 2.2 specification, however, servlet redirection takes on
ferent look. Under earlier versions of the servlet specification, a servlet simply
call getServlet on the javax.servlet.ServletContext class (returned fro
javax.servlet.GenericServlet’s getServletContext method), and pass in th
of the servlet to obtain. Unfortunately, this had an inherent problem:

VLETS

nche to

 a con-
hain its
ward

ervlet’s
ed into
ll con-

e Java
hained
 Login-
splay a
riginal

se, for
In real-
are tell-

When this method is called, the state of the servlet may not be known and
this could cause problems with the server’s state machine. It is also a security
risk to allow any servlet to be able to access the methods of another servlet.

n

Neward11_06_12.fm Page 288 Tuesday, June 13, 2000 12:00 PM
288 CHAPTER 11 SER

This means the servlet engine is no longer going to allow you carte bla
obtain the servlet reference for another servlet in the system.

Does this mean servlet-chaining is dead? Absolutely not—it’s too critical
cept to simply throw out. Instead, now a servlet that wishes to forward or c
request to another servlet needs to go through the target’s ServletContext’s for
method, as shown in the following snippet:

public class ChainingServlet extends HttpServlet

{

public void service(HttpServletRequest req,

HttpServletResponse res)

throws ServletException

{

ServletContext cx = getServletContext();

String otherServletDomain = “http://www.javageeks.com”;

String otherServletURL = “/servlet/otherServlet”;

RequestDispatcher servlet =

cx.getRequestDispatcher(otherServletDomain +

otherServletURL);

// Here we can do any other “pre-chain” work, like adding

// new request parameters to the request parameters

servlet.forward(req, res);

}

}

When the forward method is called, it will effectively call into the otherS
service method, which, like all HttpServlet-extending classes, will get rout
either doGet or doPost (predominantly), and the other servlet is now in fu
trol. Once the other servlet is finished, control returns to ChainingServlet.

This aspect of servlets allows for interesting behavior. For example, th
Developer’s Connection at the Javasoft web site (developer.javasoft.com) uses c
servlets to maintain its pages behind a login—each servlet request chains to a
Servlet, which determines whether or not you’ve logged in. If not, it will di
login page, and only if you authenticate correctly are you then directed to the o
URL requested.

The same sort of behavior can be applied to your own servlets.. Suppo
example, that you are building an Internet site for an e-commerce enterprise.
ity, you are building an application catering to a variety of clients, who in turn
ing their clients to use your Internet application on their behalf.

—Servlet 2.1 specificatio

289

The problem is simple—you need to vary the decorations around the outside of
the page on a per-client basis, so the customer (the end user) doesn’t realize that he’s
on your web site and not your client’s. One approach would be to have each client live
on its own web page, with a web designer maintaining the graphics and HTML for each

signers.
h time,

g con-
y step.

nd pre-
banner
ar with
all that
s—one
DBMS
hat cli-

 allows
lly dif-
nstant,
to cut-
ooter-
riginal

ant to
n those

arden-
 nice is
uld put

 giving

ge the
o make
chnical
 would

Neward11_06_12.fm Page 289 Tuesday, June 13, 2000 12:00 PM
RELATIONSHIP TO SOCKETS

client. That’s also a great way to see how quickly you can burn out your web de
Can you imagine changing the clients’ look and feel after about the third or fourt
especially if the clients’ site spans many pages?

Instead, you can create a servlet that builds on the filtering and the chainin
cept and reduces the work your administrators have to do. Let’s play it out step b
Each client is going to require a hello page, welcoming the end user to the site a
senting a list of choices. These hello pages are all going to look similar—big
graphic across the top, verbage and links in the middle, and a nice status b
small-font copyright information across the bottom. Instead of embedding
into a single welcome.html or WelcomeServlet, break it up into multiple servlet
for the top banner graphics (which can be retrieved from a file or from an R
based on either the incoming URL or on the URL request path), one to load t
ent’s specific welcome page, and one for the bottom graphics.

What does this three-part chain get you? To begin with, chaining like this
you to partition out certain aspects of the web application if they’re conceptua
ferent—the decorations around a page, for example, will typically remain co
while the content of the page will vary. Instead of forcing the web designers
and-paste the header/footer HTML onto each page, let a HeaderServlet and F
Servlet provide that. Then, chain to the HeaderServlet, load and redisplay the o
HTML file requested, and chain to the FooterServlet before sending it on.

11.1.3 Server-side scripting capabilities

Servlet chaining is a useful aspect, but there will be situations where you will w
do more logic-driven execution than just simple inclusion of HTML content. I
situations, you have two choices:

• Write a servlet for each logical sequence you wish to execute.
This will get real boring, real quickly, especially if the logic is of simple g
variety if-this-show-this-page-else-show-that-page logic. What would be
to place some sort of logic within the page, so that your web designers co
some simple logic into the page.

• Abandon servlets.
Servlets don’t provide any sort of server-side scripting, so you’re left with
up on servlets and moving toward ASP.

In order to change any sort of logic within the servlet, you have to chan
logic inside the servlet code, which requires a Java programmer (namely, you) t
the change. What’s worse, many of these changes could be done by those less te
than you, because it’s that simple logic described above. What would be nice

VLETS

be to execute short snippets of some scripting language (such as ECMAScript, also known
as JavaScript) within the servlet.

It just so happens we can do that; for example:

<HTML>

</SVR-
is sup-
t could
T> tag.
ample,

the end
le task,
 again.
lease of
success
 during
ack to

ever, it
y using
nment.
can be
 pages.
ino, at
0 issue
 to this
McCay
e issue,
mbed-

very of

 on this
 it cer-

Servlet-
e basic

Neward11_06_12.fm Page 290 Tuesday, June 13, 2000 12:00 PM
290 CHAPTER 11 SER

<HEAD>Scripted example</HEAD>
<BODY>

<SVRSCRIPT>
(. . . script goes her e . . .)

</SVRSCRIPT>
</BODY>

</HTML>

When the pass-through servlet is executed, it looks for the <SVRSCRIPT>…
SCRIPT> tags, and passes the contents to the appropriate scripting engine. Th
port could even be bundled inside its own servlet, and the pass-through servle
chain to it (let’s call it the ScriptingServlet) when it encounters the <SVRSCRIP
A certain amount of overhead within ScriptingServlet will be necessary (for ex
establishing global objects within the scripting environment to send output to
user’s browser), and will be customized for each language. That’s a manageab
especially since it will sit once inside the ScriptingServlet and never be touched

This concept isn’t new: Netscape introduced it as LiveWire in an early re
its Netscape Enterprise Server product, and Microsoft has enjoyed tremendous
with its version, ASP. In both cases, the ability to be able to execute actual code
the retrieval of the page offers interesting benefits, long before the page gets b
the client. Because this is happening within an industry-standard servlet, how
can be plugged into any servlet 2.1-compliant servlet engine on any platform; b
this server-script, we’re not limited to any one platform, web server, or enviro

With a bit of resourcefulness, various interpreters implemented in Java
found and used to provide a rich variety of scripting languages within the
Mozilla makes available a freely distributable JavaScript engine called Rh
www.mozilla.org/rhino. Another JavaScript engine is FESI. In the January 200
of Dr. Dobb’s Journal, Kirby Angell describes how to build something similar
using Python and the JPython engine available at www.python.org. John H.
describes the Pnuts thin procedural wrapper scripting language in the sam
alongside the Mike McMillan article describing the PerlCOM component for e
ding Perl as a COM component in Win32 applications.

11.1.4 Servlets: Not just about HTML anymore

Servlets aren’t about web servers and HTML—they’re about a means of deli
arbitrary content.

Consider GJAS: thus far it is one of the weakest web servers ever concocted
planet. It doesn’t support any of the HTTP header commands except GET, and
tainly doesn’t do that well, either. Assume for the moment, that I create a
ContainerService (or ServletContainerConnection) for GJAS that provides th

291

servlet environment. Now it becomes possible to load servlets into the GJAS system,
have them start listening on port 80 for incoming HTTP requests, and use the
PassthroughServlet to start sending .html or .htm files back to the requester. In fact,
we’d probably tie PassthroughServlet to all sorts of file extensions, such as .gif and .jpg,

.
ices to

ble ser-
uming

thin an
 appli-
 whole
or this
ervlets,
 server
socket-

ng pro-
ethods
pe ,

 servlet

rectory
s name
e auto-
se files.
using a
able as
 within
equest

dir or
eck the
n ones.

e telnet
ving to

Neward11_06_12.fm Page 291 Tuesday, June 13, 2000 12:00 PM
RELATIONSHIP TO SOCKETS

so as to be able to pass those files’ contents directly back to the client, as well
Let’s take this concept one step farther. We’ve now provided HTTP serv

GJAS; what about FTP? Or Gopher? Or Telnet? All of these are certainly feasi
vices for the GJAS system, and wouldn’t be too terribly difficult to develop, ass
one has the appropriate RFC handy.

Here’s a radical notion: A servlet isn’t really code that’s executed from wi
HTTP server, but is really code that can be executed from within any generic
cation server (like GJAS). If that weren’t enough to cause readers to rethink the
servlet concept, Adam Smith, one of the reviewers of the early manuscript f
book, suggested the idea of creating servlets to other protocols, as well—FTP s
telnet servlets, mail servlets, and so on. In fact, just about any socket-oriented
can use the Sun servlet specification to create a servlet backplane for enhanced
to-socket serving. Look at the servlet interface:

public void init(ServletConfig config) throws ServletException;

public void service(ServletRequest request, ServletResponse response)

throws ServletException, IOException;

public void destroy();

public ServletConfig getServletConfig();

public String getServletInfo();

This API is extremely generic and, says absolutely nothing about the underlyi
tocol the servlet is serving. ServletRequest and ServletResponse each have some m
that are somewhat HTTP-oriented (get /setContentLength , get /setContentTy
etc.), but a servlet engine doesn’t have to call these methods, and a non-HTTP
certainly doesn’t have to do anything meaningful for them.

For example, consider a hypothetical FTP servlet, that acts as a virtual di
for uploading or downloading files; the servlet could take note of the FTP user’
and password, look up the user’s privileges in a database or local file, and provid
matic masking of certain files to allow or prevent the upload/download of tho
Or, within that directory, it could provide virus-scanning behavior (perhaps
JNI-to-native library connection, since no Java-based antiviral tools are avail
yet). The FTP servlet has its service called when the user executes a command
the FTP/Servlet virtual directory, with the command coming in via the ServletR
instance, and the appropriate output sent via the ServletResponse instance. A
ls command inside the hypothetical FTP VirtualDirectoryServlet would ch
user’s permissions against the files on the file system, and only display certai
The same would be true for get or mget commands.

Or consider a telnet servlet system, in which commands can be added to th
server to allow users to perform certain tasks from a telnet session without ha

VLETS

create shell scripts that sit on the server’s file system. The telnet servlet would get the
input from the user before handing it on to the command shell it wraps, perhaps fil-
tering the commands before the command shell sees the input, or even performing a
series of steps on behalf of the user, providing telnet with a certain amount of macro

of run-
e com-
equest
stance.
ed pre-
 sanity-
o filter
by-user
server’s
ly mail
t sends
ves the
ervlet-

ld even
dential

ne cus-
ionary.
 behav-
ix and
y pro-

system
hin the

hile it
L) with
st web
 no eye
thin an

s, then
blems:
he web

Neward11_06_12.fm Page 292 Tuesday, June 13, 2000 12:00 PM
292 CHAPTER 11 SER

capability on the server side. Each telnet command gets checked against the list
ning servlets in the system, and if the command matches a servlet name, the entir
mand line gets passed into the servlet’s service method inside of a ServletR
instance; the servlet sends the telnet output to the user via the ServletResponse in

Or consider a mail server servlet that performs the virus checking discuss
viously before downloading the mail to the mail client, or even performs some
checking on the incoming mail, perhaps doing a content scan in an attempt t
out spam and other unwanted email. The mail server can load servlets on a user-
basis (users get to specify which servlets get run at certain points in the mail
operations, such as when new mail comes in), or else on a global basis (on
administrators get to specify the servlets run), and so on. A mail server servle
the mail message into the servlet’s service method, and on incoming mail sa
ServletResponse-sent output as the mail message, or on outgoing mail sends the S
Response-sent output as the actual mail message. The mail server servlet cou
filter the messages before sending them out, to ensure that nothing of a confi
or proprietary nature is sent to someone outside the company address book.

In short, servlets aren’t just for web servers. The ability to plug in and defi
tom behavior for a given service process is not new, nor is it particularly revolut
Some server programs (such as FTP or mail servers) already provide some of the
ior that an FTP servlet might provide; however, it would be nice to be able to m
match that behavior as company policy or as the system administrator wishes. B
viding a servlet engine within the FTP or mail-server’s execution engine, the
administrator gets an unparalleled amount of control over what happens wit
FTP or mail server.

11.2 SERVLETS AND THE N-TIER APPLICATION

One of the principal problems with server-side scripting, however, is that w
works well for programmers, it combines the presentation contents (the HTM
logic for the display (the SQL to retrieve, for example). Considering that mo
content designers have no eye for server-side logic, and that programmers have
for matching colors, this means that one of three scenarios will take place wi
ASP (or other server-side scripting-based) shop:

• First the content, then the logic
The web designers will lay out the page and align the text and the graphic
turn the pages over to the programmers to put the logic behind it. Pro
Development is serialized, since programmers can’t touch the pages until t

293

designers are finished with them, and programmers can accidentally rearrange
things on the page contrary to the web designers’ intentions.

• First the logic, then the content
This approach seems to be the most popular. First the programmers embed the

signers
ings on
signers
ust be
ossible

he web
ons, or

ing one
e same

dently,
 for the
ate the
 is seen
 on the
o Java-

rovide
es stan-
objects
. Other
ic con-
such as

let, and
tabase-
ver sys-
o what
own an

Neward11_06_12.fm Page 293 Tuesday, June 13, 2000 12:00 PM
SERVLETS AS A POOR MAN’S RMI

logic into the page and verify and test the functionality, then the web de
spruce it up. Problems: one, web designers can accidentally rearrange th
the page, breaking the code; work is inherently serialized, since the web de
can’t touch the pages until the programmers are finished; the QA effort m
duplicated again after the web designers finish with the pages, since it’s p
that the web designer introduced a bug.

• Simultaneously
This approach removes the serialized nature of the first two, but requires t
designers to be familiar with source-code control techniques or applicati
risk stomping over changes made by others, or even by the web designer.

The inherent problem is that the scripting-based web application is violat
of the principal rules in n-tier applications, by embedded business logic in th
layer as the presentation code (the HTML).

11.2.1 Separating logic from content

What really needs to happen is for the two groups to be able to work indepen
without accidentally overwriting the other’s work or creating more difficulties
other side. One of the best ways to achieve this sort of parallelism is to separ
logic of the application (what to do) from the content of the application (what
by the user). Business objects, servlets, and their script-like cousin, JSP, build
idea that the servlet/JSP page acts as the presentation layer, using Java to call int
Beans or EnterpriseJavaBeans while processing the page on the server.

There are a number of Open Source and freeware toolkits designed to p
this same separation. For example, WebMacro (http://www.webmacro.org) us
dard HTML mixed in with calls to retrieve objects out of its context (in which
are also stored, for later retrieval) and places that data on the page dynamically
such systems use similar functionality, offering varying degrees of programmat
trol over the page. This is, in fact, precisely what early web/database tools
ColdFusion and NetDynamics were all about.

11.3 SERVLETS AS A POOR MAN’S RMI

There is a tremendous amount of possible crossover between your average serv
your average server application. Consider the average enterprise n-tier, da
backed, client-server system. When boiled down to its essence, any client/ser
tem is simply a collection of request-response calls, similar in scope and style t
servlets provide. In fact, this has in turn led many developers and architects d

VLETS

interesting road: using servlets not for HTML and thin-client applications, but as a
middleware layer connecting client to server.

Stop and think about it: Within Java, opening a socket to communicate with a
hypothetical setup like this is trivial:

 HTTP

he net-
and its
 things
t much

s for, as
d back

d upon
 it.

nal sys-
M sys-
ion for
al holes
bjects,

t work.
e port

 couple

ject mar-
easure of
 CORBA
ple com-

Neward11_06_12.fm Page 294 Tuesday, June 13, 2000 12:00 PM
294 CHAPTER 11 SER

URLConnection conn =

new URLConnection(“http://www.server.com/servlet/Custom?cmd=start”);

InputStream in = conn.openContent();

Because URLConnection makes it trivial to open a connection to an arbitrary
server, we can use HTTP as a simple, lightweight middleware protocol.

This approach offers a number of advantages:

• Lightweight
The HTTP protocol is probably one of the lightest protocols available in t
working tool chest. Its statelessness provides for tremendous scalability,
simplicity allows it to be used within a variety of environments. To make
even simpler, it’s all sent as straight ASCII text over a socket—you don’t ge
simpler than this.1

• Content-neutral
HTTP doesn’t care about the data it’s sending back—that’s what MIME i
far as it’s concerned. All HTTP cares about is that it knows the length to sen
(Content-Length), and a few clear-text headers the client must understan
response. We can send back anything we wish, and let the client deal with

• Security
Many, if not most, corporations have a firewall in place to keep their inter
tems separated from the Internet. Trying to run an RMI, CORBA, or DCO
tem from outside the firewall to inside the firewall is an exercise in frustrat
all parties concerned. System administrators don’t want to open addition
in the firewall, developers don’t want to lose the benefit of distributed o
and customers are frustrated because all they know is that it just doesn’
Running over HTTP, however, allows us to piggyback on top of the on
almost any corporation does allow through.

As with any technology or approach, however, running over HTTP has a
of disadvantages, too:

1 Compare this with a CORBA, RMI, or DCOM system, in which we have to have complex ob
shaling, state management across the wire, and (for CORBA and DCOM, anyway) some m
pointer-transferability between two separate processes. Granted, HTTP isn’t an ORB, as are
and DCOM, or even an RPC, like RMI, but is that really the point? HTTP facilitates quick, sim
munication between two processes, which is often all we really need.

295

• One way
The communication is entirely one way—the server cannot call back to the client.
This means that the client, if it wishes to be notified of events occurring within
the server, must poll the server to receive the updates. That, in turn, means higher

sockets
 factor.

saging/
erver is

ication
servlets
nfortu-
ins the
sons, if
pposed
he fact
ts (i.e.,
ut also

, using
e back-
ystems;
pServer
lly pre-
pter 6).

objects
ributed
socket-
 own in
 an eye
nitor—

ations-
g 11.2)
we had
t those

Neward11_06_12.fm Page 295 Tuesday, June 13, 2000 12:00 PM
SERVLETS AS A POOR MAN’S RMI

bandwidth consumption. This could be mitigated by using keep-alive
from client to server, but this reduces the server’s scalability by a significant

• Greater reliance on one component
If the web server is serving dual duty, both as the web server and as a mes
communications server, more people are affected if and when the web s
down. As the old saying goes, if you place all your eggs in one basket….

• Servlet abuse
It becomes tempting to overuse the servlet approach as a generic appl
server. In some servlet books, authors demonstrate how to create daemon
that spin off a thread to perform some sort of background processing. U
nately, this approach is nonportable; because the servlet engine always reta
right to shut down the servlet instance (for performance or scalability rea
nothing else), a daemon servlet may actually not run all the time, as it’s su
to. Equally unfortunately, this is a popular approach, due not only to t
that many servlet engines support the notion of initially loaded servle
servlets that are loaded, regardless of user requests) to facilitate this idea, b
to the inherent scalability support that web servers can provide.

It’s very tempting to want to use the Servlet/HTTP layer as a middleware system
applets as a front end, communicating through HTTP to a JDBC-driven servlet on th
end server. It’s certainly possible to do, and works out quite well for passive server s
it’s when we want to develop active or polling servers that the ServletEngine-as-Ap
approach breaks down on us. A request-response protocol simply isn’t ideologica
pared to deal with the kind of active objects we discussed in “Threading issues” (cha

11.3.1 Example: RemoteStorageServlet

In chapter 12, I show you a remote storage service, which accepts serialized
over a socket, stores them, and retrieves them for requestors—a simple dist
database system. Within the code for this system, we had to deal with all the
layer communications ourselves, and the storage server class had to be run on its
order to respond to requests. This means that system administrators must keep
on this process, as well as the other processes they would normally have to mo
not a good way to make friends.

In fact, we could have leveraged the Servlet API to handle all of the communic
layer aspect of the remote storage server, making use of the HTTP protocol (listin
instead of the custom protocol I presented there. In the custom protocol form,
GET, CHECKIN, CHECKOUT, and DIFF operations to support; we can suppor
commands directly within the HTTP protocol, as well.

VLETS

import java.io.*;

import java.util.*;

import javax.servlet.*;

Listing 11.2 Code for the HTTP protocol

Neward11_06_12.fm Page 296 Tuesday, June 13, 2000 12:00 PM
296 CHAPTER 11 SER

import javax.servlet.http.*;

/**

*

*/

public class RemoteStorageServlet

extends HttpServlet

{

private static final String GET = "GET";

private static final String CHECKIN = "CHECKIN";

private static final String CHECKOUT = "CHECKOUT";

private static final String DIFF = "DIFF";

protected void service(HttpServletRequest req,

HttpServletResponse res)

throws ServletException, IOException

{

String method = req.getMethod();

// Get the user's map--for now, keep one map per user

// session; in a real robust system, we'd want to serialize

// out the results when the session is destroyed, but

// that's for a later date

HttpSession session = req.getSession(true);

Map userMap = session.getValue("MAP");

if (userMap == null)

{

userMap = new HashMap();

session.putValue("MAP");

}

if ("GET".equals(method))

{

String objName = req.getServletPath();

Object obj = userMap.get(objName);

if (obj == null)

{

String msg = "Objec t " + objNam e + " not found.";

res.sendError(HttpServletResponse.SC_BAD_REQUEST, msg);

}

else

{

// Serialize the object

ByteArrayOutputStream baos =

new ByteArrayOutputStream();

ObjectOutputStream oos =

new ObjectOutputStream(baos);

297

oos.writeObject(obj);

oos.flush();

byte[] serializedData = baos.getByteArray();

res.setContentLength(serializedData.length);
res.getOutputStream().write(serializedData);

orting
call on
will be
 speci-
torage-
writing

etween
iddle-

ome in
ing an
MI has

 HTTP
nt and
ammer
m, and
 HTTP
ameter,
ample,
/1.0 ”

Neward11_06_12.fm Page 297 Tuesday, June 13, 2000 12:00 PM
SERVLETS AS A POOR MAN’S RMI

}
}

else if ("CHECKIN".equals(method))
{

// . . . details omitted
}

else if ("CHECKOUT".equals(method))
{

// . . . details omitted
}

else if ("DIFF".equals(method))
{

// . . . details omitted
}

}

}

Notice something interesting—we subvert the HTTP protocol itself in supp
CHECKIN, CHECKOUT, and DIFF as valid commands. The getMethod()
ServletRequest tells us the actual command sent, which under most servlets
one of GET, POST, OPTIONS, TRACE, and so on, as mandated by the HTTP/1.1
fication. However, if you’re willing to accept the consequence that the RemoteS
Servlet is to be used only with a custom RemoteStorageServletClient, then
the servlet to accept custom commands is perfectly acceptable.

11.3.2 Concept: poor man’s RMI

RMI, as we’ll see in chapter 15, is all about Java methods being able to call b
JVM instances, even across the network. Unfortunately, RMI, like many other m
ware solutions, suffers from one critical restriction—because requests can c
from clients on any port, it’s devilishly difficult to keep a server system runn
RMI server locked down. As a result, the use of distributed technologies like R
not seen much use outside of the corporate firewall.

Servlets can serve as a cheap, lightweight form of RPC, however, by using
as the transport and serialized objects as the data communicated between clie
server. Instead of allowing RMI to do the marshaling of parameters, the progr
opens a URLConnection, serializes the arguments into a ByteArrayOutputStrea
sends the resulting byte array down the socket as POST parameters to the
request. On the server side, the poor man’s RMI servlet deserializes the POSTed par
inspects the arguments, and makes the call given as part of the HTTP request; for ex
an HTTP request such as “POST /myobjectinstance/mymethodcall HTTP

VLETS

would call the mymethodcall method on the object instance referred to (within an
object mapping table, such as a Hashtable) as myobjectinstance . Note that the
hypothetical PMRMIServlet wouldn’t even need precompiled stubs to be present; it
can use reflection to look up the method name given as part of the HTTP request,

r back

AP, the
tead of
. SOAP,
is writ-
een the
itted to
e time

 using
ut the

vation/
es that
bject-

n con-
 comes

’t have
 is still

y, since
upport
doing).

99).
’s 500-

 you’re
art. Be

Neward11_06_12.fm Page 298 Tuesday, June 13, 2000 12:00 PM
298 CHAPTER 11 SER

unpack the arguments, and if the types don’t match up, send a 404 or 500 erro
to the client, who interprets those as fatal mismatch or something similar.

11.3.3 Concept: SOAP

In point of fact, such a poor man’s RMI system already exists—it’s called SO
simple object access protocol, and it uses HTTP as the transport and XML (ins
serialized objects, since it’s intended to be cross-language) as the RPC payload
although still in the early stages of specification development at the time of th
ing, promises to allow for an unprecedented amount of interconnectivity betw
RPC mechanisms we’ll talk about in chapter 16. Because Microsoft has comm
it, along with several leading CORBA vendors, it’s entirely possible that by th
you read this, DCOM will be able to call into CORBA servants via SOAP.

11.4 SUMMARY

What has this bought us? Why bother changing the persistence examples from
straight sockets to using servlets and HTTP instead? What’s the big deal abo
poor man’s RMI system, or SOAP?

Simply, we can now let the Servlet engine manage the necessary acti
passivation of the servlet as demand ebbs and flows. If the servlet engine se
twenty-four hours (or less) has gone by without a request to the RemoteO
Servlet, the Servlet engine can destroy() the RemoteObjectServlet, the
struct and init() a new instance of the Servlet when the next URL request
in. This means less drain on resources on the server.

Secondly, because our service is now operating off of the web server, we don
to punch a new hole through the firewall and yet our middleware mechanism
available to Internet clients (if required). This makes the code firewall friendl
we’re not requiring additional work on the part of the firewall (except that it s
HTTP requests through port 80, something most firewalls are already capable of

11.5 ADDITIONAL READING

• Alan Williamson, Java Servlets By Example (Manning Publications Co., 19
An impressive collection of sample code focusing exclusively on servlets. It
plus pages of nothing but servlets, servlets, servlets.

• Jason Hunter, Java Servlet Programming (O’Reilly and Associates, 1998).
This is fast becoming the must-have book for servlet programming. If
working with servlets, this (or the Williamson book) is the place to st

299

aware that the servlet specification has undergone several revisions (from 2.0 to
2.2, at the time of this writing) since his book became available, and certain
methods in the servlet API have become deprecated.

• James Duncan Davidson, “Servlet 2.2 Specification,” 1999, available at http://

hin the
age are
to read
u’ll get

Neward11_06_12.fm Page 299 Tuesday, June 13, 2000 12:00 PM
ADDITIONAL READING

www.javasoft.com/products/servlets.
This is the fundamental definition of what is, and is not, available wit
servlet API, and the classes which make up the javax.servlet pack
available online from the same place. If you develop servlets, you need
this, because vendors will be required to keep up with the spec, and yo
burned someday if you don’t.

C H A P T E R 1 2

Neward12_06_12.fm Page 300 Tuesday, June 13, 2000 12:07 PM
Persistence
12.1 Java Serialization 301
12.2 Beyond the specification 317
12.3 JDBC 330
12.4 Summary 338
12.5 Additional reading 339
e to persist
s are tran-
When the
to. In real-
Persistence refers, in our particular case, to the ability of objects to be abl
themselves beyond the current application instance. Normally, most object
sient, that is, they do not exist outside of the current application space.
application quits, they disappear. Persistent objects live on, or at least appear
 half of
ation is
bject of
loaded.
 scope.

lization
ven use
ere the
ing the

ving an
s when
or hun-
 object
300

ity, while the actual object instance may be destroyed, the data that forms one
the object (the other half being the code, which is reloaded each time the applic
started) is saved off in some fashion, usually to disk. Then, when reloaded, an o
similar or compatible type is created, and the data from the previous instance is
To all intents and purposes, that object has lived beyond the current application

Persistence can take several forms of implementation. Java’s Object Seria
specification is one. Using a relational database and JDBC is another. You can e
some customized approach to handle it on your own terms if you choose. Wh
object’s data resides between invocations doesn’t matter, so long as the code us
persistent object knows how to recreate it when asked.

It’s this latter requirement that typically provides the biggest headache. Sa
object off to disk or database usually isn’t the problem; the problem come
attempting to retrieve that particular object, out of the hundreds, or thousands
dreds of thousands of objects available. In a relational database scheme, each

301

usually corresponds to one or more rows in one or more relational tables, whose
uniqueness is given by a primary key. In classic JavaBeans Serialization, each object or
collection of objects corresponding to a single entity is saved into its own filename.1

For your custom approaches, you’re on your own.
object-
ject to

e). The
ed, but
; a per-
ing the
0-plus
ry and

rsistent
he per-
tion of

lement
 in the

 a Date
en the
 it was

ct which

Neward12_06_12.fm Page 301 Tuesday, June 13, 2000 12:07 PM
JAVA SERIALIZATION

Note that persistent object systems and databases (be they relational or
based) are not the same beast. The first merely describes the ability for an ob
save and restore itself to some nonvolatile memory (disk, or some external devic
second describes a system not only in which objects can be stored and retriev
queried and examined in an ad hoc format. This marks an important difference
sistent system may have no other way to access a given object other than retriev
entire object tree. Consider a simple request to determine if a large entity (10
interconnected objects) exists; in a database system, I can fire off a simple que
examine the results without having to instantiate the objects themselves. A pe
system has no such ability; I must retrieve all 100-plus objects from disk or t
sistent backing store and deserialize them (which in turn requires the construc
all 100-plus objects) before I get the chance to check if the object came back.

12.1 JAVA SERIALIZATION

Java’s Serialization mechanism is, at heart, a simple one. Objects which imp
the interface Serializable can be written directly to an ObjectOutputStream,
following manner:

// Serialize today’s date to a file

FileOutputStrea m f = new FileOutputStream(“date”);

ObjectOutputStrea m s = new ObjectOutputStream(f);

s.writeObject(“Today”);

s.writeObject(new Date()); // Date no-arg constructor

// uses current date/time

s.flush();

Reading from a Serialized stream is similarly simple:

// Deserialize file containing (we hope) today’s date

FileInputStream f = new FileInputStream(“date”);

ObjectInputStrea m s = new ObjectInputStream(f);

String label = (String)s.readObject();

Date date = (Date)s.readObject();

In this case, we open a file and attempt to read in a String object, followed by
object. If it succeeds, label contains “Today”, and date contains the date wh
file “date” was written (since that was the value of the Date object at the time
serialized).

1 Note that there is no mention of files or filenames in the Object Serialization specification, a fa
will become more clear and lead to interesting tactics later in the chapter.

TENCE

All of this should be old hat to you; if it’s not, check out just about any text on
JavaBeans. Most cover the basics of Serialization to some detail, since Serialization
made its debut in JDK 1.1. Touted as a scheme by which JavaBeans could be custom-
ized within a Bean editor, stored off to disk (and presumably shipped with your appli-

 much
s across

ve data
te con-
utput-

 variety
ite lit-

te-cen-
herever.
n com-

at if you
emantics
 object.)

Neward12_06_12.fm Page 302 Tuesday, June 13, 2000 12:07 PM
302 CHAPTER 12 PERSIS

cation), and restored with all properties intact, Serialization never really got
press beyond that. RMI also uses this “basic” form of Serialization to ship object
the wire from client to server or vice versa.

12.1.1 Serialization to other places

As RMI proves, we can Serialize objects to any place we can store and retrie
streams. ObjectOutputStream, the default ObjectOutput-implementing by
tainer, wraps an OutputStream. This means that any class which extends O
Stream can in turn be a sink for serialized objects. When you consider the wide
of rich and well-defined stream classes Java has, this means that objects can, qu
erally, be serialized anywhere:

ByteArrayOutputStream baos = new ByteArrayOutputStream();

ObjectOutputStream oos = new ObjectOutputStream(baos);
oos.writeObject(obj);

oos.flush();
byte[] serializedData = baos.toByteArray();

// ...

// Now reconstitute the object(s)

ByteArrayInputStream bais = new ByteArrayInputStream(serializedData);
ObjectInputStream ois = new ObjectInputStream(bais);

Object obj = ois.readObject();

This snippet2 allows us to now send the serialized form of the object obj to any by
tric data stream we choose: RDBMS binary object column, socket, XML format, w

Furthermore, we can now manipulate the data in any way we see fit, eve
press it:

import java.io.*;
import java.util.zip.*;

public class CompressedSerialization

{
public static void main(String[] args)

throws Exception
{

// Take a String, serialize it compressed to disk
String data = "This is our test string";

2 Effectively a longer-way-around replacement for Cloneable, although I strongly suggest th
want to clone objects, you implement Cloneable and decide on shallow-copy or deep-copy s
explicitly. (“Cloning-via-serialization” will always give you a deep copy, with new versions of each

303

FileOutputStream os =

new FileOutputStream("data");

GZIPOutputStream gzOS =

new GZIPOutputStream(os);

ObjectOutputStream oos =

 GZIP-
Input-

ms talk
t, and
ization

e secu-
anyone
 repre-
ct with
ontain-
re that

e could
o. This
e either
utput-

ely, the
ending
ork.

Neward12_06_12.fm Page 303 Tuesday, June 13, 2000 12:07 PM
JAVA SERIALIZATION

new ObjectOutputStream(gzOS);

// Serialize the object

oos.writeObject(data);

oos.close();

// Set up the input streams

FileInputStream is =

new FileInputStream("data");

GZIPInputStream gzIS =

new GZIPInputStream(is);

ObjectInputStream ois =

new ObjectInputStream(gzIS);

String test = (String)ois.readObject();

System.out.println("Compare : " + data + " vs. " + test);

if (data.equals(test))

System.out.println("Success!");

}

}

Notice how Java’s stream-chaining makes this a simple task. By placing the
OutputStream and GZIPInputStreams around the FileOutputStream or File
Stream instances, and having the ObjectOutputStream and ObjectInputStrea
to the GZIP streams, we now compress the serialized data on the way ou
decompress it on the way in. The act of performing the serialization or deserial
will take longer, granted, but this is to be expected of any compression task.

12.1.2 Security and Serialization

Serialization, in its basic form, for all its wonderful promise, leaves a very larg
rity hole. If sensitive information is stored off to some serialized stream, then
who has access to the serialized data and the binary code for the class(es) which
sent the serialized objects in that data stream can reconstitute the entire obje
no security restrictions whatsoever. This means that if you serialize a record c
ing financial or other sensitive information off to disk, you need to make su
unauthorized users can’t access the disk files.

It would be nice if Java came with some cryptographic I/O streams that w
plug in to the Serialization process, as we did with compression, but none d
means that in order to encrypt the data produced from a serialization stream, w
have to capture the entire byte array and encrypt it, or create an InputStream/O
Stream pair that do the encryption on the fly as bytes are written in. Unfortunat
more secure encryption algorithms don’t handle on-the-fly encryption, but dep
on your needs, simple on-the-fly encryption methods like listing 12.1 could w

TENCE

import java.io.*;

import java.util.zip.*;

Listing 12.1 Code for simple encryption

Neward12_06_12.fm Page 304 Tuesday, June 13, 2000 12:07 PM
304 CHAPTER 12 PERSIS

class SimpleFilterInputStream extends FilterInputStream

{

public SimpleFilterInputStream(InputStream in)
{ super(in); }

/**
* Offset the byte values by -1

*/

public int read()

throws IOException

{

int r = super.read();
return r--;

}

/**

* Offset the byte values by -1

*/

public int read(byte b[])

throws IOException
{

int ret = super.read(b, 0, b.length);

for (int i=0; i<b.length; i++)

b[i]--;

return ret;

}

/**

* Offset the byte values by -1

*/

public int read(byte b[], int off, int len)

throws IOException
{

int ret = in.read(b, off, len);

for (int i=0; i<b.length; i++)

b[i]--;

return ret;

}

}

class SimpleFilterOutputStream extends FilterOutputStream

{

public SimpleFilterOutputStream(OutputStream out)

{ super(out); }

/**

305

* Offset the bytes by +1

*/

public void write(int b)

throws IOException

{

Neward12_06_12.fm Page 305 Tuesday, June 13, 2000 12:07 PM
JAVA SERIALIZATION

out.write(b++);

}

/**

* Offset the bytes by +1

*/

public void write(byte b[])

throws IOException

{

write(b, 0, b.length);

}

/**

* Offset the bytes by +1

*/

public void write(byte b[], int off, int len)

throws IOException

{

for (int i = 0 ; i < len ; i++)

{

write((b[off + i])++);

}

}

}

/**

*

*/

public class SecureSerialization

{

public static void main(String[] args)

throws Exception

{
// Take a String, serialize it compressed to disk

String data = "This is our test string";

FileOutputStream os =

new FileOutputStream("data");

SimpleFilterOutputStream fos =

new SimpleFilterOutputStream(os);

ObjectOutputStream oos =
new ObjectOutputStream(fos);

// Serialize the object

oos.writeObject(data);

oos.close();

// Set up the input streams

FileInputStream is =

TENCE

new FileInputStream("data");

SimpleFilterInputStream fis =

new SimpleFilterInputStream(is);

ObjectInputStream ois =

new ObjectInputStream(fis);

reaking
e could
pressed
lication
e, if the
r if the

lization
hey are

seri-
on will
level of
erhaps
further

ect
or Seri-
default
follow-
s static
forth).
 of two
tInput-
moved
 where

Neward12_06_12.fm Page 306 Tuesday, June 13, 2000 12:07 PM
306 CHAPTER 12 PERSIS

String test = (String)ois.readObject();

System.out.println("Compare : " + data + " vs. " + test);

if (data.equals(test))
System.out.println("Success!");

}

}

Obviously, this sort of encryption would be simple for any serious encryption-b
algorithm or hacker to tear apart. For added security (such as it is, anyway), w
slip a GZIP stream into the process, thus rendering the data offset by one, com
and serialized, which would confuse any nonencryption-aware reader or app
attempting to understand the data. Again, however, if your data is truly sensitiv
data will be sent over insecure lines (such as anything outside your intranet), o
data simply warrants added security, go with a more secure algorithm.

12.1.3 Customized Serialization

Serialization isn’t limited to playing strictly by Sun’s rules. The Object Seria
specification allows those classes that wish to control the manner in which t
serialized to do so.

As stated before, one way in which serialization is controlled comes via the
alizedPersistentFields member of a class; if one is present, Serializati
only persist those members specified in that array. Sometimes, however, that
control isn’t enough—the target system doesn’t understand byte streams, or p
simply streaming off the bytes in Serialization’s own format is inconvenient for
system development.

Under these circumstances, if a class provides readObject and writeObj
methods (the access specifier on these methods must be marked as private ,
alization will not find them), these methods will be called in addition to using
Serialization behavior to persist the object. This allows you to add optional data
ing the class when persisting it off which would otherwise not be stored (such a
fields, or references to objects that would normally sit outside the class, and so

In listing 12.2, we replace the default Serialization mechanism with one
different implementations. Both use the read and write methods of Objec
Stream and ObjectOutputStream, respectively, and so aren’t completely re
from Serialization, but alternate implementations are easy to imagine and see
and how they would plug in.

307

import java.io.*;

import java.util.*;

Listing 12.2 Code for customizing Serialization

Neward12_06_12.fm Page 307 Tuesday, June 13, 2000 12:07 PM
JAVA SERIALIZATION

public class CustomSerialization

implements Serializable

{

public CustomSerialization()

{

m_int = 5;

m_string = "This is a test";

m_object = new Date();

}

private void writeObject(ObjectOutputStream oos)

throws IOException

{

// One possible implementation

/*

oos.writeUTF("{BEGIN}");

oos.writeInt(m_int);

oos.writeUTF(m_string);

oos.writeObject(m_object);

oos.writeUTF("{END}");

*/

// A second implementation

Hashtable hash = new Hashtable();

hash.put("m_int", new Integer(m_int));

hash.put("m_string", m_string);

hash.put("m_object", m_object);

oos.writeObject(hash);

}

private void readObject(ObjectInputStream ois)

throws IOException, ClassNotFoundException

{

// The deserialization to the implementation given first

/*

System.out.println((String)ois.readUTF());

m_int = ois.readInt();

m_string = ois.readUTF();

m_object = ois.readObject();

System.out.println((String)ois.readUTF());

*/

// The deserialization to the second implementation

Hashtable hash = (Hashtable)ois.readObject();

m_int = ((Integer)hash.get("m_int")).intValue();

m_string = (String)hash.get("m_string");

m_object = hash.get("m_object");

}

TENCE

public int m_int;

public String m_string;

public Object m_object;

public static void main(String[] args)

ustom-
y com-
” block
kers to
instead
ue pair
e data
ing the
custom
zation.

Neward12_06_12.fm Page 308 Tuesday, June 13, 2000 12:07 PM
308 CHAPTER 12 PERSIS

throws Exception

{

CustomSerialization custom = new CustomSerialization();

custom.m_int = 12;
custom.m_string = "Test data";

custom.m_object = new Vector();

((Vector)custom.m_object).addElement("One");

((Vector)custom.m_object).addElement("Two");
((Vector)custom.m_object).addElement("Three");

// Serialize it off to disk

FileOutputStream os =

new FileOutputStream("data");
ObjectOutputStream oos =

new ObjectOutputStream(os);

oos.writeObject(custom);

oos.close();

// Retrieve it from disk

FileInputStream is =

new FileInputStream("data");

ObjectInputStream ois =
new ObjectInputStream(is);

CustomSerialization test =

(CustomSerialization)ois.readObject();

if (custom.m_int == test.m_int &&
custom.m_string.equals(test.m_string))

{

System.out.println("It worked!");

}
}

}

The core of the example is in the writeObject and readObject methods of C
Serialization. In writeObject , the first implementation (which is currentl
mented out) uses ObjectOutputStream’s methods to write a “begin” and “end
around the serialized members, and readObject in turn uses these mar
ensure that the stream is synchronized correctly. The second implementation
makes use of a standard Hashtable to contain the members in a name-val
approach, and uses default Serialization to stream the Hashtable out to th
stream and back again. While neither of these approaches really gets away from us
default behavior of Serialization, (and neither approach warrants the need for
Serialization) it highlights the necessary steps to implement customized Seriali

309

12.1.4 Serialization and evolution

“The only thing constant in life is change.” This is true of object systems, as well. Sys-
tems that remain constant aren’t well-written, they’re stagnant. Business changes,
technology evolution, new ideas, even the simple act of administering the enterprise’s

 create

ow can
y write)
lity tar-
ugh for
el level
 main-
already

y capa-
rialized

 When
 to the
default
ntract.

uence.

 a field
am, so
eleting
 value,

ions of
 in the

data or
 not is a
stream.

Neward12_06_12.fm Page 309 Tuesday, June 13, 2000 12:07 PM
JAVA SERIALIZATION

corporate data center can introduce changes into an enterprise system and
additional requirements or changes to the system.

This introduces particular problems for the persistent object concept; h
objects change their internal representation and still be able to read (and potentiall
older versions of themselves? This is not a trivial task; the backward-compatibi
get is one to which many systems aspire, yet few actually hit. It is difficult eno
developers to maintain a consistent set of methods and APIs at the object-mod
so as not to require massive rework on the client side. Asking developers to also
tain the internal representation of objects, so as to remain compatible with the
Serialized versions of those objects, is downright impossible.

Fortunately, Serialization provides a certain amount of evolution-friendl
bility. So long as developers do not violate one of the following rules,3 the se
versions of objects will be transparently read from disk without a problem:

• Deleting fields
If a field is deleted in a class, the stream written will not contain its value.
the stream is read by an earlier class, the value of the field will be set
default value because no value is available in the stream. However, this
value may adversely impair the ability of the earlier version to fulfill its co

• Moving classes up or down the hierarchy
This cannot be allowed since the data in the stream appears in the wrong seq

• Changing a nonstatic field to static or a nontransient field to transient
When relying on default serialization, this change is equivalent to deleting
from the class. This version of the class will not write that data to the stre
it will not be available to be read by earlier versions of the class. As when d
a field, the field of the earlier version will be initialized to the default
which can cause the class to fail in unexpected ways.

• Changing the declared type of a primitive field
Each version of the class writes the data with its declared type. Earlier vers
the class attempting to read the field will fail because the type of the data
stream does not match the type of the field.

• Changing the writeObject or readObject method
Changing either method so that it no longer writes or reads the default field
changing it so that it attempts to write it or read it when the previous version did
no-no. The default field data must consistently either appear or not appear in the

3 Java Object Serialization Specification, Section 5.6.1.

TENCE

• Changing a class from Serializable to Externalizable or vice-versa
This is an incompatible change since the stream will contain data that is incom-
patible with the implementation in the available class.

• Removing either Serializable or Externalizable
ions of

patible

stream,
f class-
ethod

. Com-
itional

lize the

ass can
 corre-
carded,

ay be
ream is

pected,
ization.
ta. The
to write

d data
d.

Neward12_06_12.fm Page 310 Tuesday, June 13, 2000 12:07 PM
310 CHAPTER 12 PERSIS

When written it will no longer supply the fields needed by older vers
the class.

• Adding the writeReplace or readResolve method to a class
This is incompatible if the behavior would produce an object that is incom
with any older version of the class.

The following is a list of what is permitted to maintain compatibility:4

• Adding fields
When the class being reconstituted has a field that does not occur in the
that field in the object will be initialized to the default value for its type. I
specific initialization is needed, the class may provide a readObject m
that can initialize the field to nondefault values.

• Adding classes
The stream will contain the type hierarchy of each object in the stream
paring this hierarchy in the stream with the current class can detect add
classes. Since there is no information in the stream from which to initia
object, the class’s fields will be initialized to the default values.

• Removing classes
Comparing the class hierarchy in the stream with that of the current cl
detect that a class has been deleted. In this case, the fields and objects
sponding to that class are read from the stream. Primitive fields are dis
but the objects referenced by the deleted class are created, since they m
referred to later in the stream. They will be garbage-collected when the st
garbage-collected or reset.

• Adding writeObject /readObject methods
If the version reading the stream has these methods then readObject is ex
as usual, to read the required data written to the stream by the default serial
It should call defaultReadObject first before reading any optional da
writeObject method is expected as usual to call defaultWriteObject
the required data and then may write optional data.

• Removing writeObject /readObject methods
If the class reading the stream does not have these methods, the require
will be read by default serialization, and the optional data will be discarde

4 Java Object Serialization Specification, Section 5.6.2.

311

• Adding java.io.Serializable
This is equivalent to adding types. There will be no values in the stream for this
class so its fields will be initialized to default values. The support for subclassing
nonserializable classes requires that the class’s supertype has a no-arg constructor

uctor is

ave no

s, this
written
ill not

ad and
iginal’s
ue as a

h were
volved

 be set
lt con-
ialized,
osed to

Neward12_06_12.fm Page 311 Tuesday, June 13, 2000 12:07 PM
JAVA SERIALIZATION

and the class itself will be initialized to default values. If the no-arg constr
not available, the InvalidClassException is thrown.

• Changing the access to a field
The access modifiers public , package , protected , and private h
effect on the ability of serialization to assign values to the fields.

• Changing a field from static to nonstatic or transient to nontransient
When relying on default serialization to compute the serializable field
change is equivalent to adding a field to the class. The new field will be
to the stream but earlier classes will ignore the value since serialization w
assign values to static or transient fields.

When evolving a class in a compatible form, allowing the evolved class to re
write the original class’s serialized instances is a simple matter. Place the or
serialver (so named because it is obtained from the JDK utility “serialver”) val
static member of the evolved class, like so:

public class Evolved

{

static final long serialVersionUID = -6756364686697947626L;

}

Now, when instances of the evolved class are deserialized from streams (whic
serialized using the original class), the original instance will be read into the e
instance. Those fields which weren’t present in the original instance will
according to the evolved instance’s no-arg constructor (or to null, if a defau
structor isn’t defined for the class). Fortunately, when the evolved class is ser
the serialVersionUID is ignored and the full evolved class is Serialized (as opp
an original form of the evolved class).

To demonstrate, consider the following “original” class:

public class Evolution

implements Serializable

{

public static void main(String[] args)

throws Exception

{

// Create an instance

//

Evolutio n e = new Evolution();

e.printIt();

// Serialize it out

//

FileOutputStream fo = new FileOutputStream("evolve.tmp");

TENCE

ObjectOutputStream so = new ObjectOutputStream(fo);

so.writeObject(e);

so.flush();

fo.close();

// Deserialize it back in, just to make sure

es it to
olution

Neward12_06_12.fm Page 312 Tuesday, June 13, 2000 12:07 PM
312 CHAPTER 12 PERSIS

//

FileInputStream fi = new FileInputStream("evolve.tmp");

ObjectInputStream si = new ObjectInputStream(fi);

Evolution e2 = (Evolution)si.readObject();

e2.printIt();

fi.close();

}

public Evolution()

{

m_data = new String("This is a test");

}

public void printIt()

{

System.out.println("Data : " + m_data);

}

private String m_data = new String("Default value");

}

When the original is run, it first serializes an instance of itself, then deserializ
verify that it is deserializable by the original. Next, look at the compatible ev
of the original class:
public class Evolution

implements Serializable

{

public static void main(String[] args)

throws Exception

{

// Deserialize the old instance

//

FileInputStream fi = new FileInputStream("evolve.tmp");

ObjectInputStream si = new ObjectInputStream(fi);

Evolutio n e = (Evolution)si.readObject();

e.printIt();

fi.close();

// Change the "new" data

//

e.changeData2();

// Serialize it out to a new file

//

FileOutputStream fo = new FileOutputStream("evolve2.tmp");

ObjectOutputStream so = new ObjectOutputStream(fo);

so.writeObject(e);

so.flush();

fo.close();

313

// Deserialize it back in, just to make sure

//

fi = new FileInputStream("evolve2.tmp");

si = new ObjectInputStream(fi);

Evolution e2 = (Evolution)si.readObject();

inal, to
Finally,
lization

incom-
 nomi-
nt type
rite-

, pro-
 It will
access-

Neward12_06_12.fm Page 313 Tuesday, June 13, 2000 12:07 PM
JAVA SERIALIZATION

e2.printIt();

fi.close();

}

public Evolution()

{

m_data = new String("This is a test");

}

public void printIt()

{

System.out.println("Data : " + m_data);

System.out.println("Data2 : " + m_data2);

}

public void changeData2()

{

m_data2 = new String("This is different.");

}

private String m_data = new String("Default value");

private String m_data2 = new String("Default data2 value");

static final long serialVersionUID = -282360125859716471L;

}

When the evolved class is executed, it first deserializes the instance of the orig
ensure that it can, then serializes itself back to disk under a different filename.
as a last check, it deserializes the new instance, to make sure that the new seria
format was used and not the old.

12.1.5 Replacement

In the event, however, that you must make changes that would make the class
patible with its former serialized representation, Serialization allows a class to
nate its replacement type in the serialized stream, and to offer a replaceme
when deserialized from the stream. This behavior is implemented with the w
Replace and readResolve methods, which are prototyped as follows:

<any access modifier> Object writeReplace()

throws ObjectStreamExceptio n { . . . }

<any access modifier> Object readResolve()

throws ObjectStreamExceptio n { . . . }

Note that the access specifier given to these methods (public , private
tected , or package-friendly) is irrelevant as far as Serialization is concerned.
use Reflection to identify whether either method exists, and will ignore the
specification when using them.

TENCE

The problem with using these methods is that they are called after deserialization
has taken place; that is, on the object that was deserialized from the data stream.
Unfortunately, an incompatible change to the class means that deserialization will fail
before readResolve() can be called to nominate a replacement object in its stead.

t as we
w class
d to as

rialized:

on, the

ew for-
esire to
 New-

Neward12_06_12.fm Page 314 Tuesday, June 13, 2000 12:07 PM
314 CHAPTER 12 PERSIS

All is not completely lost; while it’s not quite as seamless or as transparen
might hope, we can use the readResolve() method to construct the ne
using the old one as an argument to a new class constructor (what C++ referre
a copy constructor):

public class NewClass

{
// . . .

public NewClass(OldClass source)
{

// Copy over data from ‘source’
}

}

The OldClass must then be written to nominate instances of NewClass when dese
public class OldClass
{

// . . .
private Object readResolve()

throws ObjectStreamException
{

return new NewClass(this);
}

}

And, any place where an OldClass was expected from a deserialization operati
code must be changed to expect a NewClass instead:
// code like this:

OldClass obj = (OldClass)objectInputStream.readObject();

// must be changed to:

NewClass obj = (NewClass)objectInputStream.readObject();

When the NewClass is serialized (listing 12.3), it will be serialized using its n
mat, and not the (incompatible) one written by OldClass. If, however, you d
keep the old format in place, you can provide a writeReplace() method on
Class that creates an OldClass for serialization.

import java.io.*;

/**

* OldClass is the "old" serialized format we wish to maintain
*/

class OldClass

Listing 12.3 Code for NewClass (serialized)

315

implements Serializable

{
public OldClass(String data)

{
m_data = data;

Neward12_06_12.fm Page 315 Tuesday, June 13, 2000 12:07 PM
JAVA SERIALIZATION

}

public String getData()

{
return m_data;

}

public String toString()

{
return ("OldClass.m_dat a = " + m_data);

}

private String m_data;

// Serialization Replacement method
private Object readResolve()

throws ObjectStreamException
{

return new NewClass(this);
}

}

/**

* NewClass is the "new" serialized format we wish to replace
* OldClass with.

*/
class NewClass

implements Serializable
{

public NewClass(OldClass source)
{

System.out.println("Copy-constructing fro m " + source);
m_ref = source;

m_additionalData = null;
}

private Object m_additionalData;
private OldClass m_ref;

// This is counted as an incompatible change as far as
// Serialization is concerned--we "removed" a serialized

// field (m_data) from this new class type, we changed the
// class name, and so forth.

private Object writeReplace()

throws ObjectStreamException
{

System.out.println("Nominatin g " + m_re f + " for " +
"serialization instead of ourselves");

return m_ref;
}

}

TENCE

/**

*

*/

public class Replacement

{

ation is
 least of
Seriali-
tten by
n issue
have a
moved,
tances),

Neward12_06_12.fm Page 316 Tuesday, June 13, 2000 12:07 PM
316 CHAPTER 12 PERSIS

public static void main(String[] args)

throws Exception

{

// Serialize out a version of OldClass to work with

ByteArrayOutputStream out1 =

new ByteArrayOutputStream();

ObjectOutputStream objOut =

new ObjectOutputStream(out1);

OldClass data = new OldClass("Data value");

objOut.writeObject(data);

objOut.flush();

// Deserialize written object into a NewClass instance

ByteArrayInputStream in1 =

new ByteArrayInputStream(out1.toByteArray());

ObjectInputStream objIn =

new ObjectInputStream(in1);

NewClass newData = (NewClass)objIn.readObject();

// Serialize NewClass instance back out to file

ByteArrayOutputStream out2 =

new ByteArrayOutputStream();

ObjectOutputStream objOut2 =

new ObjectOutputStream(out2);

objOut2.writeObject(newData);

objOut2.flush();

// Ensure the two byte arrays (out1 and out2) are identical;

// for this example, we'll just compare sizes

if (out1.toByteArray().length == out2.toByteArray().length)

System.out.println("Lengths are identical!");

}

}

Note that NewClass has nothing to do with OldClass in any way so far as Serializ
concerned. We’ve made a number of incompatible changes to OldClass, not the
which is the fact that we changed its name (to NewClass)! But, as you can see,
zation still believes that the serialized versions of OldClass can be read and wri
NewClass. Normally, being able to write out the new class as the old is less of a
than being able to read in the new (notice that since NewClass does not
readResolve() method, if the writeReplace() method in NewClass is re
any serialized OldClass instances will be one-way transformed into NewClass ins
but being able to go from old to new back to old is possible, as demonstrated.

317

12.2 BEYOND THE SPECIFICATION

Having spent all this time discussing the mechanics of Serialization and Externaliza-
tion, the curious reader may wonder what good this knowledge can serve when writ-

sary for
esenta-
lities in

jects to
on and
lizable)
ut con-
Instead
eck out
are fin-
ck-out/
ers pre-

objects
hin the
ber of

plexity.
m pre-
ages or

centers
pplica-
ients to
tralized
propri-
m this
f mind
ng, for

g deci-
 exam-
ecomes
able or
ions or

Neward12_06_12.fm Page 317 Tuesday, June 13, 2000 12:07 PM
BEYOND THE SPECIFICATION

ing server code. After all, Serialization is really just a JavaBeans thing, isn’t it?
Not exactly. A good working knowledge of Serialization is not only neces

usage in RMI (which, as mentioned before, uses Serialization for sending repr
tion of object instances across the wire), but can also have some direct capabi
the server environment.

To start with, this inherent ability to gracefully (and silently) stream ob
data streams and back allows us some flexibility in the objects’ actual locati
environment. For example, nothing prevents us (assuming all objects are Seria
from storing objects in a central server on the network. RMI also allows this, b
current modification of objects can create problems in an RMI environment.
of adding complicated concurrency locking, we can instead allow clients to ch
objects from this remote storage facility, and check in the objects when they
ished with them. In addition to being as fast, if not faster, than RMI, this che
check-in paradigm can, when combined with one of the distributed ClassLoad
viously discussed, completely obviate the need for RMI for some purposes.

Secondly, now that we’ve seen the ability of Serialization to shuffle
between JVMs, one begins to wonder if objects need to begin and end life wit
same JVM. They don’t, and the remote construction of objects offers a num
advantages that local construction of objects can’t match without added com
Again, when combined with one (or more) of the distributed ClassLoaders fro
vious chapters, we gain a measure of flexibility unparalleled by other langu
development environments.

12.2.1 Remote storage of objects

Much of the development work that goes on within an enterprise application
around the idea of group-enabling access to data. For example, the employee a
tion system developed in chapter 6 is precisely that—the ability for multiple cl
view and/or modify data from anywhere in the enterprise. Historically, cen
persistent forms of storage have been used for this role, regardless of their ap
ateness toward that task. Specifically, relational databases are used to perfor
role, forcing database administrators and developers into a relational frame o
when storing off data. While the centralization of data is a worthwhile thi
many systems and applications the use of a relational database is overkill.

Additionally, using a relational database forces the design team into makin
sions based specifically on the basis that a relational database is being used. For
ple, implementing the kind of check-in/check-out system described earlier b
painful under an RDBMS if the RDBMS itself does not provide some form of t
row locking. Also, for a number of applications, such as Internet applicat

TENCE

applets, the use of an RDBMS for any purpose is not only inconvenient, but inadvis-
able. (Most security experts recommend leaving the database behind the firewall to
avoid hacking attempts.)

Remember one of object-oriented development’s founding tenets: Encapsulation
 enter-
 suite),

f a new
ady for
 stored
lemen-

ta stor-
 to the
ng.

Neward12_06_12.fm Page 318 Tuesday, June 13, 2000 12:07 PM
318 CHAPTER 12 PERSIS

is good. There are a variety of persistent mechanisms already at use within the
prise (not the least of which is the classic legacy system mainframe application
and access to these systems is not trivial by any standard.

Fortunately, we can avoid a number of these problems with the creation o
GJAS service, the RemoteStorageService. This example code is certainly not re
immediate production use (if the service shuts down for any reason, the data
therein is lost), but provides a basic framework from which more robust imp
tations could easily be derived.

12.2.2 Example: RemoteStorageService and RemoteStorageClient

RemoteStorageService (listing 12.4) provides a check-in/check-out system of da
age on the GJAS server. It uses Serialization to stream the data from the client
server, keeping track of check-outs solely by a client-provided identification stri

import java.io.*;

import java.net.*;
import java.util.*;

/**
* RemoteStorageService

*/
public class RemoteStorageService extends SocketServer

{
/**

* Use this Socket to answer client requests for serialization
* services. This service, in contrast to others, services only

* one request/response pair, then shuts down. This is
* deliberate, as ObjectOutputStream and ObjectInputStream do

* some activity to the target stream (the socket) during
* their construction; this means that after the client makes

* its request and quits, the server will get an Exception
* claiming the socket "unexpectedly" quit.

*
* Note also that order of construction of the streams (the

* ObjectInput/ObjectOutput streams) is important;
* because the client's ObjectInputStream is expecting to find

* header information on the server's ObjectOutputStream, they
* must be constructed in offsetting pairs. The server builds

* them in Output-first-Input-second order, so the client must
* build them in reverse (Input-first-Output-second) order. For

* this reason, only use RemoteStorageRequest instances to
* talk to the RemoteStorageService.

*/

Listing 12.4 Code for RemoteStorageService

319

public void serve(Socket socket)

throws Exception

{

// Set up

ObjectOutputStream objOut =

Neward12_06_12.fm Page 319 Tuesday, June 13, 2000 12:07 PM
BEYOND THE SPECIFICATION

new ObjectOutputStream(socket.getOutputStream());

ObjectInputStream objIn =

new ObjectInputStream(socket.getInputStream());

// Extract the command

String cmd = objIn.readUTF();

if (cmd.equals("GET"))

{

// Protocol: GET, obj name

String objName = (String)objIn.readObject();

Object objInTable = m_objectTable.get(objName);

if (objInTable != null)

{

objOut.writeUTF("SUCCESS");

objOut.writeObject(objInTable);

}

else

{

objOut.writeUTF("ERROR");

objOut.writeObject(

new Exception("Object not found"));

}

objOut.flush();

} // GET

else if (cmd.equals("CHECKIN"))

{

// Protocol: CHECKIN, client ID, obj name, obj

String clientID = (String)objIn.readObject();

String objName = (String)objIn.readObject();

Object obj = objIn.readObject();

// Is it there?

Object objInTable = m_objectTable.get(objName);

if (objInTable != null)

{

// It's there already; did we check it out?

String ownerID = (String)m_checkOuts.get(objName);

if (ownerID == null)

{

// It's not checked out at all

objOut.writeUTF("ERROR");

objOut.writeObject(

new Exception("Object not checked out"));

}

else if (ownerID.equals(clientID))

{

TENCE

// Yes, 'tis checked out, and client owns it

// Replace the old one; Hashtable allows dupes

m_objectTable.remove(objName);

m_objectTable.put(objName, obj);

Neward12_06_12.fm Page 320 Tuesday, June 13, 2000 12:07 PM
320 CHAPTER 12 PERSIS

// Remove the checkout

m_checkOuts.remove(objName);

// Send success

objOut.writeUTF("SUCCESS");

objOut.writeObject(obj);

}

else

{

// Yes, 'tis checked out, but client doesn't

// own it, so they can't check it back in

objOut.writeUTF("ERROR");

objOut.writeObject(new Exception(

"Object checked out t o " + ownerID));

}

}

else

{

// It's not there; add it and return success

m_objectTable.put(objName, obj);

objOut.writeUTF("SUCCESS");

objOut.writeObject(obj);

}

objOut.flush();

} // CHECKIN

else . . .

// CHECKOUT and DIFF also supported; for full details, see

// the full code listing

// . . .

// Internal members

private Hashtable m_objectTable = new Hashtable();

private Hashtable m_checkOuts = new Hashtable();

}

The client code, snipped somewhat, looks like this:

public class RemoteStorageClient

implements Serializable

{

// . . .

public RemoteStorageClient(String ID, String host, int port)

{

m_clientID = ID;

m_host = host;

321

m_port = port;

}

/**

* Retrieves a "read-only" (that is, you don't own the lock on

* this object) object by name.

Neward12_06_12.fm Page 321 Tuesday, June 13, 2000 12:07 PM
BEYOND THE SPECIFICATION

*/

public Object get(String objName)

throws Exception

{

Socket socket = new Socket(m_host, m_port);

ObjectInputStream fromSocket =

new ObjectInputStream(socket.getInputStream());

ObjectOutputStream toSocket =

new ObjectOutputStream(socket.getOutputStream());

// Send the request: "GET", name

toSocket.writeUTF("GET");

toSocket.writeObject(objName);

toSocket.flush();

// Check the response; if the response string is anything

// other than "SUCCESS", throw the next object pulled from

// the stream (which RemoteStorageService guarantees will be

// an Exception type)

String response = fromSocket.readUTF();

if (response.equals("SUCCESS"))

{

return fromSocket.readObject();

}

else

{

throw (Exception)fromSocket.readObject();

}

}

/**

* Retrieves the object by name and locks it for exclusive

* modification by this client.

*/

public Object checkOut(String objName)

throws Exception

{

Socket socket = new Socket(m_host, m_port);

ObjectInputStream fromSocket =

new ObjectInputStream(socket.getInputStream());

ObjectOutputStream toSocket =

new ObjectOutputStream(socket.getOutputStream());

// Send the request: "CHECKOUT", client ID, obj name

toSocket.writeUTF("CHECKOUT");

toSocket.writeObject(m_clientID);

toSocket.writeObject(objName);

toSocket.flush();

TENCE

// Check the response; if the response string is anything

// other than "SUCCESS", throw the next object pulled from

// the stream (which RemoteStorageService guarantees will be
// an Exception type)

String response = fromSocket.readUTF();

 a UTF
CKOUT,
e com-
ESS or
 object
ception
e same

n, the
, either
ss code
ound-
e class
ubclass

, save
ervice.

Neward12_06_12.fm Page 322 Tuesday, June 13, 2000 12:07 PM
322 CHAPTER 12 PERSIS

if (response.equals("SUCCESS"))
{

return fromSocket.readObject();

}
else

{

throw (Exception)fromSocket.readObject();
}

}

// . . .

// other methods supported—“checkin”, “checkout”, “diff”, plus

// a main() for testing.

}

The protocol between the client and the service is straightforward: clients send
string down the socket consisting of one of four commands: GET, CHECKIN, CHE
and DIFF. When received, the service pulls the appropriate arguments after th
mand string. It responds to the client by sending a UTF string, either SUCC
ERROR. If the command is a success, it sends the object or return code as an
after the response string, whereas if the command is a failure, it will send an Ex
back. For full details, check out the code associated with the book; all follow th
basic scheme used by get and checkout .

The system is not inherently flawless; because it uses Java Serializatio
RemoteStorageService must have the class bytecode for the actual object stored
already loaded or somewhere on its CLASSPATH. If an object is sent whose cla
is not available to the RemoteStorageService, the server will throw a ClassNotF
Exception. If it becomes necessary to store arbitrary bytes without having th
bytecode on the server, simply write the bytecode into an Object-extending s
that just stores the byte array:

public class ByteArray
implements Serializable

{

public ByteArray(byte[] array)
{ m_array = array; }

public byte[] m_array;

}

Then, when storing the data, serialize the object to a ByteArrayOutputStream
the bytes into a ByteArray, and store the ByteArray into the RemoteStorageS
Reverse the process when retrieving the object.

323

Notice what 200 lines of Java code on the server, and 170 lines on the client
(which doesn’t include the test driver), including comments, has now provided for
us—a distributed storage system whose actual internals are irrelevant to the client’s
use. Because it uses Java Serialization, any Java application can make use of it, and

se it to

nt, the
ing the
 a rela-
client’s
written
mically

otocol.
eted, as
out the

l could
request
re. The
 having
objects
ails:

ersions
er that

tem; if
/select/
alm of
s than

s. In a
ket (or
h con-
rializa-

Neward12_06_12.fm Page 323 Tuesday, June 13, 2000 12:07 PM
BEYOND THE SPECIFICATION

because it uses sockets for its inter-JVM communication, even applets can u
store objects on the server from which they came.

Because the actual storage details are encapsulated away from the clie
RemoteStorageService is free to do whatever it likes when retrieving or stor
object’s data. From the client’s perspective, these objects could be coming from
tional database, an object database, or a legacy mainframe application—the
code never changes. In fact, the RemoteStorageService could be enhanced or re
to allow the server to defer the actual storage of the objects to another, dyna
loaded class instance.

Notice also what Serialization does for us regarding our client-service pr
Instead of passing around clear-text strings which must be parsed and interpr
in HTTP, we can send entire objects over the wire, without having to worry ab
details of how to represent those objects in text-based format.

In fact, for a more complex protocol, the request and response protoco
itself be wrapped in classes, all of which implement Serializable, and the entire
object serialized over the socket, deserialized on the server and picked apart the
advantage in doing this is type-safety and protocol encapsulation—instead of
to remember when writing new extensions to the protocol to write the correct
in the correct order, the Request class or derived class can take care of the det

RemoteStorageClient clien t = . . .;

// . . .

Object obj = client.request(new RemoteStorageGetRequest(“Test Data”));

This approach would also allow for code reuse when creating subtly different v
of various request types. One could almost imagine a Java-only HTML serv
uses Serialization to send the various files across instead of HTTP.

Remote storage of objects doesn’t have to be this check-in/check-out sys
desired, the service could implement more tradtional RDBMS insert/update
delete operations. Doing this starts to move RemoteStorageService into the re
an RDBMS server, however, and there are far better database implementation
anything I could ever produce.

12.2.3 Remote construction of objects

Java Serialization and sockets offer a new wrinkle to the classic Factory pattern
Distributed Factory system, clients send requests for new objects across a soc
through other distribution channels, perhaps via RMI) to the Factory, whic
structs the object and sends the constructed object back over the wire via Se
tion. Advantages of this system are:

TENCE

• Security
System administrators may not want to make the means by which objects are
constructed available on end-user machines. For example, RDBMS systems will
typically be situated behind a firewall, where applets running on the client

ith an
e data-
MZ).

d or as
ll often
nly the
e wire,

er fash-
 abun-
 server
te, the

 a week
o work
r these
tations
heavy-
olicies

y hand

M that
tabase-
in use,
n be a
se only
hically
ts own
for the
he.

 objects
ternals

if those
ructors

Neward12_06_12.fm Page 324 Tuesday, June 13, 2000 12:07 PM
324 CHAPTER 12 PERSIS

machine cannot get to them; instead, the applet must communicate w
agency running on the web server which in turn communicates with th
base (or another proxy system, if the web server sits inside the firewall’s D

• Performance
Many back-end server systems are coming with JVM capabilities installe
part of the system; examples include Oracle, DB2, and Lotus Notes. It wi
be faster to construct business objects (or simple data objects containing o
data desired) on the local machine and send the constructed object over th
than it will be to negotiate the communication in a traditional client-serv
ion. So, for example, when working with large query sets consisting of an
dant number of joins, create a query object that gathers the data on the
(where network bandwidth is not an issue). When the query is comple
object is Serialized and sent back.

• Availability
In some cases, data sources may be unavailable. Servers may go down once
for routine maintenance, or users may demand the ability to be able t
remotely, without a constant connection to the back-end database. Unde
circumstances, the Remote Object Factory can hold last-known represen
of the data (if holding such information is convenient and/or not too
weight) and send these back to the clients. To make clients aware of such p
would be duplicative if this knowledge were coded into the client’s code b
each time the client requested a new object.

• Centralization
JDBC-using systems require the presence of the JDBC driver on the JV
wishes to execute the query, even if the database resides remotely. In a da
heterogenous environment, where more than one database vendor is
ensuring that potential clients have all the JDBC drivers they require ca
major chore, especially during version upgrades. (Even those shops that u
one database can find it a pain, especially if these clients are located geograp
remote from the system administrators.) Having the data gathered on i
server and sent over the wire in constructed form eliminates the need
JDBC driver on the client side, and thus reduces the administration headac

• Encapsulation
I repeat: Encapsulation is good. This is true even of the knowledge of how
are constructed. The less knowledge the client system has regarding the in
of an object, the less code that will need to change on the client system
internals ever change. Internals can be exposed, however, if object const

325

require particular parameters or knowledge in order to construct the objects.5

This is the primary motivation for the Factory pattern in general, and carrying it
over into a distributed arena simply makes the Factory now more widely available
(and centralized on the server).

rtainly
ng the
oupled
on the
itional

Reflec-
n get a
uc-
ewIn-
ctor:

safe—
ument
es here

ample—

Neward12_06_12.fm Page 325 Tuesday, June 13, 2000 12:07 PM
BEYOND THE SPECIFICATION

Constructing objects remotely will not be the answer for all problems. It ce
involves greater overhead—both in maintenance and execution—but havi
details of how objects are constructed can lead to greater payoffs over time. When c
with a SocketClassLoader (from chapter 4), objects can now be constructed
server and deployed to the client in an on-the-fly basis, without requiring any add
support on the client machine.

12.2.4 Example: RemoteObjectFactory

The key to being able to create a generic object-creation service lies in Java’s
tion mechanism. If we know the name of the class we wish to instantiate, we ca
list of all the constructors it supports via the java.lang.Class method getConstr
tors() . Once we’ve found the Constructor we desire, we can call its n
stance() method, passing in an array of Objects as arguments to the constru

// Construct a String without calling “new String(“Test value”);”
Clas s c = Class.forName(“java.lang.String”);

Constructor ctor = null;

for (int i=0; i<c.getConstructors().length; I++)

{
// Constructor.toString() returns a human-readable version of the

// constructor with parameter list

if (c.getConstructors()[i].toString().equals(
“String(java.lang.String)”))

{

ctor = c.getConstructors[i];
break;

}

}
if (ctor == null)

; // What?!? String suddenly lost its copy-constructor?!?

String str = (String)ctor.newInstance(new Object[]
{

new String(“Test value”)

});
System.out.println(“st r = ” + str);

While this would be extremely awkward not to mention extremely type-un
we’ve lost all ability for the compiler to catch any errors in which the wrong arg
types are passed into the constructor—for use in normal code, for our purpos

5 JDBC Connection objects as constructor parameters to business objects are one particular ex
you now know that the object must be coming out of a relational database.

TENCE

it’s precisely what we want. Keep in mind that using Reflection in this manner immedi-
ately removes any type-safety the compiler can provide us. We can pass bogus informa-
tion into the constructor’s arguments array and the compiler will happily comply, since
it has no way of knowing that the argument types don’t match the ones declared. This

nstruc-

matter)
ver the
e’ll just
ontain-
emote-
 whose
Vector

Neward12_06_12.fm Page 326 Tuesday, June 13, 2000 12:07 PM
326 CHAPTER 12 PERSIS

means that on the server side, we need to catch Exceptions thrown from the Co
tor’s newInstance() method and pass those back down to the client.

At this point, our only problem is that Constructor (nor Class, for that
is not Serializable. This means we can’t just send the Constructor instance o
wire to the RemoteObjectFactory to use. Fortunately, this isn’t a problem—w
send the Class name, string representation of the Constructor, and a Vector c
ing all the arguments to the Constructor down the wire. Once there, the R
ObjectFactory can find the Class from the Class name, find the Constructor
string representation matches the one we pulled off the wire, and unpack the
into an Object array to pass into the Constructor’s newInstance method.

The server code looks like this:

import java.io.*;

import java.lang.reflect.*;

import java.net.*;

import java.util.*;

/**

* RemoteObjectFactoryService

*/

public class RemoteObjectFactoryService extends SocketServer

{

/**

* serve() takes a client request, sent via Serialization,

* and extracts the class name, the constructor, and the

* array of args to pass to the constructor, and proceeds

* to attempt to construct an instance of that type. This

* means that both the Service and the client must have the

* bytecode of the exact Class returned available on the JVM's

* CLASSPATH, or ClassNotFoundExceptions will result. (Note that

* the client doesn't need to know exactly what type it's

* getting back, it only needs to have it available via the

* client's ClassLoader--a SocketClassLoader would effectively

* make the entire mechanism load-on-the-fly.)

*/

public void serve(Socket socket)

throws Exception

{

// Set up

ObjectOutputStream objOut =

new ObjectOutputStream(socket.getOutputStream());

ObjectInputStream objIn =

new ObjectInputStream(socket.getInputStream());

try

327

{

// Protocol: class-name (UTF), ctor rep (UTF),

// args (Vector)

String className = objIn.readUTF();

String ctorStringRep = objIn.readUTF();

Neward12_06_12.fm Page 327 Tuesday, June 13, 2000 12:07 PM
BEYOND THE SPECIFICATION

Vector args = (Vector)objIn.readObject();

// First, get the Class object for className

Class cls = Class.forName(className);

// Next, find the Constructor corresponding to

// ctorStringRep

Constructor[] allCtors = cls.getConstructors();

Constructor ctor = null;

for (int i=0; i<allCtors.length; i++)

{

if (allCtors[i].toString().equals(ctorStringRep))

{

ctor = allCtors[i];

break;

}

}

if (ctor == null)

throw new Exception("Constructo r " + ctorStringRep +

" not found on clas s " + cls.getName());

// Unpack the args into an Object array

Object[] argsArray = new Object[args.size()];

for (int i=0; i<argsArray.length; i++)

argsArray[i] = args.elementAt(i);

// Construct the instance

Object instance = ctor.newInstance(argsArray);

// Make sure instance is Serializable

boolean foundIt = false;

for (int j=0; j<cls.getInterfaces().length; j++)

{

String interfaceName =

cls.getInterfaces()[j].getName();

if (interfaceName.equals("java.io.Serializable"))

{

foundIt = true;

break;

}

}

if (!foundIt)

throw new NotSerializableException(className);

// Caught in the catch() block a few lines down and

// sent back over the wire to the client

// Send it over the wire

objOut.writeUTF("SUCCESS");

objOut.writeObject(instance);

TENCE

}

catch (Exception ex)

{

objOut.writeUTF("ERROR");
objOut.writeObject(ex);

Neward12_06_12.fm Page 328 Tuesday, June 13, 2000 12:07 PM
328 CHAPTER 12 PERSIS

}

objOut.flush();
}

}

The client code, complete with test driver, looks like this:

import java.io.*;

import java.lang.reflect.*;
import java.net.*;

import java.util.*;

/**
* RemoteObjectFactoryClient

*/

public class RemoteObjectFactoryClient

{
/**

* RemoteObjectFactoryClient constructor

*/

public RemoteObjectFactoryClient(String host, int port)
{

m_host = host;

m_port = port;

}

/**

*

*/
public Object construct(Constructor ctor, Object[] ctorArgs)

throws Exception

{

// Transform ctorArgs into a Vector for easier Serialization
Vector args = new Vector();

if (ctorArgs != null)

{

for (int i=0; i<ctorArgs.length; i++)

args.addElement(ctorArgs[i]);
}

Socket socket = new Socket(m_host, m_port);

ObjectInputStream objIn =
new ObjectInputStream(socket.getInputStream());

ObjectOutputStream objOut =

new ObjectOutputStream(socket.getOutputStream());

// Note that these streams must be constructed in
// reverse order from how they are constructed in

// the server class; see the code in RemoteObjectService

// for more details

329

objOut.writeUTF(ctor.getDeclaringClass().getName());

objOut.writeUTF(ctor.toString());

objOut.writeObject(args);

objOut.flush();

// Read back the response string--SUCCESS or ERROR

Neward12_06_12.fm Page 329 Tuesday, June 13, 2000 12:07 PM
BEYOND THE SPECIFICATION

String response = objIn.readUTF();

if (response.equals("SUCCESS"))

{

// Next object is our serialized object; deserialize

// and return it

Object obj = objIn.readObject();

return obj;

}

else

{

// Next object is an Exception; deserialize and throw it

Exception ex = (Exception)objIn.readObject();

throw ex;

}

}

// Internal members

String m_host;

int m_port;

/**

* Test driver

*/

public static void main(String[] args)

throws Exception

{

if (args.length < 1)

{

System.out.println(

"Usage: java RemoteObjectFactoryClient <hostname:port>");

return;

}

// Parse out hostname and port

String host;

Integer port;

host = args[0].substring(0, args[0].indexOf(":"));

port = new Integer(args[0].substring(

args[0].indexOf(":")+1, args[0].length()));

System.out.println("Connecting t o " + host + ":" + port);

RemoteObjectFactoryClient client =

new RemoteObjectFactoryClient(host, port.intValue());

// Try constructing a few well-known Java objects

// new Date()

Class dateClass = Class.forName("java.util.Date");

TENCE

Constructor dateDefaultCtor =

dateClass.getConstructor(null);
Date date = (Date)client.construct(dateDefaultCtor, null);

System.out.println("new Date() : " + date);

// new String(String)

s argu-
e argu-
 While
riction,

r must
e. The
ll need
l. This
ly that
n .JAR
 of the
nt and

is isn’t
ssed by
ts, and
g data

rs state
es with
tabase,
 corpo-

Neward12_06_12.fm Page 330 Tuesday, June 13, 2000 12:07 PM
330 CHAPTER 12 PERSIS

Class stringClass = Class.forName("java.lang.String");
Constructor stringCtor =

stringClass.getConstructor(new Class[]
{

Class.forName("java.lang.String")
});

String str =
(String)client.construct(stringCtor, new Object[]

{
new String("Test value")

});
System.out.println("new String(String) : " + str);

}
}

A couple of caveats come with this code. To begin with, any objects passed in a
ments, as well as the return type itself, must be Serializable, because both th
ments and the return type have to be marshaled down the wire and back again.
this may seem overly restrictive, it’s usually not. Java RMI has the same rest
and that usually proves to be the least of an RMI developer’s problems.

Secondly, as with the RemoteStorageService, both the client and the serve
have the class bytecode available to the JVM in order to deserialize the exact typ
server needs it when attempting the newInstance() call, and the client wi
it when the object is deserialized and returned from the construct() cal
doesn’t mean the client needs to be aware of what the exact type returned is, on
the code for that type needs to be available (on the CLASSPATH, in an extensio
file, or loadable via the current ClassLoader). Again, as with the discussion
RemoteStorageService, a SocketClassLoader can be used to provide both clie
server with the class bytecode as required.

12.3 JDBC

The relational database forms the core of 90 percent of the enterprise’s data. Th
scientific fact, or even an informal poll, but simply anecdotal evidence, witne
the rise in influence and power of the relational database vendors, produc
advertising. Corporations scoff at products that don’t have some way of storin
to the relational database. Want-ads and job postings for enterprise develope
“SQL experience a plus.” When every development tool on the market com
classes and objects to help ease the pain of obtaining data from a relational da
it becomes obvious that the relational database occupies a central place in the
rate enterprise.

331

One recent category added to the ranks of relational databases are 100 percent
pure Java relational databases; these are databases implemented in Java, and are there-
fore inherently portable to any platform that can run Java. One such RDBMS system
is the IDB RDBMS, which is the one used for the examples in this book. Another is

 imple-
s, and

of IDB
(http://

othing
ur own
 by the

Neward12_06_12.fm Page 331 Tuesday, June 13, 2000 12:07 PM
JDBC

the more widely known Cloudscape RDBMS. Because the Pure Java RDBMS is
mented in Java, there is no native code that requires porting between platform
allows any Java-compliant platform to run these examples. The 1.91 version
is found on the publisher’s web site, but be sure to check the IDB website
www.instantdb.co.uk) for later versions.

Because all the examples in this chapter are coded in pure JDBC, however, n
prevents you from modifying the JDBC URLs and driver classnames to use yo
database. For example, the following code creates the class_tbl table used
JDBCClassLoader class later in the chapter:

import java.io.*;

import java.sql.*;

import java.util.*;

/**

* This code re-creates the schema for the examples used in this chapter.

* Other JDBC-compliant databases could be used by substituting the

* appropriate JDBC driver names and URLs in place of the IDB ones.

*/

public class CreateSchema

{

public static void main(String[] args)

throws Exception

{

// Load the IDB driver

Class.forName("jdbc.idbDriver").newInstance();

//

Propertie s p = new Properties();

Connection c =

DriverManager.getConnection("jdbc:idb:sample.prp", p);

// Drop & create the table in which we will store class bytecode

//

Statemen t s = c.createStatement();

s.executeUpdate("DROP TABLE class_tbl");

s.close();

s = c.createStatement();

s.executeUpdate("CREATE TABLE class_tbl " +

"(" +

"bytecode binary, " +

"classname varchar(80) " +

")");

s.close();

}

}

TENCE

Converting this to use an ODBC driver (with an appropriate ODBC data source named
“ServerSideJava” already created) would mean changes only to the following lines:

// Load the JDBC-ODBC driver

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver").newInstance();

nce, or
modify
opulate

, both
 JDBC-
 of the
’t data.

used to
nt per-
s, sales
ations.

specific
cess, or
 When
dicates
enerate
d once
ieval in
n hand
 service
se steps
invoca-
ations:
r Ship-
 simply
ported
stance

 length

 logical
te table

Neward12_06_12.fm Page 332 Tuesday, June 13, 2000 12:07 PM
332 CHAPTER 12 PERSIS

//

Properties p = new Properties();
Connection c =

DriverManager.getConnection("jdbc:odbc:ServerSideJava", p);

This ODBC data source could point to an SQL Server instance, an Oracle insta
a Text file. (Note that if you modify the CreateSchema.java file, you should
the LoadClass.java file in similar fashion, since it is this class that is used to p
the class_tbl table with bytecode.)

Most books on JDBC can talk about how to use the APIs provided by JDBC
the 1.2 and the 2.0 specifications; what I want to do is discuss not only a useful
portable database utility, JDBCTerm (short for JDBC Terminal), but also some
more interesting uses of JDBC, using the RDBMS as a repository for data that isn

12.3.1 Transient data, state data, data that isn’t data

Not all data within a database is business data. Specifically, not all data will be
represent entities or objects that the business deals with. Although a significa
centage of the total will be tables and data to represent customers, addresse
orders, and inventory, not all applications are straightforward order-entry applic

Some data will be workflow applications, in which data moves through a
set of hands, stopping at virtual station after virtual station awaiting input, pro
approval before moving on. One example would be an order-tracking system.
an order is initially taken, the order sits on the sales desk until the customer in
the order is complete. The order, once complete, is then sent to Finance to g
and mail an invoice. From there, the order moves to Shipping for processing, an
shipped, into the company’s archives or data warehouse for storage and/or retr
the event of a customer call. Should Shipping discover that the inventory isn’t o
to support the order, the order can be bounced back to Sales, so that a customer
rep can call the customer and tell them the unhappy news. Because each of the
in the process can span several days, the state of the order must persist across
tions of the client application. In fact, there would likely be several client applic
one for Sales, to take the order, one for Finance, to generate the invoice, one fo
ping, to view outstanding orders and mark orders as shipped, and so forth. It’s
impractical to expect that all these steps would be conveniently and cleanly sup
in one application, or that all the users would be able to use the same running in
of the application, and that the application would remain open for the entire
of time the company is in business.

Toward that end, the database may maintain not only tables to support the
objects but also tables to maintain the workflow state. (The actual workflow sta

333

could itself be stored within the database, if it is complex enough or is subject to fre-
quent change.) This holds two advantages for the enterprise: order status is now
recorded within the database, and these tables can also be used to record a history of
the order through the system. The first is useful from a reliability perspective—because

e event
m. The

g pur-
, and if
, quan-
’ll dress

 appli-
d time

racking
e client
ntry is
user ID
 (cities,
or a list

 is the
o every
ecially

tives or
awback
 main-
all cen-
 up to
t these
friends
 email-
den of
 a mes-
reds of
ils, per

se who
. Users,
 a win-
e being
tten to
is table

Neward12_06_12.fm Page 333 Tuesday, June 13, 2000 12:07 PM
JDBC

most RDBMS vendors take great pains to ensure that data is not lost even in th
of a power failure, hence, it’s far less likely that orders will get lost in the syste
second is important to all parties concerned for both accountability and trackin
poses. Quality control reps can make sure orders aren’t lost on a regular basis
they are, determine who loses them. Managers can now implement targetable
tifiable goals for their departments (“If we can push fifty orders out this week, I
up in a chicken suit” or something similar).

In other cases, data may not be data at all, but simply a kind of marker. An
cation may, for example, write an entry into a table indicating the user name an
stamp the application was started. This would be one way to allow for easier t
of current users of the system, or even to prevent the same user from using th
application more than once. When the user quits the application, the e
removed. Other information within the database may be system data, such as
and password tables, or mostly static application data, such as lookup tables
states or ZIP codes within the US, sales territories or regions for the company,
of the company’s current campuses).

One such example of data that’s not intended to be persistent or tracked
idea of a message of the day. Many corporations need to distribute messages t
employee within a department, team, or even the entire company. This is esp
true in companies that maintain call centers of customer support representa
internal help desks. One way is to give each employee an email account. One dr
to this approach, however, is the administrative burden—these logins must be
tained, added, and deleted as employees within the call center fluctuate. With c
ters of several hundred employees, this is no mean feat, and can represent
thousands of man-hours per month. In addition, many corporations don’t wan
employees to have access to email, fearing wasted hours spent emailing other
within the company (or outside the company, introducing the possibility of
transmitted viruses in executable attachments). Coupled with this is the bur
knowing if the email were read. In an email system, the only way to verify that
sage was seen is to ask that a return-receipt be generated. With a body of hund
employees receiving the message, this means hundreds of return-receipt ema
day. Clearly this is an intolerable situation.

One solution, of course, is to store the message, and a table tracking tho
have seen it (and the time stamp they were shown it) within the database itself
when they log in to their client application, can be shown the message within
dow, requiring them to click OK (indicating they have read the message) befor
allowed to proceed. As each message is shown to the user, a time stamp is wri
the message-viewed table. Supervisors can then run reports or queries against th

TENCE

to see which users have not checked their messages recently, or precisely when a user
did see a given message. The message itself can be stored in HTML or RTF format and
displayed in a corresponding JFC/Swing JTextPane, to allow for more complex for-
matting or display.

l, from
ode to

ame

Neward12_06_12.fm Page 334 Tuesday, June 13, 2000 12:07 PM
334 CHAPTER 12 PERSIS

12.3.2 Example: JDBCClassLoader

One such instance of data that isn’t business data is class bytecode. Recal
chapter 2, that one source for class bytecode can be a database column. The c
do this, presented then, is reproduced here.

import java.sql.*;

public class JDBCClassLoader extends ClassLoader
{

/**

* Constructor
*

* The SQL statement must return at least one row, the first column of
* which will be a BINARY column, and must contai n a ? where the n

* of the fully qualified classname will appear. Example:
* "SELECT bytecode FROM class_tbl WHERE class_tbl.name = ?"

*
* @param conn The JDBC Connection to use. Must be already connected.

* @param sql The SQL statement to execute to retrieve the bytecode.
*/

public JDBCClassLoader(Connection conn, String sql)
{

m_connection = conn;
m_sql = new String(sql);

}

/**

* Called by ClassLoader.loadClass when a classname is requested.
*/

public Class findClass(String className)

throws ClassNotFoundException
{

byte[] classBytes = retrieveClass(className);
return defineClass(className, classBytes, 0, classBytes.length);

}

/**

* Internal method to do the actual SQL-retrieval of the bytecode
*/

private byte[] retrieveClass(String className)
{

try
{

// Create a SQL Statement

Listing 12.5 Code for JDBCClassLoader

335

Statement stmt = null;

stmt = m_connection.createStatement();

// Build our SQL statement

String pre = m_sql.substring(0, m_sql.indexOf("?"));

Neward12_06_12.fm Page 335 Tuesday, June 13, 2000 12:07 PM
JDBC

String post = m_sql.substring(m_sql.indexOf("?")+1,

m_sql.length());

String sql = pre + className + post;

// Do the query

ResultSet rs = stmt.executeQuery(sql);

if (rs.next())

{

byte[] bytes = rs.getBytes(1);

return bytes;

}

else

return null;

}

catch (Exception ex)

{

ex.printStackTrace();

return null;

}

}

// Internal members

//

private Connection m_connection;

private String m_sql;

/**

* Test driver routine; assumes an IDB database with the following

* schema:

* CREATE TABLE class_tbl (

* bytecode binary,

* classname varchar(80) primary key

*);

*/

public static void main(String[] args)

throws Exception

{

// Load the IDB driver

Class.forName("jdbc.idbDriver").newInstance();

//

java.util.Propertie s p = new java.util.Properties();

Connection c =

DriverManager.getConnection("jdbc:idb:sample.prp", p);

JDBCClassLoader jdbcClassLoader =

new JDBCClassLoader(c,

"SELECT bytecode FROM class_tbl WHERE classname = '?'");

TENCE

Class cls = jdbcClassLoader.loadClass("Hello");

Object h = cls.newInstance();

// Should print "Hello, world!"

}

}

BC 1.2
g 12.5
resent-
al fully
ection

tement
ith the
urns a
 not, a
, then

an SQL
oach is
de, for
nce for
rences:

Neward12_06_12.fm Page 336 Tuesday, June 13, 2000 12:07 PM
336 CHAPTER 12 PERSIS

Given a basic knowledge of JDBC (JDBCClassLoader makes use of only JD
features) and the discussion of ClassLoaders given earlier, the code in listin
shouldn’t present any problems or surprises. The constructor takes a String rep
ing the SQL statement to execute (with the ? within it substituted for the actu
qualified class name to look up) when a class is requested, and the Conn
instance on which to make the SQL query. In the findClass method, a Sta
is created from the Connection, the SQL string is modified to replace the ? w
class name requested, and the Statement is executed. If the Statement ret
ResultSet, the first column of the first row (assumed to be bytecode—if it’s
SQLException will be thrown) is retrieved, stored into an array of bytes
handed to defineClass for verification and initialization.

The code could be modified to overload the findClass method to take
string each time to execute to find the bytecode, but the problem with this appr
that a ClassLoader can be called without your knowledge. In the following co
example, the JDBCClassLoader will have its findClass method called twice, o
the class “TwoPartHello”, and once for the class that “TwoPartHello” in turn refe

import java.sql.*;

public class TPHClient
{

public static void main(String[] args)

throws Exception

{

// Load the IDB driver

Class.forName("jdbc.idbDriver").newInstance();

// Make the connection

java.util.Propertie s p = new java.util.Properties();

Connection c =

DriverManager.getConnection("jdbc:idb:sample.prp", p);

// Set up the JDBCClassLoader to pull from class_tbl
JDBCClassLoader jdbcClassLoader =

new JDBCClassLoader(c,

"SELECT bytecode FROM class_tbl WHERE classname = '?'");

// Load the Class into the JVM

Class cls = jdbcClassLoader.loadClass("TwoPartHello");
Object obj = cls.newInstance();

// Use Reflection to find its main() method

// Reflect on the Class; find the method named "run" that takes

// no arguments and returns no return value

//

337

java.lang.reflect.Method[] methods = cls.getMethods();

for (int i=0; i<methods.length; i++)

{
System.out.println("Checking name o f " + cls.getName()

+ "." + methods[i].getName());

on our
ing our

trol of
ir local
otstrap
 JDBC-
n bliss-
ers can
ment.
nd dis-
oved—
 also be
ardized
a given
 allows
g code

em lay-

ritten for
have two

Neward12_06_12.fm Page 337 Tuesday, June 13, 2000 12:07 PM
JDBC

if (methods[i].getName().equals("main"))
{

// methods[i] is the Method that corresponds to the

// method "void run()". Call it.
//

Object[] mainArgs =

{
new String[] { }

};

Object ret = methods[i].invoke(obj, mainArgs);
if (ret != null)

System.out.println("??? main()'s not supposed to " +

"return me something!");
break;

}

}
}

}

We have no control over the second call to findClass , because it’s invoked
behalf automatically by the JVM. Because of that, we have no way of specify
custom argument to findClass .

As with the SocketClassLoader, use of this class allows for centralized con
code updates and revisions. Users no longer need to have the latest code on the
systems in order to receive the benefit of the latest changes—instead, a small bo
client is loaded, which then knows how to pull code from the database (via the
ClassLoader) when requested. Deployment is now centralized, users can remai
fully unaware of the upgrade or patch, and system administrators and develop
back the changes out should unexpected problems arise with the latest deploy

This distributed code approach carries with it some unique advantages a
advantages. Because code no longer resides on the client side, security is impr
the code cannot fall into unfriendly hands where hacking can ensue. Code can
customized to finer-grained levels than can usually be possible with stand
releases. As discussed in chapter 2, code can now be written customized for
user, and deployed within the database without disturbing the other users. This
for cleaner code (no more switching between dialog types or menu bar buildin
based on user role, for example), at the expense of some more complex file syst
out on the developer’s machine.6

6 A Dialog class written for the CEO must be in a file called Dialog.java, and a Dialog class w
the administrator must also reside in a file called Dialog.java. This means the developer must
distinct source trees.

TENCE

The most serious drawback to this approach, however, is the fact that the code7

will not reside on the local file system. This in turn implies that network bandwidth
will be at a premium, since all the code must be carried across the wire. Within an
intranet, where bandwidth is usually not an expensive or rare resource, and most users

est sys-
, even

proach
 on the
 always
r CPUs
oncern

ts have
sy per-
rs, and
abases,

alm of
Space’s
mobile
t fash-

o move
cluster)
saction
s trans-

rovide
 imple-
n; the

tercon-
 object
erialize
ut any

rt of the
-loading
’t be too

Neward12_06_12.fm Page 338 Tuesday, June 13, 2000 12:07 PM
338 CHAPTER 12 PERSIS

are physically connected by 10Mbps connections, this is a concern for the larg
tems. However, over extranets or the Internet, this can be a much larger problem
with the fastest dial-up connections. Under these circumstances, a hybrid ap
(some GUI code, or likely-to-remain-constant utility classes, can be preloaded
local file system and resolved from disk, since the bootstrap ClassLoader will
be given first crack at resolving a class) may serve best. With the advent of faste
and higher throughput network connections, however, this may be less of a c
than you might think.

12.4 SUMMARY

The notion of persistent objects is not new to Java; in fact, persistent objec
been around almost as long as the concept of objects has been. The drive for ea
sistent objects has produced a number of products from a number of vendo
has in turn spawned a new standard, the ODMG standard for object dat
intended to make it easier to store objects to some persistent store.

In fact, if we go much further with this concept, we begin to enter the re
mobile agents. If a full agent server (such as IBM’s Aglet technology, or Object
Voyager) is in place on the server, then these remote objects can, in fact, be full
agents, with the ability to migrate from server to client in seamless, transparen
ion. A data-request object becomes a data-request agent, which has the ability t
(or be moved, if the data can be retrieved faster on another system in the same
to the server, gather its data, and return. A transaction request becomes a tran
agent, with the ability to migrate from server to server to server, executing it
actions as it goes, only committing them when all are complete.

In short, a standardized Serialization format now gives Java an ability to p
object storage and connectivity options that will guarantee to work across JVM
mentations. This is, in fact, one of the central areas where C++ has fallen dow
lack of a standardized object storage/persistence system has made C++ code in
nectivity difficult, to say the least. With Serialization in place, I can Serialize any
in the system, store it to disk or other bytestream, and any other JVM can des
it (so long as it has the class definition for the Serialized class available) witho
sort of ambiguity or portability problem.

7 Nor will any of the resources that go with the code, such as .GIF files that are displayed as pa
Swing GUI. Note that none of the ClassLoaders presented in this book implement the resource
methods to pull from their respective locations (sockets, database, and so forth), but it shouldn
difficult to see how this could be done.

339

The relational database system is a technology that’s not going away any time
soon; as a result, developers need to be able to best make use of the database, not just
for data storage and categorization, but also as a centralized point of distribution and
control. JDBC offers Java developers a feature-rich, yet remarkably uncomplicated

 server-
menta-
t of the
ory on
storage

on the

 Guide

less the
otwith-
Simon

n.com/

http://

Neward12_06_12.fm Page 339 Tuesday, June 13, 2000 12:07 PM
ADDITIONAL READING

interface for obtaining, manipulating, and creating data within the RDBMS.
More importantly, relational database doesn’t have to mean a large-scale

based system like Oracle or SQLServer. Instead, 100 percent Pure Java-imple
tions, like IDB or Cloudscape (www.cloudscape.com) can be deployed as par
Java application to provide a platform-portable, zero-deployment data reposit
end-user machines, if necessary. This can in turn make object- and/or data-
requirements a virtual no-brainer: zero development.

12.5 ADDITIONAL READING

• “Java Object Serialization” specification (From serial-spec-JDK1.2.pdf
Javasoft web site), Sun Microsystems, 1998.

• Jim Melton and Alan R. Simon, Understanding the New SQL: A Complete
(Morgan Kaufman Publishers, 1993).
Published as a book about ANSI SQL-92’s updates to SQL, this is nonethe
best treatise on pure ANSI SQL I’ve ever run into, the publication date n
standing. If your RDBMS doesn’t implement SQL the way Melton and
describe it, it’s not ANSI SQL-92 compliant.

• “JDBC 2.0 Core API” specification, available online at http://java.su
products/jdbc/download.html.

• “JDBC 2.0 Standard Extension API” specification, available online at
java.sun.com/products/jdbc/download.html.

C H A P T E R 1 3

Neward13_06_12.fm Page 340 Tuesday, June 13, 2000 12:12 PM
Business objects
13.1 Modeling data 340
13.2 Using the Business Object layer 366
13.3 Summary 370
13.4 Additional reading 371
ful sys-
cleanly
ll. Sys-
ystems
y easier
Building systems on the server is not just an exercise in mechanics—success
tems not only employ useful implementation tricks, but are intelligently and
modeled to provide the enterprise with a consistent, logical object model, as we
tems which aren’t are usually late, over budget, and inherently weaker than s
that are. Cleanly designed systems pay off in other ways, for not only are the
eeds of

s with
ree-tier
ch less
rms of
h logic
eart of
 again,

ot tran-
ta.
340

to maintain over time, but can often outlive the current goals to serve the n
other projects.

For many years, designers have been talking about three-tier systems. A
most buzzwords, many developers are told to develop a system using the th
model without having a solid idea of what such a system is supposed to do, mu
how it looks or behaves. While I refuse to hold myself up as an expert on all fo
three-tier, or n-tier, systems, in this chapter we will examine one way in whic
can be partitioned into logical, well-encapsulated layers. This is, in fact, the h
the concept behind the tiered system: encapsulation. And, dare I say it yet
Encapsulation is good.

13.1 MODELING DATA

It’s about time to talk about data that is data, or, more specifically, data that’s n
sient, state, or system-related in nature; it’s time to talk about data that’s real da

341

13.1.1 Two-tier systems vs. n-tier systems

You may hear the terms two-tier, three-tier and n-tier tossed about without having a
real good idea of what the terms mean. As with most buzzwords, these have lost
some of their definition, but the basic idea remains the same: partition the code up

ccesses
 of the

ut.

ta and/
ication

ntran-

a tiered
e layers
I com-

 valida-
monly
e layer
e data-

hich all
execut-
UI ele-
sk, and
e, this
all file-
ase), as
o reuse
ll have
ecause

the first
Dialogs,

Neward13_06_12.fm Page 341 Tuesday, June 13, 2000 12:12 PM
MODELING DATA

into logical layers, or tiers, and write the code within each layer such that it a
only the layers immediately below it. Typically, the layers are divided into one
following groupings:

• Presentation
This is the code responsible for displaying the data and obtaining user inp

• Business Rules or Business Objects
The code is responsible for applying business logic and/or rules to the da
or input from the user. It is typically this layer that is responsible for verif
and is typically the “meat” of an enterprise application.

• Data Access or Data Storage
This is the code responsible for storing the data into some permanent no
sient storage system.

This is not, by any means, an exhaustive list of all the possible layers in
system—the presentation layer, for example, could be broken out into multipl
in and of itself. For example, one layer would be responsible for the actual GU
ponents (JLabel, JTable, and so on, in a Swing UI), and a second layer for the
tion and/or formatting of the data coming in.1 The Data Access layer is com
separated, especially when dealing with centralized relational databases, into th
that is the database itself, and a layer of code that encapsulates dealing with th
base (be that JDBC, ODBC, or straight C/C++-level access).

13.1.2 One-tier systems

A single-tier system (figure 13.1) is one in w
the code resides within the same codebase (
able file or system). This means that the
ments can directly save to disk, read from di
so forth. However, as you might imagin
makes the code itself extremely heavy (since
access code has to be stored within the codeb
well as less reusable (because any attempt t
any part of this code can and usually wi
dependencies on other parts of the system). B

1 Users familiar with Swing will recognize this as Swing’s Model-View-Controller discussion—
layer would be the code putting together the various Swing components into JFrames and J
and the second layer would be a layer of customized Swing Model classes.

Figure 13.1 A single-tier system

BJECTS

most systems make use of a centralized relational database, however, one-tier systems
are relatively rare. Most often, they will be stand-alone applications for single-user
utilization, such as word processors, HTML editors, games, and so forth.

pplica-
istinct

he sep-
ith the
ways) a
ccessed
nal C/

on and
nature,
pound
lumns

o write
ar as to
le just
ontrols
g and

ication
, Café,
orm of

remely
al data-
ch and
g busi-
ge (and
ication
s come
 clear-

Worse,
ample,
ses.

ee tiers
s), this
, when
I stated

Neward13_06_12.fm Page 342 Tuesday, June 13, 2000 12:12 PM
342 CHAPTER 13 BUSINESS O

13.1.3 Two-tier systems

In a two-tier system (figure 13.2), the a
tion or system is broken out into two d
tiers. Typically (although not always) t
aration comes at the data-access level, w
data-storage system being (again, not al
centralized relational database a
through a JDBC (or ODBC, in traditio
C++ code) driver. Many code-generati
visual-IDE tools build systems of this
using data-aware UI controls or com
controls that directly access database co
or tables so the developer doesn’t have t
that code. Some tools can even go so f
generate the entire UI for a given tab
from the database schema, laying the c
out in a standard, if somewhat borin

uninspired, format. Most systems built using the last generation of Rapid Appl
Development (RAD) tools such as Visual Basic, Delphi, C++Builder, Visual J++
JBuilder, and others end up in this model. This is by far the most popular f
model in the enterprise.

The unfortunate fact about this system is that it leaves the client-side ext
heavyweight. Because the only centralized portion of the system is the relation
base server, the code that accesses and works with the data must reside on ea
every single client’s machine. In addition, any changes to the UI, the underlyin
ness rules, logic or core process, or the database schema itself requires code chan
a new release to each and every client) to the application/system. As the appl
or system gets larger with more functionality, and as requests for new feature
in, the codebase becomes exponentially more difficult to manage. There is no
cut method to accessing data, no clean separation of components, and so forth.
most RAD tools cannot handle some commonplace enterprise scenarios; for ex
the ability to handle data across not only multiple tables, but multiple databa

13.1.4 n-tier systems

Where some would be tempted to build a three-tier architecture (with the thr
being, as listed before, broken into presentation, business, and data-access code
may not, for some applications, be enough. Additional problems arise, as well
working with the practical matter of what goes into what layer. For example,

Figure 13.2 Two-tier system

343

the general rule that business logic should reside within the business logic layer, and
presentation logic within the presentation layer. This is good rhetoric, but what about
the situation raised earlier, regarding the validation of data within a UI field? For
example, verifying that a Social Security Number entered by a user is, in fact, one

ntation
resides
idation
inform
tribute
 simply
e order

 simple
 three-
ever.

arlier, I
mposi-
hat) to
on and
he first
ts into

roduct-
roducts
ontain-
bobox-
 worry
 Social
nt (the
ed with
g Busi-
vior) if
n asso-
how to
ed IDE

ccess to
ple, to

 an API
f more

Neward13_06_12.fm Page 343 Tuesday, June 13, 2000 12:12 PM
MODELING DATA

contained within the database? If this verification code resides within the prese
layer, then it is a clear violation of the precept that “only presentation logic
within the presentation layer.” If, however, the presentation layer does no val
until the request is made of the business logic layer, we lose the opportunity to
the user of the mistake the moment it is made. For simple query-by-some-at
screens, this is less of an issue; for the example of a product order sheet, it is
unacceptable to inform the user of a mistyped product number at the time th
is submitted.

This would seem to leave the three-tier model at a loss. If something so
as single field validation in a timely manner cannot easily be answered by the
tier model, it wouldn’t seem that the three-tier model would be useful whatso

This is where partitioning the model further can be beneficial. Recall, e
suggested that the presentation layer could be further tiered into the actual co
tion of the UI elements into screens, and a layer created that knew how (or w
display in the fields. In JFC/Swing terms, this would mean breaking the creati
layout of the JComponent-derived components in JFrames and JDialogs into t
layer (the topmost), and the various Model classes used by those UI componen
the second layer. In practical terms, this would mean that, for example, the P
ComboboxModel class would have the knowledge of how to retrieve the list of P
from the underlying Business tier. This means the developer coding the dialog c
ing the Product Order screen would only have to instantiate a ProductCom
Model as the model to the corresponding JComboBox instance, and not have to
one iota about whether or not the Products displayed were legitimate. For the
Security Number example, the same approach can be used. A JTextCompone
base class for JTextField and JTextPane) has an associated Document class pair
it; this SSNDocument class can take the entered number and ask the underlyin
ness tier (which must, of course, have a method or class to provide this beha
the SSN exists within the database. Because most JFC/Swing components have a
ciated Model class tied to them, the Model classes can hold the knowledge of
interact with the Business tier, and leave the UI manipulations up to the associat
or code-generating visual tool.

13.1.5 Benefits of an n-tier model

Going this route initially seems like a troublesome amount of work. Not having a
the database, for example, now means that any queries against the data—for exam
see if the Product ID or the Social Security Number exists—must now go through
change to the Business tier. In addition to requiring more work on the part o

BJECTS

developers,2 it would seem, quite correctly, that the added overhead would incur a per-
formance penalty on the system. After all, wouldn’t it be faster to execute the query
directly, instead of having to go through one, two, or more, layers of intermediate code?

There’s no arguing the point that it would, in fact, be faster to execute the SQL
it were
In fact,
 assem-
C++. If
or C++
s in far
y focus

ed sys-
m one
t affect
 Order
wever,
 alpha-
L que-

written
hich in
, which
rs now
rt, one
lts in a

 would
roduct
r could
 by cre-
. Then,
roduct

akes re-
em.

language
etermine
see what
when to
compile,

Neward13_06_12.fm Page 344 Tuesday, June 13, 2000 12:12 PM
344 CHAPTER 13 BUSINESS O

query directly. There’s also no arguing that the code would execute faster if
written in native CPU code, instead of in Java’s portable bytecode format.
there’s no arguing that the code would execute much faster if it were written in
bly code for that CPU, instead of such wastefully high-level languages as C or
all of these points hold true, why do programmers bother with languages like C
or Java? We use these languages because speed of development often weigh
more heavily than just speed of execution. If speed of execution is the primar
of the application, you’re in the wrong book.

More importantly, the tiered system offers some advantages that a nontier
tem simply cannot. Specifically, tiering the system encapsulates the layers fro
another, with the result that changes can be made within the system that won’
the entire codebase. For example, assume that in the 1.0 release of the Product
Entry system, Product IDs are ten-digit numeric numbers. During this time, ho
the business acquires (or is acquired by) a competitor which uses fifteen-digit
numeric numbers. Were the Product ID-validating code written using direct SQ
ries, every place within the UI code that executes that query now has to be re
to take into account the new Product ID type. Column sizes have changed, w
turn means field sizes must change. New types of characters are now accessible
means the routines written to validate that the values entered were all numbe
have to be modified to accept the full range of alphanumerics, instead. In sho
relatively minor change to the business (the definition of a Product ID) resu
potentially catastrophic change to the code.

In a tiered system, however, Product (and, most likely, Product ID as well)
be its own class. The presentation layer wouldn’t focus on the internals of what a P
ID is, but simply move them around in a more opaque fashion. The Business tie
even differentiate between an old-style Product ID and a new-style Product ID
ating two subclasses (or two sets of overloaded methods) to handle either type
a few years later, after all new code has migrated over to using the new-style P
ID type, the old Product ID API support is deprecated and phased out.3

2 Typically, different developers or teams of developers will maintain the various tiers. This m
questing a change to a tier much more of a big deal than adding a method or class to the syst

3 Java’s support for the “@deprecated” javadoc tag in this regard is unparalleled. It is the only
I’m aware of that provides compile-time support of code evolution. The only other way to d
whether a method or class is in use within a system (in C++, for example) is to remove it and
breaks. This way, the owners of an API can mark it as deprecated, leaving it up to clients
change the code making use of that API. The clients will find out the next time they do a
without breaking their code.

345

This encapsulation works particularly well at the data-access layer. Design, devel-
opment, and maintenance of a relational database system is a full-time job. Most cor-
porations have individuals or teams specifically dedicated to that task, either as part
of the development team, the system administrative group, or as its own department

ething
ination
capsu-
n code
ase can
e reign

g, and
 query

 of this
odified

endors
is may
 cause
acking
object-
ss and

out the
urn, to

d to be
e will

ication.
ng that
l spend
pplica-
ealized
it best:
e users’
he beta
rofiled.
tabase,
 would

Neward13_06_12.fm Page 345 Tuesday, June 13, 2000 12:12 PM
MODELING DATA

within the IT organization. Tuning and optimizing a relational database is som
of a fine art. In short, most Java developers will not have the time, skills, or incl
to take on the (somewhat overwhelming) task of RDBMS maintenance. By en
lating all of the details and knowledge about the RDBMS schema within its ow
layer, hidden from any of the other Java developers on the project, the datab
be developed in parallel by a separate team of DBAs and DBEs, who have fre
to design the table structure as best suits their needs or requirements.

Databases change over time. Users may report certain queries take too lon
must be optimized, or later data-driven requirements (such as that for ad hoc
support or reporting) may require a change to the schema. If the knowledge
schema is required in the GUI code, then all that code must be revisited and m
when the schema changes.

It’s also not uncommon for companies or departments to switch database v
or products. Due to the differing specific functionality of database products, th
in turn require changes to the SQL used to access the data, which, again, can
code changes. If the code to be changed is scattered throughout the system, tr
it down across the entire codebase can be tedious and error-prone. We, as
oriented programmers, already know the virtues of encapsulation at the cla
object level, and those before us who were procedural programmers knew ab
virtues of encapsulation (they called it modularization). Why not apply it, in t
the basic architecture of the system?

Execution speed isn’t everything, especially not in a system that’s intende
deployed within an enterprise. Scalability, reusability, and development tim
often come much more highly requested than just speed of execution of the appl
Moreover, developers quite often attempt to optimize code too early. Believi
users will spend 80 percent of their time in a particular query, a developer wil
weeks, even months, attempting to get it as fast as possible. Then, when the a
tion is shipped, the query goes unused 95 percent of the time, because users r
that they didn’t need that particular functionality after all. Scott Meyers said
“Get it right, then worry about making it fast.” If performance is at the top of th
requests, tell them that the first release will be a profiling release (or call it t
release), so that you can identify which portions of the system need to be p
Most likely, the greatest performance-enhancing steps will be to tune the da
improve the network bandwidth, or boost the server hardware, all of which
have far more effect long before code enhancements would kick in.

BJECTS

13.1.6 Business objects, entity relationships

Database designers will already be familiar with entity-relationship diagrams, which may
be a new concept to Java programmers. An entity-relationship diagram, in the classical
sense, describes the entities within a business model. Historically, these diagrams were

we can
e/entity
 in our
res.
should
 physi-
atabase
va code
he data
 related
o such
ehouse
he Java
 model
o avoid
models
ember

 model

he next
ployee
l ques-
ps, and
s’ part,

pany.
tacted:
r fax).

artment
r.

Neward13_06_12.fm Page 346 Tuesday, June 13, 2000 12:12 PM
346 CHAPTER 13 BUSINESS O

used as a starting point from which to build the logical database schema, but
make use of them to identify the core business objects for our business object/rul
layer. In fact, the entity-relationship diagram is precisely what we’re looking for
business object model—a description of the data the business uses, tracks, and sto

One warning goes with all of this: while your business object models
closely mimic the entity-relationship diagrams of a database-driven design, your
cal object model may differ substantially from the corresponding physical d
schema. There are a number of reasons for this, but the principal one is that Ja
is a programmatic language, and the database schema is a description of how t
should be stored. Within the Java object model, it may make sense to have two
entities inherit from a common base class, whereas the database schema shows n
relationship. The database schema may, for reasons of tuning or better data war
support, break a given object’s data representation into several tables, while t
object model sees it as a logical unit. Or, in a straight reversal, the Java object
may implement a given entity as a collection of contained subobjects (in order t
having to execute huge queries to pull back a single object), where the database
the entity in a single, large, table. This is normal for a system. The key to rem
is that the logical entities, the components, if you will, of the business object
should have corresponding logical entities modeled within the database.

13.1.7 Example: employee directory

Enough theory. Let’s try putting some of this discussion into practice.
In the following example (which will become the running example for t

several chapters), the request has come down from on high that we build an em
database. As usual, the request is vague and full of ambiguities, but after carefu
tioning of potential users, repeated nagging for clarification from the higher-u
no small amount of sweat, tears, and agonized decision-making on the analyst
we’ve managed to nail down the basics of the system:

• An employee holds at least one, but possibly more, positions within the com
• An employee has at least one, but possibly more, ways of being con

address, email, or by phone (which includes mobile phones, pagers, and/o
• An employee works for a single department within the company.
• An employee reports to a single manager within the company.
• A manager is a specific type of employee, who manages one-and-only-one dep

within the company and has a number of employees that report to him/he

• A department is in turn contained by a larger department.

347

Figure 13.3 illustrates primitive combination entity relationship/static-typing
diagram (in UML notation) of this system.

sition,
e awk-
sitions,
hin the
anager
implies

design.
 in that
e mod-
umber

d as an
ple and
Person-
ip can

Neward13_06_12.fm Page 347 Tuesday, June 13, 2000 12:12 PM
MODELING DATA

Note that while it might seem that management is a specific type of Po
doing so makes modeling the manager-contains-employees relationship mor
ward. For example, if managers were simply employees with particular po
where then does the list of employees managed by this manager reside? Wit
Position? Hardly—this would require a separate Position instance for each m
within the system. Within the Employee? Again, a bad design choice, since it
that any Employee can have other Employees reporting to him/her.

The example is not intended as a right-way/wrong-way discussion of good
In fact, this design violates one of the principal rules of current design thinking,
roles (Employee, for example, is usually a role that a Person plays) shouldn’t b
eled using inheritance, as we do in the model in figure 13.3. I do so here for a n
of reasons: First, because the Employee model shown is one that’s been use
example in a number of discussions, thus it will be an easily recognizable exam
requires less effort to understand and parse. Secondly, and more importantly, the
Employee-Manager relationship demonstrates how an inheritance relationsh
function in the various implementations of the model we will be building.

Figure 13.3 Entity relationship/static-typing diagram of the Employee system

BJECTS

There are plenty of books on the market that talk in far greater detail about how
to model business objects, rules, and logic in a three- or n-tier system. This example
is simply intended as a practical example of how business objects can in turn map into
concrete Java classes and system tiers, with the focus intended on the various imple-

 put it
 vary.”
e data-
ational
nd the

es4 the
rtment,
d reus-
 a later
loyees’
er, the

or even
al reus-

ncrete)
torage.
h other
to how
terface-
on this

N. We
reserve
s JVM.
is:

hould be
ling that

Neward13_06_12.fm Page 348 Tuesday, June 13, 2000 12:12 PM
348 CHAPTER 13 BUSINESS O

mentation approaches and details, rather than the object model itself. To
bluntly, this is the way I designed it, and, as the saying goes, “Your mileage may
This is also not a full-fledged system—the presentation layer is minimal, and th
base layer is purely functional and not at all intended as a paragon of good rel
database design. The entire point of the example is the business objects layer, a
opportunities it offers for future development and maintenance.

13.1.8 Business objects layer interface layer

As we can see from the entity-relationship model, we have a number of entiti
system is attempting to track. Listing them, we have Employee, Position, Depa
Manager, and Contact Information. I add the Person entity as an effort towar
ability—people that aren’t employees may be modeled within this system at
date (such as contractors, or perhaps the company would like to add emp
immediate family members within the system for benefits tracking). Rememb
business model for this could later be extended or merged with other systems,
reused within an entirely different system. Always keep an eye out for potenti
ability when modeling the business objects.

This code may be different than you expect. These are not abstract (or co
Java classes that know how to save themselves and restore themselves from s
Instead, I build this layer as a series of interfaces, all of which know about eac
and help to model the interaction of the business objects, yet offer no hints as
the business objects are actually implemented. This approach, which I call in
based design, is not new to Java. Microsoft’s Component Object Model is built
concept, and, to be quite honest, uses it quite well.

Let’s take a second to examine the code:
Person has four get/set pairs, FirstName, MiddleName, LastName, and SS

encapsulate these using get/set methods, rather than as public members, to p
the fact that the actual data may not even reside within this class, or even thi
That is an implementation detail, and will follow later. The code looks like th

package Employee;

public interface IPerson

{

public String getFirstName()

4 I use the term entity deliberately here, because we haven’t yet given thought to whether this s
a single class or multiple related classes. We want to avoid the kind of premature pigeonho
referring to it as a class might create.

349

throws BusinessLayerException;

public void setFirstName(String fName)

throws BusinessLayerException;

public String getMiddleName()

throws BusinessLayerException;

ame is
king in
 Notice
 us the
 must

rs (i.e.,
mmu-

 stated
erson.
ethods
in Java

Neward13_06_12.fm Page 349 Tuesday, June 13, 2000 12:12 PM
MODELING DATA

public void setMiddleName(String mName)

throws BusinessLayerException;

public String getLastName()

throws BusinessLayerException;

public void setLastName(String lName)

throws BusinessLayerException;

public String getSSN()

throws BusinessLayerException;

public void setSSN(String ssn)

throws BusinessLayerException;

public IContactInfo[] getContactInfo()

throws BusinessLayerException;

public void addContactInfo(IContactInfo contactInfo)

throws BusinessLayerException;

public void removeContactInfo(IContactInfo contactInfo)

throws BusinessLayerException;

}

Note that because this is an interface, and not a full-fledged class, the class n
prefixed with “I”. This is another COM holdover, but makes sense when wor
an interface-based design paradigm. The “I”, of course, stands for “interface.”
also that each method throws the BusinessLayerException type; this provides
ability to signal a variety of errors, from business rule or logic errors (i.e., SSN
have digits in the form nnn-nn-nnnn) to underlying implementation erro
RMIExceptions in the RMIModel, SQLExceptions in the RDBMSModel, or co
nications errors in a CORBA model).

The IEmployee interface extends the IPerson interface because, as we
in our analysis discussion and in figure 13.3, an Employee is a specific type of P
This means, of course, that IEmployee instances should have the same m
available on them as IPerson instances, and the only way to guarantee this
is to extend IEmployee from IPerson .

The code looks like this:

package Employee;

public interface IEmployee extends IPerson

{

public IPosition getPosition()

throws BusinessLayerException;

public void setPosition(IPosition position)

throws BusinessLayerException;

public int getSalary()

BJECTS

throws BusinessLayerException;

public void setSalary(int salary)

throws BusinessLayerException, IllegalSalaryException;

}

also an
usiness
(in this
alary is
eptions
N is a
 String
in this
made a
’t have
kes the
menta-

s other
stances
 passed

ove-
r actu-

ice that
ecided

 explic-
ecause

 imple-
that all

xception
s will be
present),
he other
 method
ce night-
pe, make

Neward13_06_12.fm Page 350 Tuesday, June 13, 2000 12:12 PM
350 CHAPTER 13 BUSINESS O

Note that setSalary not only throws a BusinessLayerException , but
IllegalSalaryException . This is the means by which we enforce b
rules. If an employee’s salary is set to something that is defined to be illegal
case, we will decide that a salary above the employee’s position’s maximum s
illegal), then we throw an IllegalSalaryException . These sorts of exc
can be set on many more methods than just setSalary (IPerson ’s setSS
perfect example, where IllegalSSNException could also be thrown if a
consisting of something other than nnn-nn-nnnn is given). I choose not to
example for simplicity. As an alternative, IllegalSalaryException could also be
subclass of BusinessLayerException, so that the IllegalSalaryException wouldn
to be explicitly named as part of the method’s throws declaration. This ma
method more generic and maintainable, at the expense of the code-level docu
tion regarding the types of Exceptions it throws.5

Manager is, of course, a specialized Employee, one which in turn contain
Employees. The getEmployees method returns an array of Employee in
directly from the database, the addEmployee method screens the Employee
in to make sure they’re not already being managed by this Manager, and the rem
Employee method ensures that the Employee specified is one that this Manage
ally manages before doing the database update. Pretty straightforward, but not
the implementation of these methods defines our business logic—we have d
that more than one Manager may handle a given Employee (because we do not
itly prevent it), and that Managers can have no Employees to manage (again, b
we don’t explicitly code against it). The business layer is the one layer whose
mentation has ramifications throughout the entire system, so make certain
cases are covered when coding.

The code appears as follows:

package Employee;

public interface IManager extends IEmployee

{

public IEmployee[] getEmployees()

5 There are a number of valid arguments in both directions on this issue. Specifying the exact E
types thrown gives developers a type-safe means by which they can ascertain which Exception
thrown from a method call. Because documentation is never guaranteed to be correct (or even
this compiler-enforced type-safety is often the only documentation a developer gets. On t
hand, adding a new type to the method’s throws declaration will cause every client call of that
to suddenly require modification (to deal with the new throws type), which is a maintenan
mare and restricts change in the underlying implementation. As with most concepts of this ty
your own decisions, but be consistent.

351

throws BusinessLayerException;

public void addEmployee(IEmployee employee)

throws BusinessLayerException;

public void removeEmployee(IEmployee employee)

throws BusinessLayerException;

usiness
, or

 object
viding

 system
tle ,
 meth-

the old

ontact
act-
, num-
onding
l repre-
tate (or

Neward13_06_12.fm Page 351 Tuesday, June 13, 2000 12:12 PM
MODELING DATA

}

Again, additional Exception types could be added here to enforce further b
rules, such as having addEmployee throw DuplicateEmployeeException
removeEmployee throw UnknownEmployeeException .

Position is a read-only entity within this system; users may not, using our
model, modify the values of any Position objects. We accomplish this by not pro
any set methods for any of the attributes Position holds.

The code looks like this:
package Employee;

public interface IPosition

{

public String getTitle()

throws BusinessLayerException;

public String getDescription()

throws BusinessLayerException;

public String getCategory()

throws BusinessLayerException;

public int getMinSalary()

throws BusinessLayerException;

public int getMaxSalary()

throws BusinessLayerException;

}

Not much more to say about this, except to reiterate that Positions within this
are defined read-only, but later applications could change this by adding setTi
setDescription , setCategory , setMinSalary, and/or setMaxSalary
ods. The key point to make about this is if this change does occur, users of
IPosition will not have to change any code.

As discussed earlier, Phone, Address, and Email are all specific types of C
Information. As a result, IPhone , IAddress , and IEMail all extend ICont
Info . IPhone has three attributes, prefix (area code and/or country code)
ber , and suffix (extension, PIN number for pagers, and so on) with corresp
get/set methods. IEMail contains one attribute, Email , which is the textua
sentation of the user’s SMTP email address. IAddress contains Street, City, S
province), ZIP (or postal code) and Country.

The code (in multiple files) looks like this:

// IContactInfo.java

//

package Employee;

BJECTS

public interface IContactInfo

{

public String getDescription()

throws BusinessLayerException;

public void setDescription(String desc)

Neward13_06_12.fm Page 352 Tuesday, June 13, 2000 12:12 PM
352 CHAPTER 13 BUSINESS O

throws BusinessLayerException;

}

// IAddress.java

//

package Employee;

public interface IAddress

{

public String getStreet()

throws BusinessLayerException;

public void setStreet(String street)

throws BusinessLayerException;

public String getCity()

throws BusinessLayerException;

public void setCity(String city)

throws BusinessLayerException;

public String getState()

throws BusinessLayerException;

public void setState(String state)

throws BusinessLayerException;

public String getZip()

throws BusinessLayerException;

public void setZip(String zip)

throws BusinessLayerException;

public String getCountry()

throws BusinessLayerException;

public void setCountry(String country)

throws BusinessLayerException;

}

// IEMail.java

//

package Employee;

public interface IEMail

{

public String getEmail()

throws BusinessLayerException;

public void setEmail(String email)

throws BusinessLayerException;

}

// IPhone.java

//

package Employee;

353

public interface IPhone

{

public String getPrefix()

throws BusinessLayerException;

public void setPrefix(String prefix)

ystem.
, and

lid-

er. The

m; for
t, then

Neward13_06_12.fm Page 353 Tuesday, June 13, 2000 12:12 PM
MODELING DATA

throws BusinessLayerException;

public String getNumber()

throws BusinessLayerException;

public void setNumber(String number)

throws BusinessLayerException;

public String getSuffix()

throws BusinessLayerException;

public void setSuffix(String suffix)

throws BusinessLayerException;

}

Again, additional exception types could be added here in a production s
IAddress , especially, could use InvalidZipException on setZip()
IPhone could use InvalidNumberException on setNumber() , or Inva
PrefixException on setPrefix() .

IDepartment , of course, is the last interface in the Business Interface lay
code appears as:

package Employee;

public interface IDepartment

{

public String getTitle()

throws BusinessLayerException;

public String getDescription()

throws BusinessLayerException;

public void setDescription(String desc)

throws BusinessLayerException;

public IDepartment getParentDepartment()

throws BusinessLayerException;

public IDepartment[] getContainedDepartments()

throws BusinessLayerException;

public IManager getManager()

throws BusinessLayerException;

public void setManager(IManager mgr)

throws BusinessLayerException;

}

Note, again, that additional checks would be desired in a production syste
example, if the enterprise decides that a Manager can run only one Departmen
setManager() might throw IllegalManagerException .

BJECTS

That’s our Business Objects Interface layer. At this point, it doesn’t seem like
much, but we already know enough to set up client code that can fully drive and exer-
cise the Business Objects for this system without knowing a thing about the actual
implementation. In fact, it’s a good idea to do so, not only for regression and unit testing

ethods

system,

Neward13_06_12.fm Page 354 Tuesday, June 13, 2000 12:12 PM
354 CHAPTER 13 BUSINESS O

purposes, but to ensure that we have, in fact, given clients of this system the m
and behaviors they need to write the front ends to the system.

The code in listing 13.1 simply runs through various elements in the
printing out information about each one:

/**

* Test driver

*/

public static void main(String[] args)

throws Exception

{

// Build the EmployeeModel; getEmployeeModel is a method that

// (somehow) obtains the appropriate IEmployeeModel--it might

// create an RDBMSModel with a JDBC Connection, or it might not;

// the point is, we don’t need to know the exact type of

// IEmployeeModel we’re using in order to use it.

IEmployeeModel model = getEmployeeModel();

// Get all Persons in the database

System.out.println("\n\nAll Persons:");

IPerson[] persons = model.findAllPersons();

for (int i=0; i<persons.length; i++)

printPerson(persons[i]);

// Get all Departments in the database

System.out.println("\n\nAll Departments:");

IDepartment[] depts = model.findAllDepartments();

for (int i=0; i<depts.length; i++)

printDept(depts[i]);

// Get all Positions in the database

System.out.println("\n\nAll Positions:");

IPosition[] positions = model.findAllPositions();

for (int i=0; i<positions.length; i++)

printPosition(positions[i]);

// Get all Employees in the database

System.out.println("\n\nAll Employees:");

IEmployee[] employees = model.findAllEmployees();

for (int i=0; i<employees.length; i++)

printEmployee(employees[i]);

// Get all Managers in the database

System.out.println("\n\nAll Managers:");

IManager[] mgrs = model.findAllManagers();

for (int i=0; i<mgrs.length; i++)

Listing 13.1 Code for the Business Objects Interface layer

355

printManager(mgrs[i]);

}

private static void printPerson(IPerson person)

throws Exception

{

Neward13_06_12.fm Page 355 Tuesday, June 13, 2000 12:12 PM
MODELING DATA

System.out.println(person.getLastName() + ", " +

person.getFirstName() + " " +

person.getMiddleName() + " (" +

person.getSSN() + ")");

IContactInfo[] contactInfo = person.getContactInfo();

for (int j=0; j<contactInfo.length; j++)

{

// Print ContactInfo

System.out.println(" " +

contactInfo[j].getDescription() + ": " +

contactInfo[j].toString());

}

}

private static void printEmployee(IEmployee employee)

throws Exception

{

System.out.println(employee.getLastName() + ", " +

employee.getFirstName() + " " +

employee.getMiddleName() + " (" +

employee.getSSN() + "): " +

employee.getPosition().getTitle());

IContactInfo[] contactInfo = employee.getContactInfo();

for (int j=0; j<contactInfo.length; j++)

{

// Print ContactInfo

System.out.println(" " +

contactInfo[j].getDescription() + ": " +

contactInfo[j].toString());

}

}

private static void printDept(IDepartment dept)

throws Exception

{

System.out.println(dept.getTitle() + ": " +

dept.getDescription());

System.out.println(" Run by " +

dept.getManager().getLastName() + ", " +

dept.getManager().getFirstName() + " " +

dept.getManager().getMiddleName());

}

private static void printPosition(IPosition pos)

throws Exception

{

System.out.println(pos.getTitle() + "(" +

pos.getMinSalary() + " to " +

BJECTS

pos.getMaxSalary() + "): " +

pos.getDescription());

}

private static void printManager(IManager mgr)

throws Exception

s inter-
 from

f these
tem. In
to view
 do we

terface
 which

Neward13_06_12.fm Page 356 Tuesday, June 13, 2000 12:12 PM
356 CHAPTER 13 BUSINESS O

{

System.out.println(mgr.getLastName() + ", " +

mgr.getFirstName() + " " +

mgr.getMiddleName());

IEmployee[] employees = mgr.getEmployees();

for (int i=0; i<employees.length; i++)

{

System.out.println(" " +

employees[i].getLastName() + ", " +

employees[i].getFirstName() + " " +

employees[i].getMiddleName());

}

}

This code can either be part of each IEmployeeModel -implementing class’
face, to allow for convenient testing, or a stand-alone class to exercise the system
outside the model.

One thing that should be obvious—and a bit confusing—is that none o
methods has any way of creating, obtaining, or removing objects from the sys
the example above, we presume that we already have objects in the database
and display. This certainly won’t be the case with an empty database, so how
create a new Person?

Observant readers will have already spotted, in listing 13.1, the use of an in
not previously discussed. Listing 13.2 shows the IEmployeeModel interface,
is at the core of the interface layer.

package Employee;

/**

* This class represents our business object layer

* "model".

*/

public interface IEmployeeModel

{

/**

* Create IPerson object

*/

public IPerson createPerson(

String firstName, String middleName, String lastName,

String ssn)

throws BusinessLayerException, DuplicateObjectException;

Listing 13.2 Code for IEmployeeModel

357

/**

* Create IEmployee object

*/

public IEmployee createEmployee(

String firstName, String lastName, String middleName,

Neward13_06_12.fm Page 357 Tuesday, June 13, 2000 12:12 PM
MODELING DATA

String ssn, IPosition position, int salary)

throws BusinessLayerException, DuplicateObjectException;

/**

* Create IEmployee from IPerson

*/

public IEmployee createEmployee(IPerson person,

IPosition position, int salary)

throws BusinessLayerException, DuplicateObjectException;

/**

* Create IManager object

*/

public IManager createManager(
String firstName, String lastName, String middleName,

String ssn, IPosition position, int salary)

throws BusinessLayerException, DuplicateObjectException;

/**

* Create IManager from IEmployee

*/

public IManager createManager(IEmployee employee)

throws BusinessLayerException, DuplicateObjectException;

/**

* Create IDepartment object

*/

public IDepartment createDepartment(

String name, IDepartment parent)

throws BusinessLayerException, DuplicateObjectException;

/**

* Create IPosition object

*/

public IPosition createPosition(
String title, String desc, int minSalary, int maxSalary)

throws BusinessLayerException, DuplicateObjectException;

/**

* Create IEMail object

*/

public IEMail createEMail(String email)

throws BusinessLayerException, DuplicateObjectException;

/**

* Create IPhone object

*/

public IPhone createPhone(

String prefix, String number, String suffix)

throws BusinessLayerException, DuplicateObjectException;

BJECTS

/**

* Create IAddress object

*/

public IAddress createAddress(

String street, String city, String state, String zip,

Neward13_06_12.fm Page 358 Tuesday, June 13, 2000 12:12 PM
358 CHAPTER 13 BUSINESS O

String country)

throws BusinessLayerException, DuplicateObjectException;

/**

* Query for all Persons

*/

public IPerson[] findAllPersons()

throws BusinessLayerException;

/**

* Query for all Persons by last name

*/

public IPerson[] findPersonsByLastName(String lastName)

throws BusinessLayerException;

/**

* Query for all Persons by SSN

*/

public IPerson[] findPersonsBySSN(String ssn)

throws BusinessLayerException;

/**

* Query for all Employees

*/

public IEmployee[] findAllEmployees()

throws BusinessLayerException;

/**

* Query for all Managers

*/

public IManager[] findAllManagers()

throws BusinessLayerException;

/**

* Query for all Positions

*/

public IPosition[] findAllPositions()

throws BusinessLayerException;

/**

* Query for all Departments

*/

public IDepartment[] findAllDepartments()

throws BusinessLayerException;

/**

* Query for "root" Department

*/

public IDepartment findRootDepartment()

throws BusinessLayerException;

/**

359

* Remove a Person from the system

*/

public void removePerson(IPerson person)

throws BusinessLayerException, IntegrityConstraintException,
UnknownObjectException;

Neward13_06_12.fm Page 359 Tuesday, June 13, 2000 12:12 PM
MODELING DATA

/**
* Remove an Employee from the system

*/

public void removeEmployee(IEmployee employee)

throws BusinessLayerException, IntegrityConstraintException,
UnknownObjectException;

/**

* Remove a Person from the system

*/

public void removeManager(IManager manager)

throws BusinessLayerException, IntegrityConstraintException,
UnknownObjectException;

/**

* Remove a Department from the system

*/

public void removeDepartment(IDepartment dept)

throws BusinessLayerException, IntegrityConstraintException,
UnknownObjectException;

/**

* Remove a Position from the system

*/

public void removePosition(IPosition position)
throws BusinessLayerException, IntegrityConstraintException,

UnknownObjectException;

/**

* Remove an Address from the system

*/

public void removeAddress(IAddress address)
throws BusinessLayerException, IntegrityConstraintException,

UnknownObjectException;

/**

* Remove a Phone from the system

*/

public void removePhone(IPhone phone)
throws BusinessLayerException, IntegrityConstraintException,

UnknownObjectException;

/**

* Remove an EMail from the system

*/

public void removeEMail(IEMail person)
throws BusinessLayerException, IntegrityConstraintException,

UnknownObjectException;

}

BJECTS

This class forms the starting point from which any use of the Business Layer originates.
Users of the Employee package (which is the package holding all the Business Layer
code) may not create, access, or otherwise know about Employee instances directly.
They must go through this interface. Again, this is done deliberately, in order to encap-

 use it.
odel

odel ,

t we’re
stance

ference
e user’s
el class
oaders

routine

Neward13_06_12.fm Page 360 Tuesday, June 13, 2000 12:12 PM
360 CHAPTER 13 BUSINESS O

sulate knowledge about the actual layout of the data away from those who want to
Because this is an interface, users do not create an instance of IEmployeeM

directly. Instead, they create instances of a class that implements IEmployeeM
such as the RDBMSModel class presented in chapter 14:

// Set up JDBC Connection

Connection conn = null;

try

{

// Load the JDBC driver into the JVM

Class.forName("jdbc.idbDriver");

java.util.Propertie s p = new java.util.Properties();

conn = DriverManager.getConnection("jdbc:idb:employee.prp", p);

}

catch (Exception ex)

{

ex.printStackTrace();

return;

}

// Build the EmployeeModel

IEmployeeModel model = new RDBMSModel(conn);

You may be curious why, after going to such great lengths to hide the fact tha
using a relational database, I then force users to make the JDBC Connection in
to pass in to RDBMSModel. For this particular example, it makes little dif
whether this Connection takes place in the RDBMSModel constructor or th
code. In a production system, however, usually users will not create the Mod
directly, but receive it from someplace else (perhaps one of the custom ClassL
discussed in chapter 2), as in:

ClassLoader classLoade r = . . .;

// obtain the ClassLoader from someplace

IEmployeeModel model = (IEmployeeModel)

ClassLoader.loadClass(“Employee.EmployeeModel”).newInstance();

Or the mechanics of using the ClassLoader itself could be buried within some
inside the code that uses the Business Layer:

public IEmployeeModel getEmployeeModel()

{

// Details unimportant to the user

}

IEmployeeModel model = getEmployeeModel();

IEmployee[] employees = model.findAllEmployees();

361

Note the simple power expressed in the foregoing snippet. Suddenly, as we’ve been
talking about all along, the user doesn’t know, nor does he care where the Employee
objects are coming from, how they work, or how they store themselves off. The
Employee Business Object Layer client simply uses them. The objects may be stored

tely via
ocation

andled.
own to
abnor-
 which

ools of
r type,
forma-
lation,

o them
an the

atabase
terface
Busi-
est fails
in turn
tation-
er need
o know

ethods
cute a

 object
n array

e were
ply, a

objects
 that.
yee-

Neward13_06_12.fm Page 361 Tuesday, June 13, 2000 12:12 PM
MODELING DATA

in a database, may be stored locally to disk via Serialization, or stored remo
RMI, CORBA, or some other form of distribution. We could even change the l
of these objects behind the scenes, and users would neither know nor care.

Some readers may, at this point, be curious to know how problems are h
Normally, in a JDBC or RMI based system, exceptions of specific type are thr
signal the caller that the request could not be completed, or was completed
mally. “If I no longer know where the objects reside,” they ask, “how can I know
exceptions to catch and handle? Or do I have to handle all of them?”

Unfortunately, there is no easy answer, because there are really two sch
thought on the issue. The first holds that any exception, regardless of cause o
should be propagated upward to the caller, so they can display some type of in
tive screen to the user. The second holds that because the caller, due to encapsu
has no real way of doing anything about the error, propagating the exception t
is simply a waste of time and effort. I hold more with the second approach th
first. Reasonably, what can I expect the user to be able to do about it if the d
to which I am attempting to connect is down? For that reason, none of the in
classes presented here throw any kind of standard Exception . Instead, I have
nessLayerException , a class which is thrown in case a transaction or requ
(for example, if a setName or similar method fails for some reason). This class
contains the actual Exception thrown from the lower layers, so that presen
layer code can access it if desired. This way, clients of the Business Interface Lay
only catch one type of Exception from calls to that layer, and still do not have t
anything about the actual lower-object layer.

Querying for objects in the system is as easy as calling one of the find() m
on IEmployeeModel . Any place where client code would normally exe
SELECT statement on the database, or begin deserialization of a serialized
stream file, the client instead asks the IEmployeeModel instance it holds for a
of conformant types:

// Get all Persons in the database

System.out.println("\n\nAll Persons:");

IPerson[] persons = model.findAllPersons();

Above, the code asks the system for all Person objects in the database. If non
found, findAllPersons() returns null , and if the system couldn’t com
BusinessLayerException is thrown. No further knowledge of how these
are stored is necessary. The implementing IEmployeeModel takes care of all

Creating a new object within the system also requires the use of the IEmplo
Model instance:

BJECTS

// Create a new Person in the system

IPerson person =

model.createPerson(“Neward”, “Charlotte”, “Anne”, “123-45-6789”);

// Add new ContactInfo instances to person as necessary

// Make the above Person an Employee

act, it’s
jects to

l :

oving
odel .
bout it,

 chance
. Some
find-
ing API
art-

).

r query
system.
rstand-
dingly.
I know
re and
 of the
’t have

rchitect
udents
 might

Neward13_06_12.fm Page 362 Tuesday, June 13, 2000 12:12 PM
362 CHAPTER 13 BUSINESS O

IEmployee employee =

model.createEmployee(person, model.findPositionByName(“CFO”));

// Now make her a Manager

IManager manager =

model.createManager(person);

This would seem to be counterintuitive to good object-oriented design. In f
not, because we have simply moved knowledge of how to create Business Ob
the one class that knows most about how to create them, the Model class.

Removing an object from the system again requires the IEmployeeMode

// Remove given Manager from the system
model.removeManager(manager);

// This recursively removes the manager-as-Employee and

// the manager-as-Person, so explicitly calling those

// methods is unnecessary

Should clients require an additional method of querying for, creating, or rem
objects from the system, additional methods must be added to IEmployeeM
While this approach may seem restrictive at first (and there’s really no doubt a
it is more restrictive), it offers some advantages in return:

• Sanity-check
When clients request the additional query method, it offers the designers a
to evaluate the legitimacy of the request and offer feedback to the clients
queries will be legitimate (such as findEmployeesByLastName() or
ManagersByLastName()), while others can be handled given the exist
(instead of findManagersByDepartment() , use a new query, findDep
mentByName() and the returned IDepartment object’s getManager()

• Knowledge of use
When designers are explicitly requested for new ways to access, create, o
for objects, they are (by definition) being told how clients are using the
This knowledge in turn allows Business Object implementors better unde
ing of how the system is being used, and can optimize and tune accor
Some designers and coders will scoff at this, taking the position that “
how they’ll be using it, I don’t need them to tell me.” This is fantasy, pu
simple. Step onto any high school or college campus and take careful note
sidewalks and surrounding grass; I have never been on a campus that didn
at least one carefully worn dirt path through the grass. The moral? The a
who laid the sidewalks thought he knew, but didn’t, which paths the st
would take. Designers cannot know how others will use their system. You
know how you would use it, but that doesn’t mean that others will.

363

• Control over future implementation
Enterprise systems are constantly moving targets. Even as current phases are
being implemented, future phases are on the drawing board. By forcing clients
to go back to the Business Object architects with new requests, control over how

bjects
ethods
lemen-
e a les-
scribes
tibility,
s (even
ns and
 result,
’t keep

ter add
 (a la
mance.
el sys-

erver, a
y, thus
request
al class
remote
ocal or
 code is

 system
e accu-
o add,
d read-
system
his can
rrently

Neward13_06_12.fm Page 363 Tuesday, June 13, 2000 12:12 PM
MODELING DATA

the objects are being used remains firmly in the hands of the Business O
team. This allows the Business Objects folks to prevent any uses or m
within the Business Objects layer that might, in turn, prevent future imp
tation from taking place. Don’t believe you need this kind of control? Tak
son from Microsoft—in Undocumented Windows,6 Andrew Schulman de
Microsoft’s woes in developing Windows 3.1 with full backward compa
caused in no small part because developers of applications for Window
within Microsoft) were decompiling and reverse-engineering functio
structures that Microsoft held as reserved for future implementation. As a
those reserved fields had to be left as-is, and new schemes used. If you don
complete control over your API, you will lose it.

• Ability to optimize
Because clients are removed from knowing the exact class to use, we can la
implementation optimization efforts, such as using stateless objects
Microsoft Transaction Server statelessness) or object pools to boost perfor
Intelligent on-the-fly optimizations can be used; in a remote object Mod
tem, if the client happens to be running on the same machine as the s
lightweight RPC system might be used instead of the full remote prox
reducing overhead. What’s even better, because client code will usually
the IEmployeeModel instance to use from some sort of object-creation
or method, the decision regarding which optimized type to use (local or
proxy) can be done at run time, based on whether the machine is l
remote; this sort of on-the-fly decisionmaking is only possible if the user’s
completely abstracted away from the details of the underlying model.

• Easier enhancement
If all access to the objects is through a single class, adding features to the
as a whole becomes simpler. One common need is for security, or, mor
rately, user roles within the system. Some users may be authorized t
remove, or update objects within the system, while others are permitte
only access. Some objects may be inaccessible to anyone other than
administrators, and so forth. Modifying IEmployeeModel to support t
be boiled down to adding an overloaded method for every method cu
available, as in:

6 Undocumented Windows, by Schulman, et al (Addison-Wesley)

BJECTS

// IEmployeeModel with user roles added in

//

public interface IEmployeeModel

{

/**

Neward13_06_12.fm Page 364 Tuesday, June 13, 2000 12:12 PM
364 CHAPTER 13 BUSINESS O

* Query for all Persons, using default (guest) access

*/

public IPerson[] findAllPersons();

/**

* Query for all Persons, using specified access

*/

public IPerson[] findAllPersons(IUserRole role);

/**

* Query for all Persons by last name, using default

* (guest) access

*/

public IPerson[] findPersonsByLastName(String lastName);

/**

* Query for all Persons by last name, using specified access

*/

public IPerson[] findPersonsByLastName(String lastName, IUserRole role);

// And so forth, and so o n . . .

}

// or, an alternative approach:

// IEmployeeModel with user roles added in

//

public interface IEmployeeModel

{

/**

* Specify caller user role

*/

public void setUserRole(IUserRole role);

/**

* Query for all Persons

*

* @throws UserRoleException (subclass of

* BusinessLayerException) if the user’s role is prevented

* from finding all Persons.

*/

public IPerson[] findAllPersons()

throws BusinessLayerException;

/**

* Query for all Persons by last name, using default

* (guest) access

*

* @throws UserRoleException (subclass of

365

* BusinessLayerException) if the user’s role is prevented

* from finding all Persons.

*/

public IPerson[] findPersonsByLastName(String lastName);

t don’t
he sys-
ailable.
geable.
ours to
ystem.
orks as
 readers
Object

Façade
om the
tion to
ithout

e to an
odified
e holds

ociated
’re not
e View
xamine
g class
e used

pattern
 layers,
 imple-
d par-

 use via

he inter-
ort RMI
 no addi-

I stub/
 silentlyÿ

Neward13_06_12.fm Page 365 Tuesday, June 13, 2000 12:12 PM
MODELING DATA

// And so forth, and so o n . . .

}

Enhancing the system in this manner requires no code changes to clients tha
use user roles, but those clients may in turn be locked out of certain parts of t
tem, since they (by default, for security reasons) are given the lowest access av
The key is that what would otherwise be a major feature change is now mana
Imagine what implementing security would have meant (in terms of man h
implement) had clients been given direct access to the database or middleware s

In short, just about every argument in favor of encapsulation of objects w
an argument in favor of encapsulation of the business object layer. In fact, those
familiar with the GoF book of patterns will already recognize that the Business
Interface layer is a Façade pattern.

Moreover, the entire idea of an n-tier logical model is an extension of the
concept. By encapsulating the complexity of the actual implementation away fr
user, implementors gain an amount of flexibility in tailoring the implementa
specific needs, as well as responding to user requests or technology changes, w
breaking client code. For example, if and when the enterprise decides to mov
EJB server architecture, the Business Object Interface implementation can be m
to use EJB concepts under the hood, without changing client code.7 The sam
true for CORBA, or even Microsoft’s Java/COM model.

If all this discussion of the Business Object Interface Layer and its ass
Model class also reminds you of the old Model-View-Controller pattern, you
too far off. The various interfaces of the Business Object Interface Layer are th
classes; the Model classes are buried away in the underlying layer (which we e
next chapter), and the Controller class is the IEmployeeModel -implementin
we keep referring to. Remember, patterns can nest—not only can patterns b
between subsystems, but within subsystems, as well. In this case, the Bridge
helps us cleanly divide the entire system into Presentation and Business Object
as well as divides code within the Business Object layer between interface and
mentation. The Model class itself may (but doesn’t have to be) a Singleton, an
ticular client code may select which IEmployeeModel -implementing class to
a Factory Method or Abstract Factory.

7 One possible exception to this is to add the java.rmi.Remote interface as a base class to t
faces specified by the Business Object Interface layer, but we already have to do this to supp
in a later chapter. Adding the java.rmi.Remote , much as adding java.io.Serializable, adds
tional methods that need to be implemented; it’s just a placeholder and flag to the rmic RM
skeleton compiler. Even the need to catch java.rmi.RemoteExceptions should be handled

BJECTS

13.2 USING THE BUSINESS OBJECT LAYER

For all the wonder of our clean, encapsulated Business Object layer, in and of itself it
pays no bills. True payoff comes when using the Business Object layer to view,

ow the
ground
n have
ld only
 exam-
rt code

cations
 of the
econd,
hin the
mation

e data
ORBA,
ication,
odel
 which
 URL,

ing the

zation.
hin the
anager
 work-
ce, not
ur own
cessary
 panel)

Neward13_06_12.fm Page 366 Tuesday, June 13, 2000 12:12 PM
366 CHAPTER 13 BUSINESS O

manipulate, and otherwise use the data it models and represents. Despite h
data is used, either in a GUI application or in some kind of batch-driven back
process, this is the Presentation layer. Again, the Presentation layer itself ca
more than one layer within it (as the JFC GUI application does), but this shou
be done where it is convenient and has concrete advantages. The UI code, for
ple, presented here uses another model-view design, while the import/expo
does not.

13.2.1 Classic presentation code: GUIs

The Employee system example comes with two presentation-layer GUI appli
for users to execute and use. The first, OrgTree, provides a tree-based hierarchy
corporation’s Department tree, in a split-view Explorer-like interface. The s
EmployeeView, provides a more address-book-like view of the Employees wit
company, organized alphabetically and with each Employee’s Contact Infor
listed in the data view.

In both applications, the UI code makes no assumptions about how th
arrived there. The data could be coming from a relational database, via RMI or C
or even be an exported file of the data (discussed next). To stress this, each appl
when started, presents the user with a dialog box indicating the IEmployeeM
choices (discussed in further detail in the next chapter) and allows you to choose
one to use. If further details are necessary to create the Model (such as JDBC
RMI, CORBA server location, XML, or Serialized filename), a subdialog contain
fields appears.

13.2.2 Example: OrgTree

OrgTree is a simple tree-based display of the company’s Departmental organi
Each node in the tree to the left side of the main window is a Department wit
company, and the panel to the right lists the Employees working for the M
managing that Department. Note that the display is not recursive. Employees
ing for a Department contained by another Department will only show up on
in each parent node all the way back to the root. Notice how, by creating o
customized TreeModel class (listing 13.3), we’ve almost trivialized the work ne
to build this Departmental tree, and the custom ListModel (for the right-hand
does the same for listing the Employees of the Department.

367

/**

* DepartmentTreeModel: Swing JTree model class for displaying

* the organization chart, according to the IEmployeeModel.

Listing 13.3 Code for the DepartmentTreeModel

Neward13_06_12.fm Page 367 Tuesday, June 13, 2000 12:12 PM
USING THE BUSINESS OBJECT LAYER

*/

class DepartmentTreeModel

implements TreeModel

{

public DepartmentTreeModel(IEmployeeModel model)

{

m_model = model;

}

public void addTreeModelListener(TreeModelListener l)

{

m_listeners.addElement(l);

}

public Object getChild(Object parent, int index)

{

try

{

IDepartment dept = (IDepartment)parent;

IDepartment[] children = dept.getContainedDepartments();

if (children != null)

{

return children[index];

}

else

return null;

}

catch (BusinessLayerException blEx)

{

blEx.printStackTrace();

return null;

}

}

public int getChildCount(Object parent)

{

try

{

IDepartment dept = (IDepartment)parent;

IDepartment[] children = dept.getContainedDepartments();

if (children != null)

return children.length;

else

return 0;

}

catch (BusinessLayerException blEx)

{

blEx.printStackTrace();

return 0;

BJECTS

}

}

public int getIndexOfChild(Object parent, Object child)

{

return 0;

Neward13_06_12.fm Page 368 Tuesday, June 13, 2000 12:12 PM
368 CHAPTER 13 BUSINESS O

}

public Object getRoot()

{

try

{

return m_model.findRootDepartment();

}

catch (BusinessLayerException blEx)

{

blEx.printStackTrace();

return null;

}

}

public boolean isLeaf(Object node)

{

try

{

IDepartment dept = (IDepartment)node;

if (dept.getContainedDepartments() != null)

return false;

else

return true;

}

catch (BusinessLayerException blEx)

{

blEx.printStackTrace();

return true;

}

}

public void removeTreeModelListener(TreeModelListener l)

{

m_listeners.remove(l);

}

public void valueForPathChanged(TreePath path, Object newValue)

{

// unimplemented

}

// Internal members

//

IEmployeeModel m_model;

Vector m_listeners = new Vector();

}

369

If you are unfamiliar with TreeModel’s methods, I’d recommend you pick up a good
Swing book before diving too deeply into the code. DepartmentTreeModel takes an
IEmployeeModel in its constructor and stores it internally. If we chose to, we could
extract the root IDepartment (which is all we need the IEmployeeModel instance

hing to
actions
n that
tained

 If this
ethods8

 hierar-

 If the
en you
 hand.

bsurdly
face to
eloped
 other

tead of
from a

h time

rtment

 here the
menting

Neward13_06_12.fm Page 369 Tuesday, June 13, 2000 12:12 PM
USING THE BUSINESS OBJECT LAYER

for) in the constructor and not store the model instance, but it costs us not
hold it. Also, notice that because DepartmentTreeModel is stateless in its inter
with the containing JTree instance, getChild has to rely on the assumptio
IDepartment.getContainedDepartments returns the array of con
IDepartment instances in exactly the same order every time it is called.
assumption proves false, then DepartmentTreeModel needs to undertake other m
to make certain the children can be found in order every time.

Now look at what’s required to build a JTree that knows how to display,
chically, all of the Departments in the Employee system:

JTree tree = new JTree(

new DepartmentTreeModel(getEmployeeModel(args)));

where getEmployeeModel(args) returns to us an IEmployeeModel .9

simplicity of the above doesn’t set your heart pounding and head spinning, th
never had to try to code one of these things the Hard Way, building the tree by
JFC’s Model-View system makes the development of complex user-interfaces a
simple. What’s more, because OrgTree uses the IEmployeeModel as its inter
the data, we can now use this application (or, more realistically, the classes dev
during the development of this application) to view Employee system data from
sources. Had we written the DepartmentTreeModel to use JDBC or RMI ins
IEmployeeModel , it would be useless to us when we move the system
JDBC-based system to an RMI-based approach.

Note that this is not the most efficient use of the IEmployeeModel ; eac
we need a new child, we requery the model:

public Object getChild(Object parent, int index)

{

try

{

IDepartment dept = (IDepartment)parent;

IDepartment[] children = dept.getContainedDepartments();

if (children != null)

{

return children[index];

}

8 Such as retrieving the array once, and storing it in a Hashtable or Dictionary, keyed to the IDepa

instance that produced it.
9 In typical systems, the Model being used will be obtained from a similar method or class, but

getEmployeeModel() method allows users to choose which of the IEmployeeModel -imple
classes discussed in this book to use.

BJECTS

else

return null;
}

catch (BusinessLayerException blEx)
{

BC or
l could
owever,
yee-
ation is
h it an
and we
 to sig-
use we
anging

 object
 have a
This is
limited
 Inter-
ple as

anipu-
readers

ystems
en the
 in the
t layer,
this, all
 simple
 devel-

al data-
to store
ht into

Neward13_06_12.fm Page 370 Tuesday, June 13, 2000 12:12 PM
370 CHAPTER 13 BUSINESS O

blEx.printStackTrace();
return null;

}
}

In a model that involves significant time delays or processing (such as using JD
RMI in the model), this can prove overly costly. These costly trips to the mode
be optimized away by making the trip once, and caching the result locally. H
this sort of optimization is arguably more appropriately belonging in the IEmplo
Model and not in client code; the model knows better whether such optimiz
necessary, and how best to optimize for it. Such optimization also carries wit
inherent danger if used in the client code—if the underlying model changes,
keep using local cached results, we won’t see the changes. This can in turn lead
nificant problems downstream. Once again, however, it must be stated that beca
abstracted away the details, we can silently make this optimization without ch
a lick of user’s code.

13.2.3 Feeling cheated?

You’ll notice that the sample application doesn’t make use of every business
method, nor is every business object exercised to its fullest; for example, I don’t
PositionEditor, or even an application that adds Employees to the system.
deliberate, for two reasons. First, it’s common for corporations to want to give
access to all members of the corporation or outside the corporation (across the
net, for example). Second, more practically, I wanted to keep this sample as sim
possible. Given how the model encapsulates away the details of the creation, m
lation, and removal of the actual data objects, it shouldn’t be too difficult for
to implement other editors, if desired.

13.3 SUMMARY

One of the principal goals of any enterprise development group is to produce s
that are maintainable, scalable, and reusable. An encapsulation layer betwe
actual storage mechanism and the code which presents or manipulates it aids
reusability of the system as a whole. This layer, known as the Business Objec
serves to protect the system from an inability to evolve because if we change
this code over here breaks. For example, we can start with a system that uses a
Hashtable as its storage mechanism in order to expedite prototyping and rapid
opment in the early stages of project planning and architecture. Later, relation
bases can be used, by simply modifying code beneath the Business Object layer
to an RDBMS rather than a Hashtable. Additional legacy systems can be broug

371

the system by extending the Business Object layer to represent the new data types, and
developing a Data Access layer that understands the different databases and where to
retrieve data for which requests. (We implement both of the above-mentioned models
in chapter 14.)

n capa-
usiness
ificant

d other

anging
 we run
e prin-
ge and

 encap-
onable
ow the
accept-
olves.

eworks

is level,
 gener-
ds. It’s
es (not
t books

hmidt,

en, and

le and

Neward13_06_12.fm Page 371 Tuesday, June 13, 2000 12:12 PM
ADDITIONAL READING

The Business Object layer also provides for the ability to add distributio
bilities into a system that lacks it; by virtue of the encapsulation provided by a B
Object layer, we can add a distributed capability without having to rewrite sign
portions of user code; we talk about this in chapter 12, when we add RMI an
distributed technologies to the mix.

A Business Object layer provides developers with flexibility to meet the ch
needs of the business. By providing, up front, the ability for a system to evolve,
less risk of being caught off-guard by user requests. This inability to evolve is th
cipal reason many systems are started over from scratch. It’s awkward to chan
grow the system as users become more familiar with it. By providing layers of
sulation wherever feasible, we protect ourselves (and our jobs) against unreas
user requests. And as much as it might be exciting for us as developers to thr
current system away and start over, most clients are less than enthusiastic about
ing the kind of costs, both in time and in money, that a complete rewrite inv

13.4 ADDITIONAL READING

• Desmond D’Souza and Alan Cameron Wills, Object, Components, and Fram
with UML (Addison-Wesley, 1999).
This is a great book for any developer involved at the design or analys
with clear focus on building shared business models, as well as providing a
alized approach to developing software that meets (or exceeds) client nee
not a lightweight book, by any means, weighing in at just under 700 pag
counting appendices, index, or glossary), but it’s possibly one of the bes
any developer or architect will find.

• Pattern Languages of Program Design, ed. James O. Coplien, Douglas C. Sc
(Addison-Wesley, 1995).

• Pattern Languages of Program Design 2, ed. John Vlissides, James O. Copli
Norman L. Kerth, (Addison-Wesley, 1996).

• Pattern Languages of Program Design 3, ed. Robert Martin, Dirk Rieh
Frank Buschmann (Addison-Wesley, 1997).

C H A P T E R 1 4

Neward14_06_12.fm Page 372 Tuesday, June 13, 2000 12:14 PM
Business object models
14.1 Example: HashtableModel 372
14.2 Example: RDBMSModel 380
14.3 Summary 400
14.4 Additional reading 401
s chap-
el, is a

 storage
e more
In the previous chapter, we talked about building a business object model; in thi
ter, we’ll explore two potential implementations of it. The first, HashtableMod
simple implementation using a standard Java java.util.Hashtable instance as the
mechanism for the business objects. The second, RDBMSModel, will be th
familiar relational-database-back end approach.
 proto-
ies, the
 it very
hatso-
limita-

ell as a
ayer.
t stores
t capa-
testing.
eristics
e could
a most
372

14.1 EXAMPLE: HASHTABLEMODEL

The HashtableModel is a simple model, the usefulness of which is limited to
types and those systems guaranteed to remain 24/7 for life. As its name impl
HashtableModel stores all business objects in a simple Java Hashtable, giving
fast response time at the expense of lacking any sort of persistent capability w
ever. In other words, if the server goes down, all objects are lost. Despite its
tions, it serves as a useful starting point for both data-access models as w
prototype model for working out the kinks in your Business Object Interface l

The HashtableModel is a prototyping and proof-of-concept model tha
any objects created in local Hashtable instances. Because of its lack of persisten
bility, it will be useful only during prototyping, early development, and early
This doesn’t mean you should dismiss it out of hand. Because of its charact
(fast, temporary storage), a model that wishes to employ an optimization schem
use the HashtableModel as a caching system. The HashtableModel could be

373

recently used cache, moving the objects out of the cache down to persistent storage
as time and/or the optimization strategy permits.

HashtableModel is also the easiest to understand, since there is no mapping of
Java objects to persistent storage object representations. Because the Hashtable is the

BMS-
 mimic
 models

shtable

ble for
Mail .
 Hash-
shtable
ager

e as an
ust be

ecution

dancy.
s under
ployee
de and
cessful

 it were
is saved

ine the
rs.

Neward14_06_12.fm Page 373 Tuesday, June 13, 2000 12:14 PM
EXAMPLE: HASHTABLEMODEL

persistent layer, no translation to the persistent layer (as we will see with RD
Model) is necessary. This in turn means that the HashtableModel can closely
the model for the Business Objects layer, which may or may not be true for other
requiring mapping or translation.

The code for HashtableModel can be found in HashtableModel.java.

14.1.1 Overview

The core of the HashtableModel comes from a collection of java.util.Ha
objects stored as private members of the class:

public class HashtableModel

implements IEmployeeModel

{

// . . . De tails omitted for the moment

// Internal members

private Hashtable m_persons = new Hashtable();

private Hashtable m_employees = new Hashtable();

private Hashtable m_managers = new Hashtable();

private Hashtable m_positions = new Hashtable();

private Hashtable m_departments = new Hashtable();

}

Observant readers will note a couple of curious points. First, there is no Hashta
the contact information types—IContactInfo , IPhone , IAddress , and IE
This is because in the HashtableModel, the IPerson /Hashtable type (called
tablePerson) itself can store these instances. Secondly, there are three Ha
instances for persons, employees, and managers. This means that a given IMan
type (called HashtableManager) must be stored in all three Hashtables—onc
IPerson , once as an IEmployee , and once as an IManager . If managers m
employees, and employees must be persons, couldn’t the system save a bit in ex
and omit some redundancy if only one Hashtable stored all three types?

The answer is complex. Yes, it would prevent a certain amount of redun
Yes, this in turn would save execution time. However, grouping all three type
one umbrella (as Persons) would make it more difficult to extract one as an Em
or Manager. Consider that an operation such as findAllManagers involves the co
would have to iterate over all Persons in m_persons , testing each one (via a suc
cast to an IManager or some other HashtableModel-specific method) to see if
an IManager type, and, if so, store it in the return array. What execution time
by storing such in one Hashtable is now lost.

Before we delve too deeply into the HashtableModel class, let’s exam
actual Hashtable types that the HashtableModel will be handing back to calle

ODELS

14.1.2 HashtablePerson, HashtableEmployee, HashtableManager

In the HashtableModel, we create one class for each of these types. Because every
employee is a person, and every manager is an employee, we use inheritance to help
maintain that relationship:

 of the
N—as
del, all
lf, with
hone ,
htable-

sses do
. Hash-
ers may
 would
olutely
asses as

ethod
htable-
t of the
erence,
e.
ntation
ntation

he object
what un-
nd Enu-

Neward14_06_12.fm Page 374 Tuesday, June 13, 2000 12:14 PM
374 CHAPTER 14 BUSINESS OBJECT M

class HashtablePerson
implements IPerson

{
// . . .

}
class HashtableEmployee extends HashtablePerson

implements IEmployee
{

// . . .
}

class HashtableManager extends HashtableEmployee
implements IManager

{
// . . .

}

HashtablePerson holds no real mysteries. It holds one String member for each
four basic attributes of a Person—first name, middle name, last name, and SS
well as a Vector1 for contact information. Remember, in the Hashtable mo
IContactInfo instances are stored directly within the Person instance itse
no “external” storage involved. This means the methods addAddress , addP
and addEMail add the created HashtableAddress, HashtablePhone, and Has
EMail instances directly to the HashtablePerson’s m_contactInfo member.

Note that the HashtablePhone, HashtableEMail, and HashtableAddress cla
not have constructors other than the no-arg version that sets all members to null
tablePerson appears to have direct access to the members of these classes, and read
wonder why, after all the work I’ve undertaken to preserve encapsulation, I
choose to break it here. The truth is that while encapsulation between layers is abs
necessary, encapsulation within a layer, especially within such tightly coupled cl
those inside a data-access model, can be counterproductive. In truth, either m
(encapsulated or not) can be used within the model. HashtablePerson, Has
Employee, and HashtableManager all employ full encapsulation, while the res
classes within the HashtableModel do not. Within this model, it makes little diff
but inside of other models (most notably the RDBMSModel), this may chang

HashtableEmployee extends HashtablePerson, in order to reuse its impleme
of the methods that IEmployee inherits from IPerson . This is an impleme

1 Normally, in a Java2-centric system, I would use the new Collections classes and APIs to do t
storage and manipulation; however, because a large number of Java developers still seem some
comfortable with the Collections API, I’ve used the “old” collection classes and APIs (Vector a
meration, specifically) in the implementation.

375

decision only—if it made more sense to have HashtableEmployee define its own ver-
sion of these methods, it could do so without clients’ knowledge. So long as Hash-
tableEmployee fully implements every method of IEmployee , clients’ requirements
are fully met.

e holds
osition
 don’t,

hod of

-
gic will
es, and
rack of
n, one

, which
s logic.
ethods
attern,
 actual
o make
s logic,

lemen-

 simple
within

Neward14_06_12.fm Page 375 Tuesday, June 13, 2000 12:14 PM
EXAMPLE: HASHTABLEMODEL

HashtableEmployee stores a reference to the IPosition that this employe
as the internal member m_position . We could have stored it as a HashtableP
had we needed access to any special methods of HashtablePosition; because we
it makes no difference to store it as an IPosition or a HashtablePosition.

Also note a tiny bit of business logic inside the setSalary met
HashtableEmployee:

public void setSalary(int salary)

throws BusinessLayerException, IllegalSalaryException
{

if (salary > getPosition().getMaxSalary())
throw new IllegalSalaryException("Max salary is " +

getPosition().getMaxSalary());

m_salary = salary;

}

If the proposed salary is greater than the employee’s position allows, an IllegalSalary
Exception is thrown. This a bit dangerous, since it means that this business lo
need to be reimplemented in every model class we create. For only a few class
just a little logic, this is manageable, but without careful monitoring, keeping t
this across all classes could quickly spiral out of control. Should that happe
potential alternative is to create an abstract base class, AbstractEmployeeModel
contains no data-storage mechanism but simply implements just this busines
Model classes would then extend this AbstractEmployeeModel, calling up to its m
wherever convenient. Another approach would be to make use of a Bridge p
with the business logic in the Abstraction or RefinedAbstraction class, and the
implementation residing in the ConcreteImplementor. If your system plans t
use of multiple models, this is the better approach; it centralizes the busines
yet still allows the implementation to vary from model to model.

HashtableDepartment, HashtablePosition, and the various Hashtable imp
tations of the contact information classes are similarly coded.

14.1.3 HashtableModel: Creating objects

Creating objects within the HashtableModel (listing 14.1) is conceptually as
as calling new, storing the created object into the corresponding Hashtable
HashtableModel, and returning the newly created object to the caller.

/**
* Create IPerson object

*/

Listing 14.1 Code for creating object with HashtableModel

ODELS

public IPerson createPerson(

String firstName, String middleName, String lastName,

String ssn)

throws BusinessLayerException, DuplicateObjectException

{

Neward14_06_12.fm Page 376 Tuesday, June 13, 2000 12:14 PM
376 CHAPTER 14 BUSINESS OBJECT M

if (m_persons.get(ssn) == null)

{

HashtablePerson person =

new HashtablePerson(firstName, middleName,

lastName, ssn);

m_persons.put(ssn, person);

return person;

}

else

{

throw new DuplicateObjectException();

}

}

/**

* Create IEmployee object

*/

public IEmployee createEmployee(

String firstName, String lastName, String middleName,

String ssn, IPosition position, int salary)

throws BusinessLayerException, DuplicateObjectException

{

if (m_employees.get(ssn) == null &&

m_persons.get(ssn) == null)

{

HashtableEmployee employee =

new HashtableEmployee(firstName, lastName,

middleName, ssn, position, salary);

m_persons.put(ssn, employee);

m_employees.put(ssn, employee);

return employee;

}

else

{

throw new DuplicateObjectException();

}

}

/**

* Create IEmployee from IPerson

*/

public IEmployee createEmployee(IPerson person,

IPosition position, int salary)

throws BusinessLayerException, DuplicateObjectException

{

377

if (m_employees.get(person.getSSN()) == null)

{

HashtableEmployee employee =

new HashtableEmployee(person.getFirstName(),

person.getLastName(),

s going
 exists
 name,
ct, and

rson
on and
dividu-
ered a
 array

e, then
 taking
mote”

to have
ethod,
bjects.
here a
s may

replac-
for the

ghtfor-
 appro-

Neward14_06_12.fm Page 377 Tuesday, June 13, 2000 12:14 PM
EXAMPLE: HASHTABLEMODEL

person.getMiddleName(),

person.getSSN(), position, salary);

m_persons.remove(employee.getSSN());

m_persons.put(employee.getSSN(), employee);

m_employees.put(employee.getSSN(), employee);

return employee;

}

else

{

throw new DuplicateObjectException();

}

}

Let’s take these one at a time, although there’s nothing complicated in what’
on here. The createPerson method first verifies that no object already
within the m_persons Hashtable (to prevent duplication), then takes the first
middle name, last name and SSN fields, creates a new HashtablePerson obje
stores it in m_persons before returning it.

The createEmployee method comes in two flavors, one taking an IPe
object (make an Employee out of this Person), the other taking all of the Pers
Employee field data as parameters. In the version that takes all of the fields in
ally, if such an individual already exists in the m_persons array, it’s consid
DuplicateObjectException. Why not simply take the Person in the m_persons
and “promote” them to an Employee?

My reasoning is simple: if the Person should be promoted to an Employe
the client should be calling the second version of createEmployee (the one
an IPerson object as a parameter). If we were to allow the first version to “pro
a Person found in the system already to an Employee, then there’s no reason
both versions of the method. Alternatively, if we were to strike the second m
there would be no way of explicitly promoting Person objects to Employee o
In this particular system, nothing more than creating an Employee object w
Person object once stood is required. However, more sophisticated system
require different processing (for example, removing the old Person object and
ing it with the new Employee object, and so on). The same argument goes
createManager method.

The createDepartment and createPosition methods are strai
ward. Merely create the appropriate HashtableModel object, place it within the
priate Hashtable inside the HashtableModel, and return it to the caller.

ODELS

14.1.4 HashtableModel: Finding objects

Once objects have been created, we need implementations that know how to find
particular ones or retrieve the entire set of objects from the model. The Hashtable-
Model will suffer most in this area, since the Hashtable implementation from Java

e entire
me, for
 match

del, be
ct, sim-
ents to
e apply
 which
diately

Neward14_06_12.fm Page 378 Tuesday, June 13, 2000 12:14 PM
378 CHAPTER 14 BUSINESS OBJECT M

doesn’t allow for anything other than retrieval-by-key, or else iteration over th
set. This means that retrieving a set of objects (finding all Persons by last na
example) will require iteration over the entire set, returning only those which
the criteria.

/**

* Query for all Persons by last name

*/

public IPerson[] findPersonsByLastName(String lastName)

throws BusinessLayerException

{

// Filter out only those Persons with the given last

// name

Vector tmp = new Vector();

for (Enumeratio n e = m_persons.elements();

e.hasMoreElements();)

{

IPerson person = (IPerson)e.nextElement();

if (person.getLastName().equals(lastName))

tmp.addElement(person);

}

// Return the collection as an array of IPerson

IPerson[] retArray = null;

if (tmp.size() > 0)

{

retArray = new IPerson[tmp.size()];

for (int i=0; i<retArray.length; i++)

retArray[i] = (IPerson)tmp.elementAt(i);

return retArray;

}

else

return null;

}

The queries themselves should, as with everything else in the HashtableMo
straightforward and simple. For those methods looking to return all of some obje
ple iteration over the contents of the corresponding Hashtable, copying the elem
an array to return is enough. For those methods looking to apply some filter, w
the filter and add the current element only if the filter passes. The only method
breaks this model (slightly) is findRootDepartment() , which returns imme
as soon as it finds a Department object with no parent Department.

379

14.1.5 HashtableModel: Removing objects

And, as you would expect, removing objects from the HashtableModel is as straight-
forward as it was to create them:

 object
stion.
 Hash-
 (Con-
ind, or
e/find/
e layer,
 Hash-

ge sys-
restric-
ores all
oupled
ability,

equires
 other

sockets

Neward14_06_12.fm Page 379 Tuesday, June 13, 2000 12:14 PM
EXAMPLE: HASHTABLEMODEL

/**

* Remove a Person from the system

*/

public void removePerson(IPerson person)

throws BusinessLayerException,

IntegrityConstraintException,

UnknownObjectException

{

m_persons.remove(person.getSSN());

}

/**

* Remove an Employee from the system

*/

public void removeEmployee(IEmployee employee)

throws BusinessLayerException,

IntegrityConstraintException,

UnknownObjectException

{

m_employees.remove(employee.getSSN());

m_persons.remove(employee.getSSN());

}

Because we’re dealing with transient, in-memory storage systems only, removing an
is as simple as calling the Hashtable.remove() method with the object in que

Notice that there are no methods for creating, finding, or removing the
tableModel contact information classes; this is taken care of in the Person class
tactInfo is associated directly with Person), so it is not necessary to create, f
remove here. This does not, however, force us in this implementation to creat
remove those objects in Person. In fact, thanks to the Business Object Interfac
we could do all creation, location and removal of those objects from within the
tableModel implementation itself.

14.1.6 Conclusion

As tempted as we might be to make use of the HashtableModel as a basic stora
tem, HashtableModel suffers from serious flaws that prevent its use without
tion. The key problem is its in-process design; because the Hashtable which st
the objects exists nowhere outside this process, it is inherently unshareable. C
with the fact that HashtableModel lacks any form of communications cap
HashtableModel doesn’t work well by itself.

If HashtableModel is intended as the central storage for a system, then it r
the ability to communicate with other processes (or rather, the ability to allow
processes to communicate with it). This implies the use of RMI, CORBA, or

ODELS

to permit such communication. This is easily accomplished, but requires more effort;
is it really worth it? Doing so would start to encroach on the basic aspects of a light-
weight RDBMS, such as InstantDB, or a pure Java RDBMS, like Cloudscape.

HashtableModel works well in conjunction with other models, such as the
ributed
dial-up
), local
 pulled
, when
mport/
m one

e time.
 a rela-
 driver,

red, in
sted in
rtment

hin an
 a spe-
a is no

e in its
ke cre-
e with
atabase
easure

of APIs

 indus-
data, is
re built
k with,
ient to

Neward14_06_12.fm Page 380 Tuesday, June 13, 2000 12:14 PM
380 CHAPTER 14 BUSINESS OBJECT M

RDBMSModel, as a cache or local object storage facility. For example, in a dist
system with noncontinuous connectivity (perhaps a local client which uses a
connection to periodically update its local cache of data and send updates
changes can be stored into a HashtableModel. Upon update, the objects are
from the HashtableModel and updated against the central model. Alternatively
coupled with Serialization, the HashtableModel can provide a simplistic i
export facility. (Both ideas presume some sort of ability to shuffle objects fro
Model instance to another.)

14.2 EXAMPLE: RDBMSMODEL

We’ll now examine the RDBMSModel, the model likely to be in use most of th
As its name implies, this model is the one used to manipulate data stored in
tional database, using JDBC to do the actual communication to the RDBMS
whatever that may be.

This approach will be the one most likely used for a variety of reasons:

• The data the application needs to use or have access to may already be sto
its own schema, within a relational database. The company isn’t intere
migrating its data to another data-storage system. So, whether the IT depa
likes it or not, it’s stuck with using an RDBMS.

• Even if the data the proposed application uses isn’t already stored wit
RDBMS, the company may have standardized its data-storage systems on
cific RDBMS vendor/platform. Again, the decision where to store the dat
longer open to question—the data will be stored in the RDBMS selected.

• RDBMS systems have a wide variety of third-party tools available to eas
development and administration. Reporting tools like Crystal Reports ma
ating ad hoc reports simple. Database wizards such as those that com
Microsoft Access make the prototyping and subsequent engineering of d
schema easier. And ODBC-like single-interface engines provide a certain m
of portability across vendor systems to allow developers to learn one set
and have their code port across all platforms.

• Data warehousing has become the latest hot buzzword in the data-storage
try. Building a data warehouse, a final repository for all of the company’s
fast becoming an industrywide project. Because most data warehouses a
on top of the relational model, and because many in-house projects wor
around, or directly on top of the company’s data warehouse, it is conven
stick with the relational model for data storage.

381

Fortunately, due to the vendor-independent nature of JDBC, any database system
can be used as the final storage system for the RDBMSModel, so long as we have a
JDBC driver for it.

 mix a
we are
 only it

lational
menta-
-based,
omises
 a pure

tomati-
d tools
l map-

ma can
Worse,
ing an

explicit

y hand
pattern
attern

White-
d Jens

t could
e ratio-
, I will

ophical
 is not
nstead,
do not.

 L. Kerth

chmann

Neward14_06_12.fm Page 381 Tuesday, June 13, 2000 12:14 PM
EXAMPLE: RDBMSMODEL

14.2.1 RDBMSModel: Storing Business Objects in an RDBMS

The RDBMSModel inherently faces a clash of opposing forces: it attempts to
relational-ordered view of the world and an object-ordered view. In effect,
mapping classes to tables, objects to rows, and object members to columns. If
were that easy.

This blending of the two, called an object-relational model, or an object-re
mapping layer or model, leads to problems at both the design and the imple
tional levels. Because the model is neither all object-based, nor all relational
trade-offs within each must be made with an eye toward the other. These compr
can, in turn, lead to lesser performance or more awkward manipulation than
model of either form would.

Numerous tools, both commercial and freeware, exist that attempt to au
cally take care of this object-to-relational mapping. Unfortunately, automate
cannot accommodate all necessary design forces in creating this object-relationa
ping layer. For example, most automated tools assume that the database sche
be modified to fit the object model, which is untrue more often than not.
many databases are deliberately denormalized for better performance, and ask
automated tool to recognize the relationship between two tables that have no
relationship is asking the impossible.

Instead, many of these object-relational layers must be created and coded b
by system designers and architects. In fact, as might be expected, numerous
languages and papers talk directly about this topic: the “Crossing Chasms: A P
Language for Object-RDBMS Integration” paper by Kyle Brown and Bruce G.
nack,2 or the “Accessing Relational Databases” paper by Wolfgang Keller an
Coldewey3 are two examples.

Because designing and developing an object-relational layer is a subject tha
comprise an entire book in and of itself, I’m not going to spend a lot of tim
nalizing or justifying the decisions I’ve made in the RDBMSModel here. Instead
focus on the specific implementational needs of the model and leave the philos
design decisions to be discussed in other forums. The implementation here
intended as a one-size-fits-all design approach—no such silver bullet exists. I
examine this code critically, deciding for yourself which parts work, and which

2 Pattern Languages of Program Design 2 (ed. by John Vlissides, James O. Coplien, and Norman
(Addison-Wesley 1996), pp. 228–238

3 Pattern Languages of Program Design 3 (ed. by Robert Martin, Dirk Riehle, and Frank Bus
(Addison-Wesley 1997), pp. 313–343

ODELS

14.2.2 Overview

The basic SQL schema can be found as a .SQL file on the publisher’s web site; it
defines nine tables—person, employee, manager, manager_employees, dept., position,
address, email, and phone. In this database, just about every class models into a stand-

pted to
chema

er and
e table
 report
model-
nships

eparate
d a for-
parent

ctive—
t really
e rela-

in, this
d with-

bitrary
mns to
ng two
rguing
ill be,

size or

of any
f used,
 of col-
Model.
 in this
ork on
t of the

e over-
 of the

Neward14_06_12.fm Page 382 Tuesday, June 13, 2000 12:14 PM
382 CHAPTER 14 BUSINESS OBJECT M

alone table, using integers for primary keys on each table. I deliberately attem
keep the database as simple as possible. However, a few notes, about how the s
matches up against the class model, are in order:

• The manager_employees table is a link table to tie together manag
employee instances. We could have placed a foreign key in the employe
linking against the manager table, but it’s possible that an employee could
to more than one manager (the dotted-line on the organization chart). By
ing this relationship as a separate table, we allow for many-to-many relatio
between Managers and Employees.

• When I first began to work with this model, ContactInformation was a s
table, and each of the derived class tables (address, email, and phone) hel
eign key to the corresponding row in contact_info. However, it became ap
fairly quickly that this wasn’t going to work well from the object perspe
the SQL to find all ContactInformation for a given Person started to ge
ugly. I chose instead to denormalize the ContactInfo-Email/Address/Phon
tionship, and propagate the description field to each individual table. Aga
is the power of the Façade; these decisions can be made and later change
out having to break any client code.

• Database designers may take issue with the fact that I’ve defined an ar
integer as my primary key, with no indexes or constraints using other colu
prevent logical duplication. For example, nothing prevents me from havi
Person rows in the database with unique IDs, but identical SSNs. I’m not a
that such indexes or constraints aren’t necessary; in fact, they are, and w
when using an object-relational layer in a system of even the smallest
complexity. I leave them out here just for simplicity’s sake.

• Good database performance tuners will immediately note the lack
indexes on these tables. This is a database-implementation issue that, i
will be well-shielded from the client; whether or not a column (or group
umns) is indexed will be completely opaque to the user of RDBMS
Again, remember, one of the advantages of encapsulating the database
manner is to allow for parallel development—database gurus can w
database tuning and performance long after (or during) the developmen
client code.

Part of supporting the object-relational approach is supporting the databas
head—things like establishing the database connection. Look briefly at some
helper methods in RDBMSModel that weren’t necessary in HashtableModel:

383

public RDBMSModel(Connection conn)

{

s_connection = conn;

}

 to be
use for
o use if
 within
DBMS-

e, from
mining

n itself,
ng pre-
C con-
Model

a JDBC
retriev-
suming
ll three

her the
antics

ing the
orce us
 effort,
atabase

lient to
e user’s
Model

Neward14_06_12.fm Page 383 Tuesday, June 13, 2000 12:14 PM
EXAMPLE: RDBMSMODEL

public static Connection getConnection()

{

return s_connection;

}

private static Connection s_connection = null;

The RDBMSModel constructor expects a JDBC java.sql.Connection object
passed in. This allows clients to decide precisely which database they wish to
storage and retrieval of these objects. It might be marginally easier for clients t
the knowledge of the database driver, username, and password were hard coded
the RDBMSModel code, but doing so would limit the functionality of the R
Model in a number of ways:

• No vendor-independence
As it stands, RDBMSModel will work with any JDBC-compliant databas
Oracle to IDB. This allows RDBMSModel clients flexibility in deter
which database to use for storage.

• Single-instance restrictions
If RDBMSModel were to embed the database connection knowledge withi
clients would be unable to open multiple connections. As it stands, nothi
vents a client from instantiating one RDBMSModel around a JDBC-ODB
nection to an Access database on a network sharepoint, another RDBMS
around an Oracle JDBC driver to the corporate data warehouse, a third to
IDB driver pointing to the local machine, and using all three when storing/
ing objects. This achieves a crude form of mirroring and fault-tolerance, as
the client takes care to preserve transactional semantics (only update when a
can update, and so forth).

• Home-grown security model
Most database vendors implement user-level security permissions at eit
database-object or database-instance level. If database-connection sem
were embedded within the application, this would prevent us from us
database’s own security model for user-validation and permissions, and f
to implement our own security/validation model. Why go to the extra
when we can let the DBAs define who gets to see what, and just let the d
itself enforce it?

By requiring the java.sql.Connection object to be prebuilt, we force the c
perform a relatively trivial task—create the appropriate JDBC driver, obtain th
login and password, and connect to the database. This removes from RDBMS
the need to make these assumptions up front.

ODELS

Critics will argue that this approach violates encapsulation. Clients need to know
something about the RDBMS in order to be able to use it, instead of being able to just
use IEmployeeModel methods without knowing or caring what it uses underneath.
To a certain degree, that’s true—at the time the RDBMSModel is constructed, a

in that
already
present
Model

er and
DBMS
ultiple
r, then
l over-
t. This
re the
 which
m, this
class in
ion for

backs.
er per-
e. This
d calls,

 across
classes.

anager
system
ce rela-
address
. If we
le, and
rts per-
eving a
 but in
us. For
special

Neward14_06_12.fm Page 384 Tuesday, June 13, 2000 12:14 PM
384 CHAPTER 14 BUSINESS OBJECT M

java.sql.Connection object needs to be ready and waiting. However, I mainta
whatever code (be it a Factory Method, Abstract Factory, or Singleton Pattern)
knows that it wants to create an RDBMSModel. If this knowledge is already
at that time, then obtaining a Connection object and passing it into the RDBMS
constructor is not violating encapsulation any more than it already was.

Once inside the RDBMSModel constructor, we store it in a static memb
create a public static method, getConnection , to retrieve it for use in the R
classes. A few paragraphs ago, I stated that I wanted to be able to use m
RDBMSModel instances. If I store the Connection instance in a static membe
I can’t use multiple RDBMSModel instances, or the second constructor wil
write the contents in the static member, losing the first’s Connection objec
is done deliberately, to contrast the approach in HashtableModel (whe
HashtableDepartment contains a reference back to the HashtableModel with
it is associated) with the Model of our object. Again, in a production syste
reference to the RDBMSModel would need to be spread to each and every
the RDBMSModel system (since all of the classes need to get at the Connect
this RDBMSModel).

This shared Connection object offers a few advantages as well as draw
Because we’re using one Connection over and over again, we should see bett
formance than if we were to open and close Connections each time we used on
also allows us to share transactional semantics across object/tables and metho
should we desire to do so.

RDBMSModel contains other helper methods that we will cover as we run
them as we go over the RDBMSModel Business Object Interface-implementing

14.2.3 RDBMSPerson, RDBMSEmployee, RDBMSManager

We start, as we did with HashtableModel, by looking at the Person/Employee/M
relationship. One of the preeminent drawbacks with a relational database
comes from the fact that relational databases do not model object inheritan
tionships well. There have been a number of patterns written specifically to
this issue, mostly centering on the trade-off of purism versus performance
model the relational schema in a purist fashion, each class is its own tab
derived class tables hold foreign keys into base-class tables. However, this hu
formance—each table must be joined with any parent class tables when retri
derived type. The alternative is to model each derived class as its own table,
that instance, we’re losing the commonality a base class is supposed to give
example, unique constraints on one derived class table would not (without
database programming) apply to other derived class tables.

385

In this, admittedly simple, schema, each class receives its own table. I choose pur-
ism over performance because I can—I’m not concerned with performance of this
application. As with any production system, part of the test cycle must include per-
formance testing to determine if tuning or reengineering of the schema needs to hap-

ne and
ing the
0 con-

e), and
quiring

t more
This is
rk than

Neward14_06_12.fm Page 385 Tuesday, June 13, 2000 12:14 PM
EXAMPLE: RDBMSMODEL

pen. Because we’ve hidden the actual SQL from clients of this model, we can tu
reengineer the database as much as desired without breaking (or even modify
semantics of) client code. Should this system suddenly have to support 100,00
current users, modifications can be made to these classes (and others in this fil
any existing applications would run flawlessly with the new changes without re
a line of code to be changed.

Now, let’s dive into the code. We’ll start with RDBMSPerson. There’s a lo
to the RDBMSPerson class than there was to the HashtablePerson class.
expected, since storing objects in relational databases requires much more wo
storing the in-memory object to a Hashtable:

class RDBMSPerson

implements IPerson

{

RDBMSPerson(int personID)

throws BusinessLayerException

{

try

{

// Retrieve Person info by ID

Connectio n c = RDBMSModel.getConnection();

Statement stmt = c.createStatement();

ResultSet rs = stmt.executeQuery(

"SELECT ID, f_name, m_name, l_name, ssn " +

"FROM person WHERE person.i d = " + personID);

if (rs.next())

{

m_id = rs.getInt("ID");

m_firstName = rs.getString("f_name");

m_middleName = rs.getString("m_name");

m_lastName = rs.getString("l_name");

m_SSN = rs.getString("ssn");

}

else

throw new BusinessLayerException("Person ID " +

personI D + " not found");

}

catch (Exception ex)

{

ex.printStackTrace();

throw new BusinessLayerException(ex);

}

}

ODELS

Note that the constructor expects an integer representing the Person’s primary key—the
PersonID field—so as to be able to load the data from the person table in the RDBMS.
We know that any constructor call that comes in on Person is a look-up, because if the
system wanted to create a Person, it would use the creational methods on the RDBMS-

DBMS-
ployee

te, and
tement
he rela-

ods all
simple,
al class

Neward14_06_12.fm Page 386 Tuesday, June 13, 2000 12:14 PM
386 CHAPTER 14 BUSINESS OBJECT M

Model implementation of the IEmployeeModel interface (covered later). In R
Person, the m_id field is made package-friendly, so that others (such as RDBMSEm
and RDBMSManager, as well as RDBMSModel itself) can access, manipula
work with this value. This is also the principal predicate for almost every SQL sta
in the class. Everywhere we want to retrieve, modify, or remote a Person from t
tional database, we need to specify which one by the integer primary key.

public String getFirstName()

throws BusinessLayerException

{

return m_firstName;

}

public void setFirstName(String fName)

throws BusinessLayerException

{

m_firstName = fName;

commit();

}

The get /setLastName , get /setMiddleName , and get /setSSN meth
look similar to the get /setFirstName methods, above. The get case is
but notice that the set version not only traps the changed value into the loc
member of the same name, but calls the commit method:

public IContactInfo[] getContactInfo()

throws BusinessLayerException

{

Vector tempVector = new Vector();

try

{

// First grab all Email instances

//

Connectio n c = RDBMSModel.getConnection();

Statement stmt = c.createStatement();

ResultSet rs = stmt.executeQuery(

"SELECT ID " +

"FROM email WHERE person_id_f k = " + m_id);

while (rs.next())

{

int email_id = rs.getInt("ID");

IEMai l e = new RDBMSEMail(email_id);

tempVector.addElement(e);

}

rs.close();

387

// Next grab all Phone instances

//
rs = stmt.executeQuery(

"SELECT ID " +
"FROM phone WHERE person_id_f k = " + m_id);

Model,
plicitly
mation
ardless
rselves.
 by the
 at the

eve the
lts in a
edback

Neward14_06_12.fm Page 387 Tuesday, June 13, 2000 12:14 PM
EXAMPLE: RDBMSMODEL

while (rs.next())
{

int phone_id = rs.getInt("ID");
IPhon e p = new RDBMSPhone(phone_id);

tempVector.addElement(p);

}
rs.close();

// Next grab all Address instances

//
rs = stmt.executeQuery(

"SELECT ID " +
"FROM address WHERE person_id_f k = " + m_id);

while (rs.next())
{

int addr_id = rs.getInt("ID");
IAddres s a = new RDBMSAddress(addr_id);

tempVector.addElement(a);

}
rs.close();

// Return the whole batch

IContactInfo[] retArray = new IContactInfo[tempVector.size()];
for (int i=0; i<retArray.length; i++)

retArray[i] = (IContactInfo)tempVector.elementAt(i);

return retArray;

}
catch (Exception x)

{
x.printStackTrace();

throw new BusinessLayerException(x);
}

}

Contact information becomes more complex with Person in the RDBMS
because the relationship between Person and contact information is more ex
captured within the schema. Were this an object database, the contact infor
related to this Person would simply be retrieved along with the Person object (reg
of the efficiency of doing so). In an RDBMS, however, we must manage this ou
In the above case, the contact information isn’t retrieved until it’s asked for
user—this is a lazy evaluation scheme, and may result in slower performance
time contact information is requested. The alternative, of course, is to retri
information at the time the Person object is constructed, and store the resu
Vector or similar Collection within the Person class. Again, this is where user fe

ODELS

can influence the implementation without changing dependents’ code—because client
code is written to the IPerson interface, and knows nothing about the actual RDBMS-
Person class, we can freely vary the implementation used without blinking an eye.

public void addEMail(String desc, String email)

e new
he user
the risk
 object

Neward14_06_12.fm Page 388 Tuesday, June 13, 2000 12:14 PM
388 CHAPTER 14 BUSINESS OBJECT M

throws BusinessLayerException

{

// Create a new row in the email table

try

{

int emailID =

RDBMSModel.nextDatabaseID("email");

Statement stmt =

RDBMSModel.getConnection().createStatement();

int result = stmt.executeUpdate(

"INSERT INTO email " +

"(ID, person_id_fk, description, email) " +

"VALUES " +

"(" + emailID + ", " +

m_id + ", " +

"'" + desc + "', " +

"'" + email + "')");

if (result < 1)

throw new BusinessLayerException(

"INSERT into database failed");

}

catch (Exception x)

{

x.printStackTrace();

throw new BusinessLayerException(x);

}

}

public void addAddress(String desc, String street, String city,

String state, String zip, String country)

throws BusinessLayerException

{

// . . . snip . . .

}

public void addPhone(String desc, String prefix,

String number, String suffix)

throws BusinessLayerException

{

// . . . snip . . .

}

Here, each of the add methods update the database immediately with th
IContactInfo object’s data; alternatively, we might hang on to it until t
wishes to commit it somehow. Not committing it immediately, however, runs
of near-simultaneous modification of the same Person object, with each
unaware of the other’s changes.

389

public void removeContactInfo(IContactInfo contactInfo)

throws BusinessLayerException

{

try

{

Neward14_06_12.fm Page 389 Tuesday, June 13, 2000 12:14 PM
EXAMPLE: RDBMSMODEL

// Need to determine which ContactInfo instance this is;

// only way to do that is to cast (or getClass())

String tableName = null;

int infoID = 0;

if (contactInfo instanceof RDBMSPhone)

{

RDBMSPhone phone = (RDBMSPhone)contactInfo;

tableName = "phone";

infoID = phone.m_id;

}

else if (contactInfo instanceof RDBMSEMail)

{

RDBMSEMail email = (RDBMSEMail)contactInfo;

tableName = "email";

infoID = email.m_id;

}

else if (contactInfo instanceof RDBMSAddress)

{

RDBMSAddress addr = (RDBMSAddress)contactInfo;

tableName = "address";

infoID = addr.m_id;

}

else

{

// We tried to remove an IContactInfo that doesn't

// come from the RDBMSModel; throw an exception

throw new BusinessLayerException("Not an RDBMSModel" +

" ContactInfo instance : " + contactInfo.toString());

}

Statement stmt =

RDBMSModel.getConnection().createStatement();

int result = stmt.executeUpdate(

"DELETE FROM " + tableNam e + " " +

"WHERE ID = " + infoID);

if (result < 1)

throw new BusinessLayerException(

"DELETE from database failed");

}

catch (Exception x)

{

x.printStackTrace();

throw new BusinessLayerException(x);

}

}

ODELS

Removing contact information is a bit trickier, since we need to determine precisely
what kind of IContactInfo object (Email, Address, or Phone) we need to remove
from the RDBMS, but from there it’s a simple “DELETE” statement in SQL.

// Internal methods

 locally
ing the

 add-

hat the
r; typi-
 digits,
ossible
umeric
 to set

Neward14_06_12.fm Page 390 Tuesday, June 13, 2000 12:14 PM
390 CHAPTER 14 BUSINESS OBJECT M

//

private void commit()

throws BusinessLayerException

{

try

{

Connectio n c = RDBMSModel.getConnection();

Statement stmt = c.createStatement();

int result = stmt.executeUpdate(

"UPDATE person SET f_name='" + m_firstName + "', " +

"m_name='" + m_middleName + "', " +

"l_name='" + m_lastName + "', " +

"ssn='" + m_SSN + "' " +

"WHERE id = " + m_id);

}

catch (Exception ex)

{

ex.printStackTrace();

throw new BusinessLayerException(ex);

}

}

And commit , of course, takes the current values of the internal members (the
cached values retrieved from the database) and stores them to the RDBMS us
usual SQL UPDATE statement.

// Internal members

int m_id;

private String m_firstName;

private String m_middleName;

private String m_lastName;

private String m_SSN;

} // RDBMSPerson

One last interesting tidbit about the RDBMSPerson class shows up in the
Phone() method:

String toDBNumber = RDBMSModel.PhoneToDB(number);

One of the principal concerns regarding any data-storage effort is ensuring t
data is stored in a consistent format. Consider the standard U.S. phone numbe
cally we assume a ten-digit numeric field for number storage (area code, three
prefix, three digits, suffix, four digits). Unfortunately, this doesn’t cover all p
U.S. phone numbers, as many companies use 1-800 numbers with alphan
symbols instead of purely numeric. Consider also the separator character used

391

area code apart from the prefix and suffix—some databases use the dash (-) character,
others use a slash (/). Still others use parentheses around the area code and a dash sepa-
rating the prefix and suffix (as in (800) 555-1212). With so many different ways of
representing a phone number, standardizing its database representation is crucial to

.
l static
on, we
ded us
process

n class,
l. This

e (per-
en any
. If the
 ensure
nished)
rone—
lace to

 under-
in turn
hin the
t into a
 stored

Model
ist as a
, how-

tself.
nt, and
ce code

opriate
cceeds
appro-
w, and
ating a

Neward14_06_12.fm Page 391 Tuesday, June 13, 2000 12:14 PM
EXAMPLE: RDBMSMODEL

allow for any sort of search-by-phone or search-within-area-code functionality
In this system, we pass any input from the client to several RDBMSMode

methods to do the necessary formatting; in the addPhone() method of Pers
call RDBMSModel.PhoneToDB() to translate the String the client has han
into the appropriate database representation before storing it. We reverse the
in the RDBMSPhone code, shown later.

We could, of course, embed this logic directly within the RDBMSPerso
and the reverse logic within the RDBMSPhone, instead of within RDBMSMode
approach suffers for two reasons.

First, if the database representation of the phone number needs to chang
haps we’re adding support for international numbers in a future release), th
code which retrieves, uses, or stores a phone number also needs to be updated
code that does this massaging is scattered across several places, then we need to
(usually through trial-and-error, testing it each time it’s thought the update is fi
that each place gets updated appropriately. This is time-consuming and error-p
if all of the code resides in a single place, programmers need only go to one p
find out what needs to be updated.

Secondly, having these sorts of business rules centralized makes it easier to
stand all of the rules relating to how the data is stored within the database. This
makes migration to another database or, more likely, performance tuning wit
database schema simpler. If clients are calling a central routine to format inpu
common phone-number storage format, changing the code to use a database
procedure instead of doing it in Java code requires no client changes.

This doesn’t mean that this formatting code has to exist inside the RDBMS
class; in fact, good arguments can be made that these sorts of rules should ex
stand-alone class or interface (possibly RDBMSModelRules). For this example
ever, these rules are simple enough to be wrapped in with the RDBMSModel i

RDBMSEmployee, RDBMSManager, RDBMSPosition, RDBMSDepartme
the RDBMS contact information classes all follow a similar model; see the sour
available on the publisher's web site for the EmployeeModel for the details.

14.2.4 RDBMSModel: Creating objects

Creating objects in the RDBMSModel is a two-step process—first, the appr
row(s) in the appropriate table(s) are created within the database. If that su
(indicating that an object by that name or key doesn’t already exist), then an
priate in-memory Java object is created, assigned the ID used to create the ro
returned to the client. The following code shows the details involved in cre
new Position object:

ODELS

/**

* Create IPosition object

*/

public IPosition createPosition(

String title, String desc, int minSalary, int maxSalary)

enerate
 object
irectly

lumns.
he part

next-
e next
ize the
danger
sic for-
Model,
e given

Neward14_06_12.fm Page 392 Tuesday, June 13, 2000 12:14 PM
392 CHAPTER 14 BUSINESS OBJECT M

throws BusinessLayerException, DuplicateObjectException

{

try

{

int posID = nextDatabaseID("position");

Statement stmt = getConnection().createStatement();

int result = stmt.executeUpdate(

"INSERT INTO position " +

"VALUES (" +

posID + ", " +

"'" + title + "', " +

"'" + desc + "', " +

minSalary + ", " +

maxSalary + ", " +

"'')");

if (result > 0)

return new RDBMSPosition(posID);

else

throw new BusinessLayerException(

"Invalid database state; can't insert");

}

catch (SQLException ex)

{

throw new BusinessLayerException(ex);

}

}

Because this schema uses an integer-based primary key approach, we need to g
a sequential counter to produce unique IDs each time a new RDBMSPosition
wishes to be created. Under some database systems, this can be accomplished d
within SQL, such as Oracle’s SEQUENCE types or Access’s AutoIncrement co
However, under other databases, this counter must be managed by hand on t
of the programmer.

Because of this inherent lack of portability, RDBMSModel provides the
DatabaseID() method, which takes the name of the table and returns th
unique ID to use in creating a new row in the table. Again, this is to local
RDBMS-management code within a single place. However, there is another
that developers implementing a scheme such as this need to recognize. The ba
mat of the nextDatabaseID() method, as implemented within RDBMS
uses a SQL “SELECT” statement to retrieve the highest-numbered ID within th
table, increments it, and hands it back:

393

static int nextDatabaseID(String tableName)

throws BusinessLayerException
{

try
{

nd the
del), a
n take
 on the
ill find
ltiuser

ods are
til the

he cur-
o enter
ese cir-

e of a
sallows

able or

ent the

 prefer-
ossible

Neward14_06_12.fm Page 393 Tuesday, June 13, 2000 12:14 PM
EXAMPLE: RDBMSMODEL

// Retrieve the ID
int dbID = 0;

Statement stmt = getConnection().createStatement();
ResultSet rs = stmt.executeQuery(

"SELECT MAX(id) FRO M " + tableName);
if (rs.next())

dbID = rs.getInt("MAX(id)");
else

return 1;

// Increment it and return it

return ++dbID;
}

catch(SQLException ex)
{

throw new BusinessLayerException(ex);
}

}

There is an inherent danger in this approach. In between the “SELECT” a
“INSERT” (which takes place in the appropriate create method of RDBMSMo
new record may be inserted with that same ID before this object’s insert ca
place. This leads to a primary key violation and no small amount of confusion
part of the user. In a single-user system, this is a nonissue, since a single user w
it almost impossible to insert the same type record simultaneously, but for a mu
system, simultaneous inserts, updates, or removals are common.

At first, it might seem that the problem solves itself if the creation meth
marked synchronized, disallowing multiple threads to enter the method un
thread currently in the method exits. Unfortunately, this only carries through t
rent JVM—users on different machines or in different JVMs will be freely able t
the creation method at the same time another user is doing the same. Under th
cumstances, one of three options is available:

• Implement a cross-JVM synchronization system, either by making us
socket-based synchronization construct or a native-code construct, that di
multiple users from entering the “protected” method

• Use database facilities to prevent this sort of simultaneous access, such as t
row locking

• Create a table in the database to perform this sort of tracking and implem
locking mechanism by hand in the database

None of these is particularly attractive, but the second is by far the most
able. Of course, if none of the three works for a given situation, it’s always p

ODELS

to move away completely from the integer primary key approach and move to a data-
column primary key approach. (In this system, Persons would be uniquely identified
by SSN, Departments by name, Positions by name, and so on.) Moving to a data-col-
umn primary key removes the need to generate unique IDs for each row, but makes

herein.
S ven-

 needle

er each
e same

Neward14_06_12.fm Page 394 Tuesday, June 13, 2000 12:14 PM
394 CHAPTER 14 BUSINESS OBJECT M

foreign keys that much more difficult to use.

14.2.5 RDBMSModel: Finding objects

The power of a relational database lies in its ability to find objects stored t
Because SQL specifies only what you’re interested in, not how to find it, RDBM
dors are free to take whatever steps are necessary to efficiently retrieve a single
from the entire million row haystack.

Because the SQL involved in this model is relatively simple, I won’t go ov
and every find… method implemented in the RDBMSModel; all follow th
basic format:

class RDBMSModel
implements IEmployeeModel

{

// . . .

/**

* Query for all Managers

*/

public IManager[] findAllManagers()

throws BusinessLayerException
{

try

{

Statement stmt = getConnection().createStatement();
ResultSet rs = stmt.executeQuery(

"SELECT manager.ID FROM manager");

Vector tempVector = new Vector();

while (rs.next())

{

int mgrID = rs.getInt("manager.ID");

IManage r e = new RDBMSManager(mgrID);

tempVector.addElement(e);

}

// Copy over from the Vector to the array to return

IManager retArray[] = new RDBMSManager[tempVector.size()];

for (int i=0; i<tempVector.size(); i++)

retArray[i] = (IManager)tempVector.elementAt(i);

return retArray;

}

catch (SQLException x)

395

{

x.printStackTrace();
throw new BusinessLayerException(x);

}
}

Where
 of the
te data
anager

into an

f these
e above
rieving
. Then,
uested

, with
tegrity

r. That
res first

Neward14_06_12.fm Page 395 Tuesday, June 13, 2000 12:14 PM
EXAMPLE: RDBMSMODEL

}

This is basic JDBC—issue a SELECT statement, walk through the ResultSet.
this approach differs slightly from traditional JDBC code is in the creation
RDBMSManager (in this case) instance, which in turn retrieves the appropria
from the row given by the primary key integer in mgrID. Each RDBMSM
instance is added to a temporary Vector object, which is then transformed
array of IManager references before being returned.

Implementors concerned about performance (and memory footprint, i
objects grow to be of hefty size) can optimize this without having to change th
code one bit. The RDBMSManager (or whatever) class constructor, instead of ret
the data immediately, can use lazy evaluation and simply store the ID internally
when actually asked for its data, it calls out to the database for the data req
(either all the data at once, or pieces thereof, whichever makes more sense).

14.2.6 RDBMSModel: Removing objects

Removing elements from a relational database is almost as easy as finding them
one exception. Because most relational database systems enforce referential in
(to some degree), rows must be removed from the table in leaf-first orde
means, in our system, that removing a Person instance from the system requi
removal of that Person instance’s contact information rows:

class RDBMSPerson
implements IPerson

{
// . . .

/**
* Remove a Person from the system

*/
public void removePerson(IPerson person)

throws BusinessLayerException, IntegrityConstraintException,
UnknownObjectException

{
try

{
// First remove all contact information associated with

// this Person; if we don't delete these first,
// referential integrity will prevent us from removing

// their corresponding 'person' row
Statement stmt = getConnection().createStatement();

int result = stmt.executeUpdate(
"DELETE FROM email " +

"WHERE email.person_id_f k = " + person.m_ID);

ODELS

stmt.close();

stmt = getConnection().createStatement();

result = stmt.executeUpdate(
"DELETE FROM phone " +

"WHERE phone.person_id_f k = " + person.m_ID);

ws we
odifies

ce rela-

Neward14_06_12.fm Page 396 Tuesday, June 13, 2000 12:14 PM
396 CHAPTER 14 BUSINESS OBJECT M

stmt.close();

stmt = getConnection().createStatement();

result = stmt.executeUpdate(
"DELETE FROM address " +

"WHERE address.person_id_f k = " + person.m_ID);

// Now we can remove the Person row itself

stmt = getConnection().createStatement();

result = stmt.executeUpdate(
"DELETE FROM person " +

"WHERE person.I D = " + person.m_ID);

if (result < 1)

throw new UnknownObjectException();

}
catch (SQLException x)

{
x.printStackTrace();

throw new BusinessLayerException(x);

}
}

}

Notice that we don’t particularly care how many email, address, or phone ro
remove. Persons can have 0 to n of any of these, so a DELETE statement that m
0 rows is nothing exceptional.

Employees and Managers have the same problem, due to their inheritan
tionship with Person and Employee (respectively):

class RDBMSPerson

implements IPerson
{

// . . .

/**
* Remove an Employee from the system

*/
public void removeEmployee(IEmployee employee)

throws BusinessLayerException, IntegrityConstraintException,

UnknownObjectException
{

try
{

Statement stmt = getConnection().createStatement();

int result = stmt.executeUpdate(
"DELETE FROM employee " +

"WHERE employee.I D = " + employee.m_ID);

397

if (result < 1)

throw new UnknownObjectException();

removePerson(employee);

}

catch (SQLException x)

derived
 corre-
lled to

ove-
e code

 exam-
 with,

 lack of

Neward14_06_12.fm Page 397 Tuesday, June 13, 2000 12:14 PM
EXAMPLE: RDBMSMODEL

{

x.printStackTrace();

throw new BusinessLayerException(x);

}

}

/**

* Remove a Manager from the system

*/

public void removeManager(IManager manager)

throws BusinessLayerException, IntegrityConstraintException,

UnknownObjectException

{

try

{

Statement stmt = getConnection().createStatement();

int result = stmt.executeUpdate(

"DELETE FROM manager " +

"WHERE manager.I D = " + manager.m_ID);

if (result < 1)

throw new UnknownObjectException();

removeEmployee(manager);

}

catch (SQLException x)

{

x.printStackTrace();

throw new BusinessLayerException(x);

}

}

}

Because the leaf, in the case of inheritance/foreign-key relationships, is the
class, the derived class (the Employee or the Manager) is deleted first, then the
sponding base-class method (removePerson or removeEmployee) is ca
remove the base-class row.

Other removal operations on RDBMSModel (removeDepartment and rem
Position) are straightforward enough not to merit special discussion; see th
for details.

14.2.7 Conclusion

On the whole, the RDBMSModel above is useful precisely as intended—as an
ple of the object-relational mapping layer—and not much more. To begin
numerous chances for data corruption abound throughout the code due to the

ODELS

transaction support. For example, in the removeManager method, if the DELETE
statement within removeManager succeeds but the removeEmployee call fails,
the Manager row is still gone with no hope for retrieval. Transaction support within
an RDBMS model is critical for robust data storage; fortunately, it is not difficult to

tion of
ployee-
directly
on the

Neward14_06_12.fm Page 398 Tuesday, June 13, 2000 12:14 PM
398 CHAPTER 14 BUSINESS OBJECT M

add using JDBC:

class RDBMSPerson

implements IPerson

{

// . . .

/**

* Remove a Position from the system, with transaction support

* (not found in sample code)

*/

public void removePosition(IPosition position)

throws BusinessLayerException, IntegrityConstraintException,

UnknownObjectException

{

try

{

getConnection().setAutoCommit(false);

Statement stmt = getConnection().createStatement();

int result = stmt.executeUpdate(

"DELETE FROM position " +

"WHERE position.I D = " + position.m_ID);

if (result < 1)

throw new UnknownObjectException();

getConnection().commit();

}

catch (SQLException x)

{

x.printStackTrace();

getConnection().rollback();

throw new BusinessLayerException(x);

}

}

}

Unfortunately, the JDBC Connection class doesn’t inherently permit the no
nested transactions, which would be required to fully support the manager-em
person three-step removal process. In that case, transactions must be opened
using SQL, or by providing special methods knowing when to call commit
Connection object:

class RDBMSPerson

implements IPerson

{

// . . .

399

/**

* Remove an Employee from the system

*/

public void removeEmployee(IEmployee employee)

throws BusinessLayerException, IntegrityConstraintException,

Neward14_06_12.fm Page 399 Tuesday, June 13, 2000 12:14 PM
EXAMPLE: RDBMSMODEL

UnknownObjectException

{

try

{

removeEmployeeNoCommit(employee);

getConnection().commit();

}

catch (BusinessLayerException ex)

{

getConnection().rollback();

throw ex;

}

catch (IntegrityConstraintsException ex2)

{

getConnection().rollback();

throw ex2;

}

catch (UnknownObjectException ex3)

{

getConnection().rollback();

throw ex3;

}

}

private void removeEmployeeNoCommit(IEmployee employee)

throws BusinessLayerException, IntegrityConstraintException,

UnknownObjectException

{

try

{

Statement stmt = getConnection().createStatement();

int result = stmt.executeUpdate(

"DELETE FROM employee " +

"WHERE employee.I D = " + employee.m_ID);

if (result < 1)

throw new UnknownObjectException();

removePersonNoCommit(employee);

}

catch (SQLException x)

{

x.printStackTrace();

throw new BusinessLayerException(x);

}

}

}

ODELS

In the above sequence, if the user calls removeEmployee , it in turn calls into a
private method, removeEmployeeNoCommit , which executes the actual DELETE.
The removeEmployeeNoCommit method then calls into removePersonNo-
Commit , which removes the Person (and all contact info) rows without calling

 calls
. Simi-
n turn

L, but
vendor

usiness
difying
ample,
g a line
ithout

cide to
ly need

wever.
 within
arefully
ection,
ement.
returns
ate-
object.
th situ-
a time.
 to you
ealisti-

isibility
g their
aving

instance
. Beyond

Neward14_06_12.fm Page 400 Tuesday, June 13, 2000 12:14 PM
400 CHAPTER 14 BUSINESS OBJECT M

Connection.commit . If everything returns successfully, removeEmployee
commit on the shared Connection object, and the transaction is committed
larly, removeManager would call removeEmployeeNoCommit , which i
calls removePersonNoCommit , and so on.

The other option would be to handle the commit logic directly within SQ
that lies outside the JDBC API itself. Consult your local SQL guru and database
documentation for more details.

14.3 SUMMARY

Notice how the encapsulation of the actual storage mechanism behind the B
Object layer allows us to mix-and-match the actual implementation without mo
the client code—if you run the OrgTree example from the last chapter, for ex
you can use either the HashtableModel or the RDBMSModel without changin
of code.4 This in turn means that underlying systems can be modified w
requiring significant rewrite to existing applications. Should the enterprise de
go with an OODBMS to replace the conventional RDBMS, for example, we on
pass in an OODBMSModel in place of the RDBMSModel currently in use.

This interface-based approach is not unique to business object models, ho
Sun uses it extensively throughout most of the new Enterprise technologies
Java—JDBC and JNDI are just two of the more obvious examples. If you look c
at the JDBC API, for example, the key classes (ResultSet, Statement, Conn
ResultSetMetaData) are all interfaces that the driver-developer must impl
Then, when your code calls DriverManager.getConnection , the driver
its own class, which implements the Connection API. When your code calls cre
Statement on that Connection, you get back a Statement-implementing
Nothing prevents the driver-developer from handing back the same object in bo
ations—it may be a lightweight driver that only allows a single Statement at
Instead, you, as the user of the JDBC driver, only know that the object returned
is guaranteed to implement the Connection or Statement or ResultSet APIs. R
cally, that’s all you really care about.

There are drawbacks, however. Well-encapsulated systems also reduce v
within them, leaving developers that use the systems out in the cold regardin
internal details. This can be viewed as both a positive and a negative force. H

4 Technically, that’s not true—we need to get the actual IEmployeeModel -implementing
from somewhere, and that usually means a special method or something similar to construct it
that, however, no other code requires modification.

401

well-encapsulated systems means outside developers can’t use knowledge of the sys-
tems’ internals to break future compatibility, but it also means debugging the system
(or, more accurately, the outside developer’s interaction with the system) is much
more difficult. Systems which expose their internals are easier to abuse by outside

mpati-

uld be
cts (in
 devel-
in very

eworks

is level,
 gener-
ds. It’s
es (not
t books

Design

rogram

rogram

Neward14_06_12.fm Page 401 Tuesday, June 13, 2000 12:14 PM
ADDITIONAL READING

developers, but also greatly reduce the future development-with-backward-co
bility of the system as a whole.

In a perfect world, where no software has bugs, complete encapsulation wo
an out-and-out winner. Balancing the needs of developers to debug their produ
the face of potential bugs from vendors’ products) against our needs to insulate
opers from internal details is a fine art. Each organization will need to weigh
carefully on where they draw the line.

14.4 ADDITIONAL READING

• Desmond D’Souza and Alan Cameron Wills, Object, Components, and Fram
with UML (Addison-Wesley, 1999).
This is a great book for any developer involved at the design or analys
with clear focus on building shared business models, as well as providing a
alized approach to developing software that meets (or exceeds) client nee
not a lightweight book, by any means, weighing in at just under 700 pag
counting appendices, index, or glossary), but it’s possibly one of the bes
any developer or architect will find.

• James O. Coplien, Douglas C. Schmidt, Pattern Languages of Program
(Addison-Wesley, 1995).

• John Vlissides, James O. Coplien, Norman L. Kerth, Pattern Languages of P
Design 2 (Addison-Wesley, 1996).

• Robert Martin, Dirk Riehle, Frank Buschmann, Pattern Languages of P
Design 3 (Addison-Wesley, 1997).

C H A P T E R 1 5

Neward15_06_12.fm Page 402 Tuesday, June 13, 2000 12:17 PM
Middleware
15.1 Why distribute? 402
15.2 Distributed object design vs. classic object design 406
15.3 Technologies 410
15.4 Employee middleware models 448
 upon the
 the term,
 with one
biquitous
15.5 Additional reading 461

Like most buzzwords, middleware takes on different meanings depending
speaker, the audience, or the medium. Fundamentally, middleware, as I use
is the means by which two objects, functions, or processes communicate
another. This includes such technologies as RMI, CORBA, JMS, even the u
sics of
 higher
 easier.
 choice

ributed
 versus
 better,

 more)
402

BSD sockets. Some, like sockets, operate at a low level, providing the very ba
communication and nothing else; others, such as CORBA, carry significantly
overhead but make the development of distributed object systems substantially
As with everything else in software development, making the right middleware
means understanding the trade-offs.

15.1 WHY DISTRIBUTE?

It’s a given that distributed object systems are somehow better than nondist
versions. Ask any software developer about the advantages of a distributed system
a nondistributed one; almost every one will say that the distributed version is
but the exact reasons why may be a little fuzzy.

Principally, the decision to distribute an object system is made for one (or
of four reasons: communication, performance, economics, reliability.

403

15.1.1 Communication

One of the most basic reasons to distribute an object system is that of simple commu-
nication: it’s nearly a requirement of modern enterprise systems that they be able to
communicate across a network with other systems in other rooms, buildings, or even

e data,
roach.
ication
evelop-
s a net-
ample).
o local
s other
y years
nished.

design,
 devel-

ributed
cedure
ally, it
 major
egin to
inimize
nics.
are sys-
tranet/
 funda-
ble. To
sk over
ing the
e sticky
is larger
ients all
sort to
to walk
ericans

+ versus

Neward15_06_12.fm Page 403 Tuesday, June 13, 2000 12:17 PM
WHY DISTRIBUTE?

continents. This means that, at a minimum, systems need to be able to shar
either in a traditional client/server mode, or in a more modern object-based app

Once we get beyond the need to share data, however, what more commun
is really necessary? For about ten years, before the advent of Java and the parallel d
ment of CORBA or COM/DCOM, developers quite happily pulled data acros
work using database protocols such as ODBC or its ancestors (Oracle’s OCI, for ex
No object-complexity, just issue an SQL statement, bind the result columns t
variables, and pull the data back. If we needed communication with system
than databases, we did what we’ve been doing on the Internet for about twent
now—open a socket, send a request, get a response, continue until we’re fi
Why the need for distributed object communication?

Partly, the reason stems from the gradual shift in system architecture and
from procedural designs, to more object-centric ones.1 For many years before the
opment of object-centric distributed systems, developers struggled to marry dist
systems like the OSF’s Distributed Computing Environment (DCE) remote pro
call (RPC) system to object-centric languages and environments a la C++. Usu
wasn’t a happy marriage, with even the slightest change on one side causing
heartache and maintenance on the other. It was natural that developers would b
look for object-centric solutions in their distribution technologies in order to m
the marriage pains between the local object model and the distribution mecha

Partly, we want to be able to expose more and more aspects of the hardw
tems across the network to any other system across the network. Consider the in
network most businesses have in place with regard to printing needs. Without a
mental communications layer, being able to share printers would be impossi
print a document, one would have to save the document to disk, walk the di
to the machine to which the printer was connected, access the document us
program that created it, and print it. We ignore, for purposes of simplicity, th
situation one runs into in this sneakernet situation if the document in question
than the size of a floppy disk. Distributed object systems make it possible for cl
across the network to access resources on other systems without having to re
physical means of access. If the print server is down the hall, it’s a simple matter
the document to the print server; if it happens to be in Bangladesh, most Am
are just plain out of luck.

1 Object-centric systems use objects as some part of their architecture. The difference is one of C+
Visual Basic.

EWARE

Partly, however, the need to communicate across systems grows as we begin to
rethink our fundamental distributed designs. Before, when communication was rudi-
mentary and simple, communication needs were similarly simple and unsophisticated.
Before long, however, business needs began to demand that we integrate a variety of

e Sales
tegrate
n than
hances

ibution

alcula-
uted—
 16GB
 power
 mone-

f prime
locally,
, which
are:

ing the

plicates
keep a
 it may
d only
ay only
le. For
econd/

 a hun-
d), the
 loss of
y com-

Neward15_06_12.fm Page 404 Tuesday, June 13, 2000 12:17 PM
404 CHAPTER 15 MIDDL

databases together into a single, virtual database system. Sales data comes from th
database, Inventory comes from the Inventory database, but we still want to in
the two into a unified whole. This requires more sophisticated communicatio
can be accomplished by simple sockets; more sophistication in turn means more c
to break things, if the complexity isn’t buried inside of a communication/distr
technology layer.

15.1.2 Performance

Consider a hypothetical business system which requires the CPU to perform c
tion of prime numbers. Where will these calculations be more quickly comp
on your Pentium-II/233 client workstation, or on a quad-processor 1GB-RAM
RAID-array Pentium-III/450? It should be obvious that the higher computing
on the second machine would lead to faster computation, but there’s a huge
tary cost to putting Pentium-III high-end servers on each individual’s desk.

Now, consider the classic client/server model applied to the calculation o
numbers; if a client wants a particular prime number, instead of calculating it
it instead passes the necessary parameter information over a socket to the server
processes the request and returns the result. The advantages of this approach

• CPU power
The server is likely to be several times more powerful than the client mak
request, meaning that the result will likely be computed that much faster.

• Caching
Because the server is a single entity, and requests coming to it may be du
from previous clients, the server can spend the necessary resources to
cache of most-recently used prime numbers. (For a prime number server,
even precalculate all prime numbers up to some reasonable number, an
calculate primes for any that fall outside of that range.) For a client that m
request three or four numbers per run, this sort of cache would be intolerab
a server, answering up to hundreds of client requests per hour/minute/s
whatever, the cache is far more justifiable.

• Centralized scalability
If the demands on the system grow (say each client now needs to calculate
dred prime numbers per run, instead of the three or four initially require
centralized server can be upgraded to more powerful hardware, with no
performance to the clients. This is a far simpler task than upgrading ever
puter system across the client’s userbase.

405

On top of this, what begins to happen if we introduce a clustered environment
into the local network? If you’re sitting in the office, stand up for a moment and walk
around; notice how many CPUs are currently sitting idle. If you think that the Sales
department is even making use of 5 percent of the total CPU power during the day,

cles are

r is it a
 system
vement
indows
 of the
 CPU’s
nd the

ine we
niques
pany.

reate a
tomate
to each
 create
ne.

xamine
 in the
 super-
an the

achine.
ialized
ponta-

admin-
ith the
n some
d $50

he dis-
ption.

equiva-
ortions
stantly

Neward15_06_12.fm Page 405 Tuesday, June 13, 2000 12:17 PM
WHY DISTRIBUTE?

you’re in for a rude shock. The fact is, billions upon billions of CPU clock cy
wasted every day, just idling, waiting for user input.

What if we could harness all that idle power? The concept isn’t new, no
particularly foreign one. Symantec, for example, introduced a distributed make
in its Symantec C++ product several years ago. More recently, as part of the mo
to break the most recent 128-bit security key, several developers created a W
screen saver that, when the screen saver kicked in, would download a snippet
key to attempt a brute-force crack. Because screen savers only kick in during the
idle moments, the impact of the idle-time processing is minimized to the user, a
idle CPU cycles aren’t lost.

Consider what an enterprisewide version of that could accomplish. Imag
create a distributed job system, using some of the dynamic ClassLoading tech
described in chapter 2, to farm work out to the various idle CPUs in the com
Since most business systems also have a common file-sharing area, we could c
distributed make system, with each CPU building a separate file, or we could au
the distribution of files to client systems by farming out a copy-file-to-here job
machine. In short, if we have 100 machines, each running at 200 MHz, we can
a 20,000 MHz supercomputer by placing a simple clustering server on each o

15.1.3 Economics (clustering/fault-tolerance)

Since we’re talking about the notion of clustering a number of systems, let’s e
the economics of doing so. Presuming we have the 100 machines at 200 MHz
previous section, what would be the cost of purchasing a single 20,000 MHz
computer, assuming such a machine could even be bought? Easily far more th
cost of a hundred machines at approximately $1,500 apiece ($150,000).

Furthermore, consider the cost of maintenance and parts for the above m
Something that high-powered has to be backed by service agreements and spec
parts (not to mention the liquid-oxygen-cooled room it has to sit in, lest it s
neously combust from all the heat generated). Finding qualified personnel to
ister it and service it can also be an expensive proposition. Compare this w
costs of finding a PC-qualified technician and buying off-the-shelf PC parts. I
cases, if a part goes bad, the corporation can simply throw it away and spen
on a new one.

This, of course, assumes that the two approaches (the single-server and t
tributed-cluster) produce equal performance, and that’s not always a safe assum
In many cases, a well-designed distributed object system can outperform an
lently powered single-server system, since it can more effectively “parallelize” p
of the client’s request. The one area where the single-server system will con

EWARE

outperform the distributed version will be in I/O-tight operations, where the overhead
of sending data across the network will outweigh the gains of a distributed approach.

15.1.4 Reliability (clustering/load-balancing)

der the
 1 per-
ns that
 center
eptable
aching

 means
erence?
 all-or-
he load
g unac-
 down,
 either

able to
e com-
ead is

sulting

distrib-
 to call
gerous
s. This
 sit idle
 devel-
Unfor-

d to be
 At any
mplete
a given
it isn’t

Neward15_06_12.fm Page 406 Tuesday, June 13, 2000 12:17 PM
406 CHAPTER 15 MIDDL

Going back to our distributed-cluster versus single-server comparison, consi
necessary downtime in both environments. Assuming that a given system has a
cent downtime, which is actually quite reasonable for many systems, it mea
users will experience complete shutdown 1 percent of the time. For a data
looking to achieve five-nines (99.999%) uptime, this is obviously not an acc
situation. Even if the machine has a 0.1 percent downtime, we’re still not re
99.999 percent uptime.

Assume, in contrast, that a standard PC has a 5 percent downtime. This
that in a 100-machine cluster, five machines will be down at all times. The diff
Users won’t experience any complete shutdown—instead of the single server’s
nothing approach, the distributed-cluster system simply adjusts by moving t
out to the other machines. If the administrators notice that they’re experiencin
ceptable loads on the 100-machine cluster because five machines are constantly
they can add five more machines to pick up the slack without major expense, in
time or money.

15.2 DISTRIBUTED OBJECT DESIGN VS.
CLASSIC OBJECT DESIGN

Adding distribution into an object system is not as simple as making objects
communicate with another process or object within another process. Any tim
munication takes place between two processes, a certain amount of overh
required. If this overhead is negligently ignored during the design phase, the re
system will fail to scale as more and more users are added.

This danger becomes particularly pronounced with RMI and/or CORBA
uted object systems; the ease with which RMI and/or CORBA make it possible
other objects across the software bus can lead developers down a dark and dan
path, where hundreds, if not thousands, of objects are exported for client call
in turn bogs the server down; more and more objects are created, exported, and
while clients mull over their options in front of their own local displays, and
opers are called to the carpet to explain why the system runs so painfully slow.
tunately, developers don’t understand—it ran fine when they tested it….

15.2.1 Stateful vs. stateless

The core problem with distributed object designs is that objects, by nature, ten
stateful beasts. For example, look at an instance of the JDBC Connection class.
given moment, it has an inherent state that affects whether it can or cannot co
certain operations. For example, if the Connection is already connected to
database, calling close closes the connection; under the condition where

407

connected, close should do nothing. Attempting to obtain a Statement instance
when the Connection is closed yields an error or a null Statement, whereas attempt-
ing the same thing with an open Connection yields a good Statement handle. In
short, the Connection instance maintains a state that can be affected by client

 makes
ts. The
tate on
 server
old cli-

ller sta-
 line to
 on the
 might
ne was
one on
ne per-
 on the
 stood

th one,
 he/she
r want.
ller line
ranteed
arantee
nt who
ll those

ample,
’re still

t of the
ctively
s (core
e teller

’t a valid
 support

ateless in
.

Neward15_06_12.fm Page 407 Tuesday, June 13, 2000 12:17 PM
DISTRIBUTED OBJECT DESIGN VS. CLASSIC OBJECT DESIGN

actions, and can in turn affect its behavior during client requests.
As an opposite example, consider the classic HTTP connection—the client

a request, the server fulfills it, sends the response, and the client disconnec
server maintains no state on behalf of the client, and the client maintains no s
behalf of the server.2 The principal benefit of this approach is that the HTTP
is now free to dedicate the socket resource, just recently used on behalf of the
ent, toward answering the request of a new client.

Think of it this way.3 Years ago, when visiting the local bank, each bank te
tion would have its own line, and as a bank patron, you would have to pick a
stand in. If you happened to know the tellers, you might know that the one
right was an experienced, efficient teller, as opposed to the one on the left. You
then choose to stand in the line of the one on the right, even though her li
longer, because you knew she’d be able to handle more people faster than the
the left. If you didn’t know that, you would see the line on the left, with only o
son, and take it. You’d then be forced to wait and watch, as the efficient teller
right handled the four people who would have been in front of you had you
there, along with the three or four that came in after you.

In this particular case, each teller is a stateful entity—the teller can deal wi
and only one, client at a time. The client has the use of the teller for as long as
wishes, until the bank closes, regardless of what the clients behind them think o
If the bank officers were particularly customer-friendly, they might open a new te
to relieve some of the pressure behind the client taking so long, but it’s not gua
that the next client might not do the same thing. In fact, the only way to gu
timely access to each and every client is to have one teller for each and every clie
walks through the bank door, an obvious waste of human resources. What are a
bank tellers going to do when there’s only one person in the bank?

From a software perspective, we have a few advantages the bank lacks; for ex
we can create and destroy tellers as the need demands without concern, but we
left with basic inefficiency. In the average client-server transaction, 95 percen
server’s time is spent idling, waiting for a client request. Even if the server isn’t a
tying up a socket connection to the client, the server object is using resource
memory, if nothing else) that are yielding no productivity. Put another way, th

2 Web gurus will disagree, citing cookies or JSP/ASP Session variables as examples, but this isn
argument. Cookies are always sent as part of each HTTP request, and JSP/ASP Session-tracking
is usually tied to having cookie support on the client. Most JSP/ASP scripts are inherently st
and of themselves, especially if the ASP code uses MTS COM objects (which are also stateless)

3 This analogy originally came from Roger Sessions’ COM and DCOM.

EWARE

is simply standing there, waiting, while you balance your checkbook to see if you need
to look up any additional checks.

A stateless protocol, on the other hand, requires that the client bundle up each
request and send that to the server. Going back to the HTTP protocol, for example,

 client
it must
ecause
st.
cult for
various
e ubiq-
ser has
ng cart
 items,

ject for
e client

sort of
would
ide the
e RMI

alizable
is pre-

ry RMI
object,

Neward15_06_12.fm Page 408 Tuesday, June 13, 2000 12:17 PM
408 CHAPTER 15 MIDDL

the client must send the entire HTTP request to the server, not just part of it. A
can’t, for example, send a relative (to the page it was just on) URL to the server;
send the complete and full URL for the resource it wants. It needs to do this b
the server may have handled a dozen requests since the client last sent a reque

Typically, a stateless protocol will be simpler to implement but more diffi
clients to use. Because the server is now inherently stateless, it can’t track the
stateful information that’s necessary to complete a client request. Consider th
uitous e-commerce shopping cart. Without tracking the existing things the u
placed within the cart, the cart as a server is pointless. Unfortunately, a shoppi
is a poor choice for a stateless protocol; since the server won’t track the cart’s
the client has to.

We can simplify the client-side process by providing an opaque handle/ob
the client to pass in on every call; it’s tedious, but it works, and so long as th
doesn’t see the details:

// Fictitious RMI Shopping Cart example

IShoppingCartServer svr = (IShoppingCartServer)

Naming.lookup(“rmi://host/ShoppingCart”);

// Create opaque token

Serializable clientToken = svr.createToken();

// Add an item to our cart

String itemName = get_item_from_user();

clientToken = svr.addItem(clientToken, itemName);

// Add another item to the cart

itemName = get_item_from_user();

clientToken = svr.addItem(clientToken, itemName);

// Conclude the shopping trip

svr.purchase(clientToken);

As you can see, this is a stateless protocol system using RMI, but any other
middleware (CORBA, JMS, even straightforward sockets-and-Serialization)
work equally well. The key point is that all state information is maintained ins
opaque clientToken Serializable object that gets returned on each RMI call. Th
server maintains all state information for the ShoppingCart inside this Seri
object—which can be anything the server wants it to be, so encapsulation
served, and the client’s only responsibility is to hand it back on each and eve
request to the server. Because the client doesn’t know the precise type of this
encapsulation is preserved.

409

This seems directly contrary to the entire notion of distributed objects; if stateless
protocols are so great, why did the world clamor for distributed objects? It’s definitely
more awkward to use this kind of system; there’s no disputing it. The payoff in this
approach comes on the server side—now that the client is maintaining all state infor-

ndreds
ization
ody of
 server
r-client
 about
forma-

ements
xample
side an
 makes
e. This
ection

 aren’t
r needs
ection

all, the
infinite

r level,
ers that
e, con-
 server
ections
onnec-
closing
to that
doesn’t
tabase,
it, but
ady be
ionally
object.

n set.

Neward15_06_12.fm Page 409 Tuesday, June 13, 2000 12:17 PM
DISTRIBUTED OBJECT DESIGN VS. CLASSIC OBJECT DESIGN

mation, the server is free to provide only one RMI server that can support up to hu
of clients simultaneously. The RMI protocol will provide necessary synchron
inside of the RMI protocol; any further synchronization required within the b
the RMI server implementation can be provided by the RMI server, and this
object can answer dozens of simultaneous requests without further concern for pe
separation. This is almost directly akin to the idea from chapter 4, in talking
Threads and thread synchronization, where it was suggested that per-Thread in
tion be stored within the Runnable or Thread instance itself.

Stateless protocols also suffer from the fact that long-term resource requir
will need to be opened and closed on each client request. In the ShoppingCart e
assume the server wants to store the information about the cart’s contents in
RDBMS. If each client is accessing a different RDBMS, then each time a client
an “addItem ” call on the server, it needs to reconnect to the appropriate databas
act of opening a Connection, performing its operations and closing the Conn
again would seem to be wasteful.

It is wasteful. Because Connection instances aren’t Serializable (and so
capable of being sent back to the client inside the Serializable token), the serve
to store the Connection information in the client’s token, and reopen the Conn
each time the client makes a call to the server. At the conclusion of the RMI c
server then has to close the Connection it just opened, since it can’t hold an
number of Connections open forever.

Alternatively, JDBC 2.0 specifies Connection-pooling at the JDBC drive
which “allows for a single connection cache that spans the different JDBC driv
may be in use. Since creating and destroying database connections is expensiv
nection pooling is important for achieving good performance, especially for
applications.”4 This in turn means that the server can open and close Conn
with impunity, relying on the JDBC driver underneath to maintain a cache of C
tions to frequently used databases to prevent the actual cost of opening and/or
the Connection. If a particular database is used frequently, the Connection
database won’t leave the cache, so opening a new Connection to that database
cost a thing. Or, if a particular client generates a lot of traffic to a particular da
that Connection will be opened the usual way the first time the database is h
each successive hit will require no time to open, since the Connection will alre
in the cache. Either way, high-volume Connections get reused, which is funct
equivalent to maintaining a separate object per client with its own Connection

4 Section 3.6 in docs/guide/jdbc/spec2/jdbc2.0.frame3.html, from the JDK 1.2 documentatio

EWARE

JDBC isn’t the only high connection cost resource a server will need, so we can’t
brush aside all concerns by just waving JDBC Connection Pooling and calling it done.
The server may require access to CORBA object servers, RMI object servers, even stan-
dard socket connections to other servers, none of which (currently) provide any con-

ication
 client,
ID as a
 in, the
. If the
to open
do any-
system.
tateless
, it will
distrib-
bjects.
t state,
 object

, for all
 is usu-
ements

 native
ard IP
se situ-
e more
 access

 layer is
ackage.

ld-style
 realize
nology
f these,
 of the
ssaging

Neward15_06_12.fm Page 410 Tuesday, June 13, 2000 12:17 PM
410 CHAPTER 15 MIDDL

nection pooling. In this case, the server can do as HTTP/WebServer-based appl
servers have done for two years now, which is to establish a session ID for each
and send that session ID back to the client. The server then stores the session
key in a HashTable to the Connection itself, and the next time the client calls
server can retrieve the Connection based on the client’s session ID in the token
resource limits the number of Connections, then the server will most likely want
one Connection and share that among all clients, something it probably had to
way, since it can’t just provide an individual Connection per client in a stateful

Not all distributed object designs will be able to take advantage of the s
protocol approach. As the object system gets more complex and more intricate
become increasingly difficult to maintain a stateless system. As the number of
uted objects grows, so goes the number of dependencies on other distributed o
More dependencies on other distributed objects mean greater need for per-clien
which in turn makes it more difficult (especially when trying to pass distributed
references from one machine to another) to keep the stateless approach. Still
that, in a standard client/server distributed object approach, a stateless system
ally a practical and efficient way to keep server object-implementation requir
to a minimum.

15.3 TECHNOLOGIES

Distributed technologies mainly fall into four camps:

• Raw access
Accessing and using the communications protocol directly; this includes
implementations a la Microsoft’s Named Pipes, Mailslots, and the stand
(TCP/IP and/or UDP/IP) sockets communication stacks. While good for tho
ations requiring low-level access, typically the lower the level one goes, th
work needs to be done in endpoint (client or server) code to maintain and
the low-level communications’ protocol. In Java, the typical choice at this
the Sockets protocol, since it comes pre-implemented in the java.net p

• Remote procedure calls
RPCs operate on the concept of making calls to servers (functions in o
RPCs, or object methods in new-style RPCs, like RMI) without having to
that the call is actually made to a remote process or machine. RPC tech
includes OSF/DCE RPC, Microsoft’s RPC, and Java’s RMI technology; o
RMI is by far the preferred method of RPC in Java, since it comes as part
standard Java distribution. As a subset of the RPC category, however, me

411

systems (like JMS) and publish/subscribe systems offer a means by which commu-
nications can be decoupled from both client and server. Some messaging systems,
like IBM’s MQSeries, come with a long history and pedigree, others, such as
Microsoft’s MSMQ, are brand-new to the Message-Oriented Middleware (or

own as
e other
favored
centric
ntation

ithin a
ork, to
d pro-
class, a
 advan-
 rest of
advan-
e new

 imple-
(Aglets
Shared
 system

objects
ome of

 how a
le and

ut-
d com-
 easily
 Hash-
 check
 for an

Neward15_06_12.fm Page 411 Tuesday, June 13, 2000 12:17 PM
TECHNOLOGIES

MOM) game. Others are Java-specific such as iBus, from Soft-wired Inc.

• Object request brokers
These are really RPC systems on steroids. Object request brokers, also kn
ORBs, usually are spoken of in the same breath as CORBA, but can includ
systems such as HORB or DCOM. Among Sun Java programmers, the
ORB to use is a CORBA-compliant ORB, although a number of Microsoft-
developers are achieving good results using Microsoft’s Java impleme
packages and DCOM.

• Objects across the wire
This category stretches from the concept of mobile objects, which live w
single process but can migrate from process to process across the netw
shared objects, which are shared across the entire network and connecte
cesses. Just as static members can be modified by any instance of that
shared object can be modified by any process subscribed to it. The main
tage of this object-across-the-wire approach is its neat integration with the
the object paradigm; it’s an object, you just use it that way. The main dis
tage of these approaches is the fact that they’re very new, and require som
thinking in distributed object design and implementation. Mobile object
mentations are available from ObjectSpace (Voyager toolkit) and IBM
toolkit); shared object implementations are available from Javasoft (Java
Data Toolkit and/or JavaSpaces, part of Jini) and ObjectSpace (Subspace
within the Voyager product).

All of these are viable technologies for achieving the same goal of making
live across the network instead of on just one node within it. We’ll discuss s
these in turn.

15.3.1 Raw access: Sockets

We’ve already examined sockets within Java, so it’s not too difficult to imagine
socket-based middleware service would behave. By marking objects Serializab
sending them over a socket via the ObjectOutputStream and ObjectInp
Stream methods, we already have a primitive, if low-level, form of distribute
munication. Look back at the RemoteStorageService, for example. We could
store an instance of the HashtableModel there, and have clients check out the
tableModel, send it over the wire to the client, modify it, and send it back and
it in. This would provide the necessary object-sharing semantics we’re desiring
enterprise system.

EWARE

What’s more, it’s easy to imagine how we could build either a stateful or a stateless
system. In a stateful system, the client simply holds the socket open for as long as it
wishes, sending requests and receiving replies until it chooses to close the socket. For
a stateless system, the client can open the socket, send the request, get the response,

ing the
perfor-
ailable

to be a

 all the
 of this
 a reus-
t create
 shop,
ff-the-
h pro-
ending
onality
nt, and
 brings
 to the
tion—
 coded
s more

ositive
d send
rhead.
een in
sibility
’s Seri-
ations;
 grows
itional

ecomes

echnol-
to call.
nd cor-
shaling

Neward15_06_12.fm Page 412 Tuesday, June 13, 2000 12:17 PM
412 CHAPTER 15 MIDDL

and close the socket, or the server can even close the socket itself after send
request, to prevent abuse by the client. In fact, the server could even do some
mance monitoring, and keep connections alive when it sees that it has the av
resources to do so, and close connections when it doesn’t. This would seem
good foundation for a middleware system.

Unfortunately, it also carries with it a number of drawbacks. For starters,
communications have to be handled by hand within developer code. Some
impact can be minimized by placing all necessary communications code within
able library or component, but it doesn’t duck the fact that a developer still mus
that initial library. Second, this form of middleware will be unique to each
department, or corporation that uses it, which minimizes the chance of using o
shelf components or systems with the home-grown middleware. Third, any suc
tocol would always be pass-by-value, since Serialization doesn’t support the s
of references; the entire object is Serialized. Thus, any pass-by-reference functi
would need to be handled by developers passing Proxy objects to the recipie
the Proxy objects in turn sending modifications to the server (which, in turn,
up the nasty subject of how to keep the Proxies up-to-date with changes made
server by other clients). Last, any features desired beyond just basic communica
such as RMI’s Activation or CORBA’s Event or Trading Services—have to be
by hand. That in turn opens up greater chance of bugs, which in turn require
testing time and personnel, and so on.

Still, despite all that, the Sockets-based approach has a number of p
aspects to it, not the least of which is its simplicity—just open a Socket, an
the Serializable object down the ObjectOutputStream—and its lack of ove
For simple or light-use scenarios, it serves admirably, as we’ve already s
chapter 7. What’s more, the cross-linguistic nature of sockets opens the pos
of cross-language communication, so long as the other side understands Java
alization specification (or else the Java side limits itself to text-only represent
XML is a wonderful alternative in this case). As the distributed object system
more complex, however, maintaining a Sockets-based system becomes an add
drain on developer resources, and extending it or expanding its featureset b
more and more convoluted.

15.3.2 Java RPC: remote method invocation

Java RMI is Java’s version of remote procedure calls. As with most RPC-based t
ogies, the hard part isn’t contacting the host, or even specifying the method
The hard part is getting the parameters to the call across the wire accurately a
rectly, and getting the return value back again. This process, known as mar

413

when packing the parameters for transport, and unmarshaling when unpacking them
upon receipt, is typically by far the hardest part of distributed object development.

RMI uses rmic, a tool provided by the Sun JDK, to produce stubs and skeletons
that encapsulate the details of marshaling and unmarshaling the parameters from cli-

rticles,
ub and
wever,

ith no
mmer.
xtends
 via the
ct. RMI
ement
RBA.

ith, all
,

n. This
ave to

g more
de that

 not an
mic on
. RMI,
This in
terface.
 classes
viron-

It relies
otated

onnec-

tubs, is
elopers
 down-
at RMI
BA, in
 inter-

n’t just

Neward15_06_12.fm Page 413 Tuesday, June 13, 2000 12:17 PM
TECHNOLOGIES

ent to server and back again. When used as directed by most RMI books and a
rmic can appear to be a mysterious, opaque beast that magically generates St
Skel .class files from your RMI-interface-implementing class. As we’ll see, ho
there’s nothing truly mysterious about RMI.

One advantage of RMI is its Java roots: because RMI grew out of Java, w
other agenda or considerations, RMI feels very natural to the average Java progra
To create an RMI interface, just create a standard Java interface class that e
java.rmi.Remote. To make an RMI remote call, just obtain a proxy to the server
Naming class’s lookup method, and call methods on it as if it were a local obje
objects are garbage-collected just as other Java objects are, so no lifetime manag
of the distributed object (or its local proxy) is necessary, as is the case with CO

Unfortunately, RMI isn’t quite as nonintrusive as all that. To start w
remote methods must be declared as throwing java.rmi.RemoteException
which means that clients have to catch this Exception or pass it up the chai
means that clients, in direct contrast with the goals of encapsulation, now h
worry about the details of the middleware. It may mean that clients do nothin
than rethrow the RemoteException out of the catch handler, but it’s still co
has to be written (and executed) each time the remote call is made.

Despite RMI’s insistence on the specification of a remote interface, RMI is
interface-based tool. In fact, if you write an RMI interface and attempt to call r
it, rmic will complain that the interface isn’t a remote class and do nothing
instead, wants to build stubs and skeletons only for implementation classes.
turn yields a problem: RMI can connect only to an implementation, not an in

Consider our notion of zero deployment. We want to be able to modify
at a whim on the server, without having to make a modification to the client en
ment. RMI promises this capability, but I’ll let you in on a secret—RMI cheats.
on the client making an HTTP connection to a URL specified in the client’s ann
codebase to retrieve RMI stubs that the client doesn’t have locally. No HTTP c
tion, no annotated codebase, and no zero deployment.

Given, however, that RMI can download the necessary implementation s
this really an issue? To be honest, it’s probably not something most RMI dev
will worry about. Because RMI can use the HTTP connection to do the stub
loading (which most, if not all, Java shops will be able to provide), the fact th
depends on the implementation class is less critical. Contrast this with COR
which no code downloading can take place; there, the idea of connecting to an
face, as opposed to an actual implementation, is critical, because the client ca
download the necessary _Stub class as it needs it.

EWARE

Additionally, if the _Stub classes are available, via CLASSPATH or Extension, to
the RMI registry when the registry is started, then the HTTP server isn’t even neces-
sary—the RMI registry will send the _Stub down to the client of its own accord. For
the most part, however, this isn’t something to rely on, as most systems will run mul-

he reg-
e RMI

ed into
sts, the

 is that
roperly
serving
, which
egistry.
yment
shion.
onnect
ld only
terface

ntation

te class
n that.
 server

whatever
ccupied.

.

Neward15_06_12.fm Page 414 Tuesday, June 13, 2000 12:17 PM
414 CHAPTER 15 MIDDL

tiple RMI servers, but only one RMI registry; thus, each system can’t count on t
istry having access to its _Stub classes. Worse, if the _Stub changes, unless th
registry is recycled (taken down and restarted), the change never gets propagat
the environment. Remember, as long as the ClassLoader that loaded a Class exi
Class is never reloaded.

From a theoretical perspective, however, this is ducking the issue. The fact
an RMI client still needs the exact implementation-class’s _Stub in order to p
function. Currently, RMI makes that _Stub available via two methods, HTTP-
(that is, via the annotated codebase property, java.rmi.server.codebase
will usually be an HTTP URL reference) and/or downloading it from the RMI r
This, to be quite technical and ultraprecise, is not zero deployment although deplo
is still taking place, albeit in an automated (and administrative-dependent5) fa

Instead, in order to achieve true zero deployment, we need to make RMI c
on an interface level instead of an implementation level.6 Because RMI can bui
stubs and skeletons around a class (that is, a concrete class type, instead of a Java in
type), let’s give RMI a class to chew on. Instead of placing the actual impleme
within this class, however, we make the class abstract and do nothing:

// INameServer.java: Generate random names

public interface INameServer extends java.rmi.Remote

{

public String generateName()

throws java.rmi.RemoteException;

public static String RMI_BINDING_NAME =

"NameServer_1.0.0";

}

This is a standard RMI remote interface. Normally, we would create a concre
extending the java.rmi.server class UnicastRemoteObject, and run rmic o
What we’ll do instead, in order to be able to vary the implementation of the
object transparently, is this:

// NameServer.java:

import java.rmi.server.*;

public abstract class NameServer extends UnicastRemoteObject

implements INameServer

{

5 Somebody needs to make sure the HTTP server is running, for example, and that port 80 (or
port on which the RMI-HTTP class server is running) on the RMI server machine isn’t currently o

6 Thanks to Owen Tallman, of DevelopMentor, for our discussion on this topic and this trick

415

public NameServer()

throws RemoteException

{ }

}

tion ;
tructor
ant to

lt con-
 let the
’t syn-
, so we

I class,
rom its

ame as

Neward15_06_12.fm Page 415 Tuesday, June 13, 2000 12:17 PM
TECHNOLOGIES

Notice how we have to specify a default constructor that throws RemoteExcep
because UnicastRemoteObject, this class’s direct ancestor, specifies a default cons
that throws this exception. Thus, we have to match the signature exactly if we w
override the constructor. Normally, we wouldn’t need to override the defau
structor if we don’t have any particular default behavior we want; instead, we
compiler build one for us behind the scenes. Unfortunately, the compiler can
thesize a default constructor for us if the base class version throws an exception
have to do it by hand.

Next we build an implementation of the NameServer:

public class NameServerImpl1 extends NameServer

{

public String generateName()

throws java.rmi.RemoteException

{

return "Fred";

}

public NameServerImpl1()

throws java.rmi.RemoteException

{ }

public static void main (String args[])

throws Exception

{

// Create an instance of NameServerImpl1 and

// export it

//

NameServer ns = new NameServerImpl1();

Naming.bind(INameServer.RMI_BINDING_NAME, ns);

System.out.println("NameServerImpl1 bound as '" +

INameServer.RMI_BINDING_NAME + "'");

}

}

As you can see, NameServerImpl1 isn’t really any different from any other RM
except that instead of implementing the remote interface directly, it gets it f
abstract parent, NameServer.

Connecting to and using this INameServer -implementing class is the s
any other RMI server:

public class NameClient

{

public static void main (String args[])

throws Exception

{

EWARE

// Lookup host

//

String lookupName = "rmi://" + args[0] + "/" +

INameServer.RMI_BINDING_NAME;

INameServer nameSvr =

he first

akefile
run on
how to
ifically
 imple-
ly.
eparate
 under
Server,
eter (it
essfully

l2 (not
 return
d RMI-
un the
as suc-
tation,

e client

Neward15_06_12.fm Page 416 Tuesday, June 13, 2000 12:17 PM
416 CHAPTER 15 MIDDL

(INameServer)Naming.lookup(lookupName);

// Make remote call

//

String name = nameSvr.generateName();

System.out.println("Generated name : " + name);

}

}

NameClient isn’t doing anything fancy; just connect to the server given in t
command-line arg, and call its generateName method.

Notice something very important when we build this; if you look at the m
in the Middleware directory of the source code, notice that rmic is only being
NameServer, not NameServerImpl1. This is key—RMI needs to know only
marshal the parameters and return value for the method call; it doesn’t care spec
which class it’s for. Once that marshaling/unmarshaling logic is in place, the
mentation of the method is resolved as any other Java method call is—virtual

The payoff of all this comes in the client-side deployment. To simulate s
environments (and ClassLoaders), the client.jar file is built in a temp directory
the Middleware directory. Within this .jar file are only the INameServer, Name
NameServer_Stub, and _Skel class files. Run the .jar file from the java interpr
has the appropriate Main-Class directive in its manifest), and NameClient succ
connects to and generates a name from the NameServerImpl1 instance.

Next, let’s create a new Server implementation, called NameServerImp
listed here for brevity—only the generateName changes substantively, to
“Barney ” instead of “Fred ”). Shut down the NameServerImpl1 instance an
Registry, restart the RMIRegistry and bring up a NameServerImpl2 instance. R
NameClient, unchanged, from the temp directory. Once again, NameClient h
cessfully managed to obtain the name, from a different RMI server implemen
without having to use the annotated codebase to obtain the new class code.

One last test—let’s switch the server implementations around without th
knowing. Look at NameServerImpl3:

public class NameServerImpl3 extends NameServer

{

public String generateName()

throws java.rmi.RemoteException

{

String returnName = "Wilma";

try

{

417

Naming.rebind(INameServer.RMI_BINDING_NAME,

new NameServerImpl1());
System.out.println("NameServerImpl1 rebound");

}
catch (Exception ex)

ame ,
it, then
nnects

gain, it
r server
.

pl3 to
ement-
r—the
mic to
 client
istry—
ame of
t now
d. RMI
he new
 down-
 as the

Neward15_06_12.fm Page 417 Tuesday, June 13, 2000 12:17 PM
TECHNOLOGIES

{
returnName = ex.toString();

}

return returnName;

}

public NameServerImpl3()

throws java.rmi.RemoteException
{ }

public static void main (String args[])
throws Exception

{
// Create an instance of NameServerImpl3 and

// export it
//

Naming.bind(INameServer.RMI_BINDING_NAME,
new NameServerImpl3());

System.out.println("NameServerImpl3 bound as '" +
INameServer.RMI_BINDING_NAME + "'");

}
}

This should look a little different. After the first call to generateN
NameServerImpl3 replaces itself with an instance of NameServerImpl1. Run
drop into the temp directory and try NameClient twice in a row—the first co
to the NameServerImpl3 instance, gets “Wilma ” back, then when it is run a
gets the NameServerImpl1 instance and “Fred ”. We’ve effectively changed ou
implementation without having to deploy new stubs or skeletons to the client

15.3.3 Analysis

It may not be obvious what we’ve just done; by contrast, change NameServerIm
be a normal RMI server object by extending UnicastRemoteObject and impl
ing the INameServer interface. Compile it, and try to run the serve
RMIRegistry will complain that the Stub/Skel classes can’t be found. Run r
generate the Stub/Skel classes, start the server, and try to run the client. The
will throw a java.rmi.UnmarshalException for the same reason as the RMIReg
the Stub/Skel classes can’t be found. This is because RMI uses the class n
the implementation object (NameServer in the previous approach, bu
NameServerImpl3) as the name of the appropriate Stub or Skel class to loa
normally gets away with this by having the client contact an HTTP server for t
class to load via the annotated codebase property; since we gave it none, it can’t
load the new code, so it complains and gives up. When we used NameServer

EWARE

abstract base, instead, and built the Stub/Skel classes from that, we effectively intro-
duced an implementation interface to satisfy RMI’s Stub/Skel requirements while still
giving us the ability to vary the actual implementation class used on the server.

By doing this, we gain flexibility in the actual implementation of the server object.
used to
ver can
objects
nstead
or each
e. This
Object
e inter-
 server,
alUser-
ore but
 actual
’t need

recious
lows us
 extend
ve this
at for-

compile,

Neward15_06_12.fm Page 418 Tuesday, June 13, 2000 12:17 PM
418 CHAPTER 15 MIDDL

We can continue to update and/or modify the actual implementation class
satisfy client requests without having to worry about making sure the Web ser
see the new code. For example, consider a classic use of RMI, to build a business
layer. Business objects, of course, must be sensitive to user roles and security. I
of building one large business object class that contains all the necessary logic f
and every user role, have users pass their credentials to a factory class instanc
factory object then returns an instance of a class which extends the Business
abstract base class (which in turn implements the IBusinessObject remot
face). Because the BusinessObject Stub/Skel classes reside on both client and
the user won’t know whether it’s an AdministratorBusinessObject, a Norm
BusinessObject, or a ReallyLowPeonBusinessObject. RMI could do all this bef
now you can do it without the use of an HTTP server. This also means that the
code is hidden from the clients, a security enhancement.7 In addition, you don
to have an HTTP server running where one normally wouldn’t be.

The problem with this basic approach is that it inherently uses the p
implementation inheritance slot for the abstract base class. Given that Java al
to extend only one class, and that there will be times when we need or want to
from some other base class, this doesn’t help much. Another approach to achie
same effect is to use a Decorator pattern approach, and create a shim class th
wards all requests to another object:

public class NameServerDelegator extends NameServer

{

INameServer delegate;

public NameServerDelegator(INameServer delegate)

{

this.delegate = delegate;

}

public String generateName()

throws RemoteException

{

return delegate.generateName();

}

}

7 If the code has to be downloaded to the client, there is a possibility that the client can open, de
and examine the code, and use that knowledge to compromise the system as a whole.

419

As you can see, we pass in the instance of the INameServer -implementing object in
the NameServerDelegator constructor, store it within the NameServerDelegator
instance, and make calls on that instance any time a remote call comes in.

The remote call comes in to the NameServerDelegator, which then passes the call
 which
ack to

ns of a
e inter-
 of the
ember

e inter-
f using

pecifies
, you’ll
oss the
 proto-

l called
RMI in
wever,

nternet
o com-

ance to
 in your
plicitly
rotocol
lection.
rst wire
he only
written
, all the
RMP is
cations.
patible
th Java
ms can
ributed

Neward15_06_12.fm Page 419 Tuesday, June 13, 2000 12:17 PM
TECHNOLOGIES

to the delegated instance. The client never sees the actual implementation,
allows us to preserve encapsulation, and the results from the class are passed b
the client in normal fashion.

Remember, this is only necessary because RMI binds to implementatio
Remote interface, instead of to the interface itself. Had rmic chosen to use th
face as its template for building the marshaling/unmarshaling code, instead
implementing class, we wouldn’t have to go through this. It’s important to rem
that having rmic build the proxy/stubs off of the implementation of the Remot
face allows us to cast the proxy and/or stub in normal Java fashion, instead o
a helper method as CORBA does. It’s a trade-off, once again.

15.3.4 RMI/JRMP

One aspect that will surprise a number of Java developers is that RMI itself s
nothing about the wire protocol—if you read through the RMI specification
not find one line, one section, or one word on how the data is to be passed acr
wire to the other side. This in turn allows RMI implementors to use whatever
col they wish—to a point.

When RMI was first released by Sun, it was released using a wire protoco
Java Remote Method Protocol (JRMP). This was the only option for doing
JDK 1.1, and remained that way for a long time. With the release of JDK 1.2, ho
Sun also released an Early Access version of RMI/IIOP (RMI using the CORBA I
InterOperability Protocol). This, in theory, allows Java developers to use RMI t
municate with CORBA objects.

RMI/JRMP is the default form of RMI, and unless you go the extra dist
download the RMI/IIOP implementation from Sun, this will be the form you use
own RMI development. Most discussions of RMI over the past two years have im
used JRMP as the wire protocol, and the RMI Specification discusses the JRMP p
in detail. JRMP offers two advantages: established use and distributed garbage col

The first advantage of RMI/JRMP is its historical nature—JRMP was the fi
protocol specified for RMI, and, up until the recent release of RMI/IIOP, was t
wire protocol available for RMI. This means that unless your RMI code was
within the first half of 1999 using the Early Access or beta versions of RMI/IIOP
RMI code written to date uses JRMP. Therefore, for any existing RMI systems, J
likely (on the order of 99 percent likely) to be the protocol of choice for communi

The problem with this is that JRMP is itself completely and totally incom
with anything else in the world. No other languages can communicate wi
objects using JRMP, no other communication protocols or middleware syste
access RMI/JRMP-exported objects, and this, in turn, means that any dist

EWARE

objects done using RMI/JRMP are invisible outside of the Java world. This may seem
like a small problem to those Java developers who rarely leave the Java world. Unfor-
tunately, as many Java developers are discovering, this state of affairs is a poor one
at best. Java wasn’t the first system to develop the concept of distributed objects, and

ibuted

 order
 means
have to
arbage

l proxy
xy/stub
 object.
d com-
e Stub

ted ref-
ystems
a client
ich the
e client
to ping
 on the

’t sim-
 band-
gh this
oes the
: if five
iations

A and
cessary
otated

, RMI/
00 per-
ire sys-
ributed
 some-

Neward15_06_12.fm Page 420 Tuesday, June 13, 2000 12:17 PM
420 CHAPTER 15 MIDDL

Java developers are increasingly called upon to integrate with existing distr
object systems.

Secondly, JRMP offers distributed garbage collection (what I call DGC) in
to continue to offer Java-like concepts to the distributed object model. This
that, as when working within single-JVM systems, Java developers no longer
worry about distributed object lifetimes, instead relying upon Java’s internal g
collection to recycle the local proxies to the remote objects. In turn, the loca
will notify the remote skeleton of the decrease in the number of client pro
objects, and the remote VM will recycle (or not) as necessary the actual remote

The problem with DGC is simple—bandwidth. Even if no user-specifie
munication is taking place between an RMI Stub and its exported skeleton, th
and the associated Skeleton are chewing up bandwidth by keeping the distribu
erence count alive. They need to do this, because the server object (as CORBA s
quickly learned) has no ability to tell client idleness from a client crash. When
connects to the remote object, it takes out a short-term lease on the object, wh
server guarantees will remain alive as long as the lease indicates. Thereafter, th
has to ping the server every so often to keep the lease alive. If the client fails
frequently enough, the server assumes the client has died and removes its lease
exported object, thus possibly recycling the exported object.

This has serious implications on scalability, since RMI system designers can
ply assume that “if we don’t call the remote objects very often, we won’t have a
width problem.” Remember, each and every exported object has to go throu
negotiated lease rigamarole, so as the number of exported objects increases, so d
total bandwidth consumed across the system. And this is on a per-client basis
clients hold proxies to the same exported object, we’ve still got five sets of negot
going on across the wire.

RMI/JRMP offers dynamic code download, a feature missing in CORB
COM/DCOM. As we discussed earlier, RMI can automatically download the ne
_Stub classes for the client’s use, as necessary, assuming the server has an ann
codebase properly set up.

Despite whatever happens regarding it and its possible successor, RMI/IIOP
JRMP will remain a viable and useful choice for distributed object systems in 1
cent pure Java environments. DGC is a natural extension of Java to across-the-w
tems, and although it doesn’t give us the same scalability as other dist
implementations offer, for many shops, it will be just good enough, which is
times the best we can hope for.

421

RMI/IIOP

RMI/IIOP is a new technology from Sun that uses the IIOP protocol from the
CORBA 2.x standard to implement the same kind of RPC capability as RMI/JRMP
provides. As of this writing, RMI/IIOP stands as a fringe technology that looks to gain

lt wire

iggling
bjects,

s a new
 imply,
ds and
he two
uses it,
t. Tak-

server,
ame-

 throw
Name-
f Uni-

plug-in

Neward15_06_12.fm Page 421 Tuesday, June 13, 2000 12:17 PM
TECHNOLOGIES

significant steam as Sun makes its transition from JRMP to IIOP as the defau
protocol for RMI.

Using RMI/IIOP is fundamentally similar to RMI/JRMP, except for a few n
details. To start with, RMI/IIOP uses JNDI to bind and export RMI/IIOP o
which is the direction RMI/JRMP is heading as well. Unfortunately, this mean
set of APIs to learn and start using. This isn’t as much work as it might at first
for two reasons: one, the basic concepts are still the same so the basic metho
usage haven’t changed much, and two, JavaSoft has done what it can to keep t
as close as possible. Further, JNDI is Java’s future for all naming needs; EJB
some Java-based CORBA ORBs use it, and the new JDBC 2.0 specification uses i
ing the time to learn the basics of JNDI has benefits beyond just RMI/IIOP.

We’ll start by examining the RMI/IIOP implementation of the name
which is found in the file IIOPNameServer.java. The remote interface, IN
Server , remains identical to the RMI/JRMP version—methods must still
java.rmi.RemoteException , must be interfaces, and so on. The IIOP
Server class extends the RMI/IIOP base class PortableRemoteObject instead o
castRemoteObject, and uses JNDI to bind itself to the IIOP Naming Service
inside of JNDI:

import java.rmi.*;

import javax.naming.*;

import javax.rmi.PortableRemoteObject;

/**

* NameServer class ported to use RMI/IIOP instead of RMI/JRMP

*/

public class IIOPNameServer extends PortableRemoteObject

implements INameServer

{

public IIOPNameServer()

throws java.rmi.RemoteException

{ }

public String generateName()

throws java.rmi.RemoteException

{

return "Fred";

}

public static void main (String args[])

throws Exception

{

// Set up the InitialContext factory for JNDI

//

EWARE

System.setProperty("java.naming.factory.initial",

"com.sun.jndi.cosnaming.CNCtxFactory");

// Set up the JNDI Naming provider URL

//

 in the
is only

I server
menta-
at they
muni-

es RMI

 object:

Neward15_06_12.fm Page 422 Tuesday, June 13, 2000 12:17 PM
422 CHAPTER 15 MIDDL

System.setProperty("java.naming.provider.url",

"iiop://localhost:900");

// Create an instance of IIOPNameServer and
// export it

//
Context ctx = new InitialContext();

INameServer ns = new IIOPNameServer();
ctx.rebind(INameServer.RMI_BINDING_NAME, ns);

System.out.println("IIOPNameServer bound as '" +

INameServer.RMI_BINDING_NAME + "'");
}

}

The constructor and generateName methods are identical to the versions
RMI/JRMP implementation. Only the main implementation changes, and th
so that IIOP is used instead of normal JRMP. Since this scaffolding in an RM
object only needs be done once, at the server object’s startup, most RMI imple
tions will be identical between both IIOP and JRMP, which is precisely wh
should be. Remember, IIOP is simply the wire protocol that RMI uses to com
cate between client and server; the server and/or client implementation that us
shouldn’t change in the slightest.

The client implementation similarly has to use JNDI to obtain the initial server

import java.rmi.*;
import java.util.*;

import javax.naming.*;
import javax.rmi.PortableRemoteObject;

public class IIOPNameClient

{
public static void main (String args[])

throws Exception
{

// Set InitialContext properties
Hashtable env = new Hashtable();

env.put("java.naming.factory.initial",
"com.sun.jndi.cosnaming.CNCtxFactory");

env.put("java.naming.provider.url",

"iiop://localhost:900");

// Obtain JNDI InitialContext
Context ic = new InitialContext(env);

INameServer nameSvr =

(INameServer)PortableRemoteObject.narrow(

423

ic.lookup(INameServer.RMI_BINDING_NAME),

INameServer.class);

// Make remote call

//

created
wo key

.
d line,

. Here,
 name,
ce the
I/IIOP

thod as

ctively)

Name-
e inter-
put the
into a
n from
lessly.
bjects,

n. This
 before
ar RMI
n now

roviding
xcept for

Naming
from cli-
s. In this
odify the

Neward15_06_12.fm Page 423 Tuesday, June 13, 2000 12:17 PM
TECHNOLOGIES

String name = nameSvr.generateName();

System.out.println("Generated name : " + name);

}

}

Notice in both the client and the server, the JNDI InitialContext instance is
either with a Hashtable passed in, or using the System properties to identify t
elements: java.naming.factory.initial and java.naming.provider.url
These are JNDI properties that need to be set, either in code or on the comman
to tell the JNDI implementation which InitialContext implementation to use
we use the CosNaming8 JNDI implementation to identify the server object’s
and to obtain the remote interface from the server for the client. On
INameServer instance has been bound and/or retrieved, however, the RM
overhead is finished, and we call on the INameServer generateName me
we do in the RMI/JRMP implementation.

Compiling the stubs and skeletons (“_Stub.class” and “_Tie.class”, respe
uses rmic:

rmic -iiop INameServer

rmic –iiop IIOPNameServer

The first command generates INameServer_Stub.class, the second IIOP
Server_Tie.class. Once again, notice how IIOP generates the Stub based on th
face, not the actual implementation. As with the RMI/JRMP example, if we
IIOPNameClient.class, INameServer.class, and INameServer_Stub.class files
JAR file, and drop that into the Temp directory, start the tnameserv9 applicatio
the RMI/IIOP bundle, start the IIOPNameServer class and run it, it executes flaw

The main advantage to using RMI/IIOP is its compatibility with CORBA o
which gives it the ability to call on CORBA objects, and be called upon in tur
offers Java a significant integration and cross-system capability that it lacked
(without going to full CORBA integration). Java programmers retain the famili
interface; implementation details aren’t largely different, and Java clients ca

8 The Corba Object Service: Naming service, and is a CORBA-mandated universal service for p
string representations of objects. It serves essentially the same purpose as the RMI Registry, e
CORBA systems.

9 The CosNaming implementation that comes with the RMI/IIOP bundle; in theory, any Cos
implementation would work as well. By default, tnameserv uses port 900 to receive requests
ents; under some UNIX-like operating systems, this port is reserved for use only by “root” user
event, start tnameserv with the parameter “-ORBInitialPort 1050 ”, and make sure to m
“java.naming.provider.url” appropriately (“iiop://<hostname>:1050”).

EWARE

make use of CORBA objects written three years ago using C++ or Smalltalk—if you
don’t have to rewrite the server, that’s zero development.

This interoperability works both ways—Java servers can now be called upon by
non-Java, IIOP-compatible ORBs of other languages, such as C++. For example, in the

e, just
wever,
I inter-
 on the

 access
e most
eServer
 worry
ORBA-

in gen-
ORBA

va soft-
 impli-

er than
n using

nce the
he Java

Neward15_06_12.fm Page 424 Tuesday, June 13, 2000 12:17 PM
424 CHAPTER 15 MIDDL

same directory is a C++ client that calls on the IIOPNameServer to obtain a nam
as the Java IIOPNameClient example does. The trick to making this work, ho
is the generation of the necessary CORBA IDL files that represent the Java RM
face (in this case, INameServer). This is accomplished by using a new switch
rmic compiler, -idl:

rmic –idl INameServer

This in turn generates the INameServer.idl file:

/**

* INameServer.idl

* Generated by rmic -idl. Do not edit

* Wednesday, June 23, 1999 5:52:23 PM PDT

*/

#ifndef __INameServer__

#define __INameServer__

#include "orb.idl"

interface INameServer {

const wstring RMI_BINDING_NAME = "NameServer_1.0.0";

::CORBA::WStringValue generateName();

};

#endif

If it appears to be a mystery, don’t worry; if you’re using another language to
the INameServer server instance written in Java, then you will already recogniz
of the above. If you’re not using anything other than Java to access the INam
server, then you probably will never generate the IDL file and never have to
about its syntax. The key thing to recognize is that we were able to generate C
compliant IDL from the standard Java RMI interface INameServer .

The obscurity of the above IDL file raises a drawback to using RMI/IIOP
eral, however. Because IIOP was birthed from CORBA, it is well-steeped in C
rules, syntax, and context. RMI/IIOP is brand-new to Java developers and the Ja
ware world as a whole, and to say that we really don’t have a good idea as to the
cations of using it would be a gross understatement. Is IIOP faster or slow
JRMP? Will it scale better or worse than JRMP? Will it scale better or worse tha
full-blown CORBA objects? Nobody knows at this point.

Using CORBA in Java isn’t all that much more difficult than the above—o
IDL files are written, the IDL is passed through an IDL-to-Java compiler, and t

425

developer now has a set of interfaces that needs to be implemented in a server imple-
mentation object. This is precisely the same sequence of steps that takes place in an
RMI system—define the interface, develop the implementations. Because RMI/IIOP
can generate the IDL from the RMI Remote interface, no handwritten IDL is necessary,

 ORBs
terop-

and use

othing
ecision
ese are

restling

P, and
aintain
/JRMP.
 mind,
n new

ne pro-
ly sepa-

 with a
BA cli-

I/JRMP
spect—
bjects.
at uses

Neward15_06_12.fm Page 425 Tuesday, June 13, 2000 12:17 PM
TECHNOLOGIES

and if basic IIOP communications are all that are required, most Java-friendly
are already easier to use, in many respects, than standard RMI/JRMP itself. If in
erability with CORBA objects is necessary, why not go that tiny extra distance
a full-fledged CORBA ORB?

Using both JRMP and IIOP

At this point, the Java-RMI developer is likely to believe that it’s an all-or-n
prospect—either you support JRMP or you support IIOP. This is a difficult d
to make. Forsake historical compatibility for future flexibility, or vice versa? Th
the kinds of decisions that keep technical leads and architects up at night w
with which way to go and knowing they’ll get burned, regardless.

Alternatively, the architect is fully behind the notion of using RMI-IIO
wants to begin the transition from RMI/JRMP to RMI/IIOP, but must still m
complete service for all of the clients across the enterprise still using RMI
(We’re presuming the clients were originally coded without zero deployment in
and releasing a new client would require the physical install of the software o
machines.) How can we transition from JRMP to IIOP if we have to choose o
tocol or the other? Maintaining two functionally equivalent, yet developmental
rate, systems is certainly not an attractive option, by any means.

Or, the architect of the Java-only project is suddenly required to integrate
CORBA system beyond his/her control—he/she can’t arbitrarily require these COR
ents to be redeveloped to use RMI/JRMP, and he/she can’t re-code the existing RM
clients to use RMI/IIOP. Again, the architect is faced with an uncomfortable pro
developing a shim layer to sit between the CORBA objects and the RMI/JRMP o

Fortunately, it’s possible to create an RMI server object (listing 15.1) th
both JRMP and IIOP, simultaneously.

import java.rmi.Naming;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import java.util.Properties;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.rmi.PortableRemoteObject;

/**

* Class which exports as both a UnicastRemoteObject

* and a PortableRemoteObject

*/

Listing 15.1 Code to create an RMI server object

EWARE

public class CombinedNameServer

implements INameServer

{

public CombinedNameServer()

throws RemoteException

Neward15_06_12.fm Page 426 Tuesday, June 13, 2000 12:17 PM
426 CHAPTER 15 MIDDL

{

// Export as an IIOP object

//

PortableRemoteObject.exportObject(this);

// Export as a JRMP object

//

UnicastRemoteObject.exportObject(this);

}

public boolean bindIIOP()

throws Exception

{

// Set up the InitialContext factory for JNDI

//

Properties iiopProps = new Properties();

iiopProps.setProperty("java.naming.factory.initial",

"com.sun.jndi.cosnaming.CNCtxFactory");

// Set up the JNDI Naming provider URL

//

iiopProps.setProperty("java.naming.provider.url",

"iiop://localhost:900");

// Obtain the Context and bind us into the IIOP

// COSNaming Provider

//

Context ctx = new InitialContext(iiopProps);

INameServer ns = this;

ctx.rebind(INameServer.RMI_BINDING_NAME, ns);

System.out.println("CombinedNameServer bound (IIOP) as '" +

INameServer.RMI_BINDING_NAME + "'");

return true;

}

public boolean bindJRMP()

throws Exception

{

// Our to-be-exported instance

//

INameServer ns = this;

// Use standard RMI-Registry/Naming code to bind the

// server object

//

Naming.bind(INameServer.RMI_BINDING_NAME, ns);

System.out.println("CombinedNameServer bound (JRMP) as '" +

INameServer.RMI_BINDING_NAME + "'");

427

// Could also use JNDI-JRMP using this code:

//

/*

Properties jrmpProps = new Properties();

jrmpProps.setProperty("java.naming.factory.initial",

lient or
rovides

nicast-
f these

 simply
mote),
 works
 some

ee that
 not so
o using
 of the

Neward15_06_12.fm Page 427 Tuesday, June 13, 2000 12:17 PM
TECHNOLOGIES

"com.sun.jndi.rmi.registry.RegistryContextFactory");

Context ctx = new InitialContext(jrmpProps);

ctx.rebind(INameServer.RMI_BINDING_NAME, ns);

System.out.println("CombinedNameServer bound (JRMP) as '" +

INameServer.RMI_BINDING_NAME + "'");

*/

return true;

}

public String generateName()

throws RemoteException

{

return "Fred";

}

public static void main (String args[])

throws Exception

{

CombinedNameServer cns = new CombinedNameServer();

if (cns.bindIIOP() && cns.bindJRMP())

{

System.out.println("Ready for both IIOP and JRMP");

}

}

}

If you run this class, it can now answer requests from either the IIOPNameC
the standard JRMP NameClient class. In either case, CombinedNameServer p
the responses.

The key here is the use of the static exportObject methods of both U
RemoteObject and PortableRemoteObject. Instead of inheriting from either o
classes to receive the auto-exporting behavior offered by their constructors, we
implement the NameServer interface (which in turn, remember, extends Re
and pass this into the parameter for the exportObject method. This trick
equally well for those classes which are forced, for various reasons, to extend from
other base class.

Several advantages come out of this approach. To start with, it’s easy to s
existing RMI/JRMP systems are going to require time to migrate to RMI/IIOP;
much because of the recoding necessary to convert an RMI/JRMP system over t
IIOP, but because the Java 2 platform doesn’t (yet) support IIOP straight out

EWARE

box, and deploying clients (or web browsers) with the necessary classes to support RMI/
IIOP. Until that changes, all existing client applications will need to have the IIOP sup-
port implementation patched in by hand, which represents something of an adminis-
trative nightmare, and can be effectively considered impossible for Internet clients.

th RMI
 of dis-
ts will

onnect
ORBA
ich, as

upport
, RMI/
ire sys-
pted to
doesn’t
tly can

r inter-
on, for
pected
roduct
 is not

Object
among
a given
 for C,
iew.
uld be
+ ORB
nstrate
servers,
 C++.
ported

ient-side
e a C++

Neward15_06_12.fm Page 428 Tuesday, June 13, 2000 12:17 PM
428 CHAPTER 15 MIDDL

It also offers a crude way of allowing CORBA objects to interoperate wi
objects, thus getting around RMI/JRMP’s isolation from the rest of the world
tributed objects. It’s not an entirely transparent situation, since CORBA clien
need to know the IDL of the RMI/IIOP system before they can be coded to c
with it,10 and the IDL generated from rmic is not only a bit awkward (from a C
implementor’s point of view), but also conforms to CORBA 2.3 semantics, wh
of this writing, has only limited commercial support.

Beyond these points, however, there really is no compelling reason to s
both protocols. Ideally, a given enterprise would simply pick one (RMI/JRMP
IIOP, or CORBA) as the backbone of the enterprise, and use that across the ent
tem. Once the decision has been made, all systems would be converted or ada
use the new backbone, and this hybrid approach wouldn’t be necessary. It
always happen ideally, however, and being able to use both protocols concurren
go a long way toward easing the transition from one to the other.

15.3.5 Object Request Brokers: CORBA

CORBA is not a single technology, but a group of standards among vendors fo
communication between a variety of products. The CORBA core specificati
example, is simply a listing of those operations (names, parameters, and ex
results) that each vendor must provide in its ORB implementation before the p
can be called CORBA-compliant. The official language of CORBA is IDL, which
a programming language, but one which specifically declares interfaces. The
Management Group (the vendor council that defines the CORBA standard,
others) also defines a number of IDL-to-language bindings that specify how
IDL file maps into a particular language; as of this writing, IDL bindings exist
C++, Smalltalk, and Java, and numerous others are on the table undergoing rev

Assuming that we get the IIOP implementation working correctly, we sho
able to call it from any IIOP-compliant client, such as Java’s JavaIDL or a C+
such as Object Oriented Concepts’ (www.ooc.com) ORBacus. To demo
CORBA’s interlanguage interoperability, let’s build a pair of CORBA clients and
one using Java and Java’s JavaIDL ORB, the other using the ORBacus ORB in

We start with some IDL, which provides the basic definition of the ex
objects’ behavior:

10 CORBA also rules out completely the notion of downloading the code to the client—all cl
stubs have to be in place before the communication takes place, since the CORBA ORB may b
or Ada95 ORB; downloaded Java stubs would be meaningless in such a situation.

429

#ifndef __INameServer__

#define __INameServer__

module SSJ_Chapter12

{

interface INameServer

graphs
 and

string”
odule

BA 2.3-
nts and

clients,
B uses

avaIDL
undle.

c com-
Server-
 These
ny files

 what
 to the
use the
. From
nce:

the RMI-
at comes

Neward15_06_12.fm Page 429 Tuesday, June 13, 2000 12:17 PM
TECHNOLOGIES

{

const string RMI_BINDING_NAME = "NameServer_1.0.0";

string generateName();

};

};

#endif

Notice it’s the same IDL generated by the rmic compiler from a few para
back, with two major changes. First, the wide-string types (wstring
::CORBA::WStringValue) have been replaced by standard CORBA 2.2 “
types, and secondly, the interface INameServer is now wrapped within the m
name “SSJ_Chapter12”. This is necessary for this demonstration because COR
compliant ORBs aren’t yet available; once they are, we can simply reuse the clie
servers from the RMI/IIOP examples above.

Using the JavaIDL ORB is relatively straightforward; as with all CORBA
first we need to compile the IDL file into a form we can use in code. Each OR
its own IDL compiler to transform the IDL into native code. In the case of the J
ORB, the IDL-to-Java compiler comes as part of the RMI-IIOP download b
Running idlj11 on the INameServer.idl file generated from the RMI-IIOP rmi
piler generates the INameServer.java, INameServerHelper,java, IName
Holder.java, INameServerOperations.java and _INameServerStub.java files.
are just the client-side CORBA implementation assistants. (Generating too ma
is part of the reason that CORBA is cited as more complex than RMI.)

The JavaIDL client code, however, doesn’t look too terribly different from
we do in RMI. The client code first has to obtain (from the ORB) a reference
CORBA Naming Service (a direct parallel to the RMI Registry, or JNDI), then
NamingService to obtain the exported reference to the INameServer instance
there, it’s a simple matter to make the call on the returned INameServer insta

import org.omg.CosNaming.*; // IDLNameClient will use the naming service.

import org.omg.CORBA.*; // All CORBA applications need these classes.

import SSJ_Chapter12.*; // Created by "idltojava" tool from JavaIDL

public class IDLNameClient

{

public static void main(String args[])

11 A batch file under Win95/98/NT, or a script under Solaris. It should have been installed into
IIOP bin directory when RMI-IIOP was installed. Alternatively, use the older idltojava utility th
as part of the JavaIDL download.

EWARE

throws Exception

{

// Create and initialize the ORB

ORB orb = ORB.init(args, null);

ts will
e client
obtain

om the
n Java;
m the

ow we
ORBA
e RMI-
specific
e: if we
A API,

ontext
, we’re
by the
rns the
 cast to
ethod.
 imple-
nstead,
eb site,

Neward15_06_12.fm Page 430 Tuesday, June 13, 2000 12:17 PM
430 CHAPTER 15 MIDDL

// Get the root naming context

org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService");

NamingContext ncRef = NamingContextHelper.narrow(objRef);

// Resolve the object reference in naming

NameComponent nc =

new NameComponent("INameServer", "");

NameComponent path[] = {nc};

INameServer ns =

INameServerHelper.narrow(ncRef.resolve(path));

// Call the RemoteHello server object and print results

String name = ns.generateName();

System.out.println(name);

}

}

The client first initializes the Java2 ORB via the init call; other ORB clien
have slightly different ways of doing the same. Once the ORB is in place, th
calls the CORBA-standard resolve_initial_references method to
the instance to the CORBA NameService running. Notice that a simple cast fr
CORBA.Object to the NamingContext isn’t used here, as one might expect i
instead, we need to use the CORBA-standard narrow method exposed fro
<Class>Helper class, in this case the NamingContextHelper class.

This offers an opportunity to point out the central benefit of JNDI; notice h
have to use CORBA-specific naming/lookup APIs to retrieve the exported C
object. Assuming that we have the CosNaming plug in for JNDI available (and th
IIOP bundle already provides it), we could use JNDI, instead of the CORBA-
code, to access the INameServer-implementing object. The advantage is simpl
use JNDI, we only have to learn the JNDI API, and not the RMI API, the CORB
the JMS API, and so on.

Once we’ve obtained the NamingContext instance, we use NamingC
methods to build the path to the CORBA service we’re looking for. In this case
looking for the INameServer directly off the root of the Naming system,
name of INameServer . The resolve method of the NamingContext retu
instance it finds there, and we use the INameServerHelper narrow method to
an INameServer instance. From there, it’s trivial to call the generateName m

We’ll not demonstrate the Java IDL implementation of the INameServer server
mentation, nor the C++ clients or servers; this isn’t a book on CORBA, per se. I
you’ll find them in the source code available for download on the publisher’s w
in the CORBA directory under the Middleware directory.

431

Is this any simpler than using RMI-IIOP directly? Markedly not. CORBA intro-
duces a level of complexity into the system that RMI doesn’t have. Where RMI seeks
to emulate as much of the Java way within distributed systems, CORBA deliberately
approaches things from a language-neutral standpoint. What’s more, at least for the

3 com-
ailable
 IDL is
egin to

erently
 inter-
nguage
RB and
gacy C
 up his
ccess a
e front
ardless

tercon-
lement
 Persis-
 so on.
e basic
rn, any
efined,
vendor
 build

ty and/

 Trans-
cific to
6, this

arked a
tential

—it is
ry day,
eetings.
doesn’t
COM/
pecific,

Neward15_06_12.fm Page 431 Tuesday, June 13, 2000 12:17 PM
TECHNOLOGIES

immediate term, the RMI-IIOP rmic compiler generates IDL that is CORBA 2.
pliant. As I said earlier, no freely available ORB (and few, if any, commercially av
ones) are CORBA 2.3-compliant. This in turn means that RMI-IIOP-generated
inherently unportable, at least until CORBA 2.3 is standardized and vendors b
implement it.

The nonlanguage-specific nature of IDL means that a CORBA ORB is inh
cross-linguistic. For example, under the CORBA/IDL umbrella, once the IDL
faces for a given system are defined, developers can choose just about any la
they wish to implement the client or server sides, so long as a corresponding O
IDL binding are available. For example, object servers that require access to le
API components can be developed in C; the C++ developer who refuses to give
favorite language can develop his objects in C++, the CORBA objects that a
JDBC-driver-accessible relational database can be written in Java, and the entir
end might be coded in Visual Basic or Python. All of the objects developed, reg
of the language, are first-class citizens in the world of CORBA.

In addition, CORBA has grown to include not only a base definition of in
nectivity, but to define a rich set of services that a variety of vendors may imp
and sell as plug-in objects. For example, CORBA specifies a Security service, a
tence service, a Trading service, a Collections service, a Transaction service, and
Any vendor’s CORBA-compliant Security service is guaranteed, by way of th
CORBA interoperability, to work with any vendor’s Persistence service. In tu
CosSecurity-compliant vendor’s capabilities are completely known and well-d
and clients don’t have to scramble to adjust their security-usage code to a new
if vendors need to change. As a result, developers and system architects can now
a complete best-of-breed system without having to worry about compatibili
or interoperability.

This rich set of services isn’t limited to broad-base specifications such as
actions or Lifecycle, either; CORBA facilities are being developed that are spe
particular industries—Bioscience, Telecommunications, and so on. Before 199
was one of the weakest areas of CORBA, but CORBA’s growing interest has sp
tremendous amount of growth in this area. This, in turn, offers tremendous po
for standardization and reuse within vertical industries.

The immediate drawback to CORBA is its overwhelming size and scope
huge. With over 800 participating vendors, and that number climbing eve
CORBA consists of a tremendous number of interfaces, products, vendors, and m
What’s more, because CORBA is, quite literally, a design by committee, it
move as fast as technologies developed by single vendors, such as Microsoft D
MTS or Sun RMI and EJB technologies. Worse, parts of CORBA will be vendor-s

EWARE

and one particular vendor’s ORB may have features that another vendor’s, on a dif-
ferent platform, may not. This in turn makes it difficult for new CORBA developers
to determine precisely which features of the ORB are CORBA, and which aren’t (and
need to be avoided in the name of portability).

he ulti-
tibility

ince its
 (from
y least,

he Java
 is not
OM.

n com-
gies as
oth of
espite

ard for
s inten-
 back-

PI calls
written

menta-
bes the
s must
dRef ,
unting
es sup-
 simply
custom
g more
ctiveX

 COM/
Win32
 reigns
roduct
tion as
 across

Neward15_06_12.fm Page 432 Tuesday, June 13, 2000 12:17 PM
432 CHAPTER 15 MIDDL

Despite these drawbacks, I believe CORBA to be a critical technology to t
mate success of Java; Java is built upon the concepts of cross-platform compa
and binary interoperability, concepts which CORBA has espoused almost s
inception. In addition, freeware ORBs such as MICO, ORBacus, and omniORB
the UK arm of AT&T Research) give Java developers no reason not to, at the ver
investigate this technology.

15.3.6 Object Request Brokers: Distributed Component Object Model

Microsoft Distributed Component Object Model, as maligned as it is within t
community, is another option as an ORB; unlike other ORBs, however, DCOM
an ORB that has its roots in CORBA, but in its localized immediate ancestor, C

COM originally grew out of Microsoft’s quest to improve interapplicatio
munication and coordination. COM was born on the backs of such technolo
DDE (dynamic data exchange) and OLE (object linking and embedding), b
which in turn were carried on the weight of Microsoft Windows’ Clipboard. D
this rather unglorified beginning, COM quickly became the de facto stand
object interoperability on a machine. By 1995, Microsoft had publicly stated it
tion to move all of its development and technologies over to a common COM
plane, and by 1998, that goal was largely realized; only the basic Windows A
(CreateWindow , ShowWindow, CreateProcess , and so forth) are still
with C/C++-centric interfaces.

Like Java, COM relies heavily on the separation of interface from imple
tion. In COM and DCOM, a developer creates an interface class that descri
behavior an object type promises to provide; for example, all COM object
implement the IUnknown interface, which provides just three methods: Ad
Release , and QueryInterface . The first two deal with COM’s reference-co
architecture, the last provides the basic mechanism by which the other interfac
ported on this object can be obtained. Some COM object implementations will
provide implementation for a variety of interfaces, while others will create
interfaces for custom application use. ActiveX controls, for example, are nothin
than COM components that implement a prescribed set of interfaces that A
containers call on at various times.

It may be heretical and sacrilegious to say this among Java developers, but
DCOM isn’t that bad an architecture. Granted, it is principally limited to the
platforms (Windows 95/98 and NT), but within the Windows world it truly
supreme. Any sort of interapplication or interobject access to any existing p
almost certainly provides a COM interface, and Microsoft’s Java/COM integra
part of its JVM implementation, while certainly nonstandard and nonportable

433

platforms, is still by far the best way to access COM components. What’s more, COM’s
tight integration with the Windows platform offers COM components a much greater
degree of flexibility and accessibility to the underlying system than Java alone can provide.

I am not advocating the use of COM/DCOM on all projects; far from it. COM
ORBA
orking

latform
rs as a

ORBA,
 down,
 in the
e caller
le it’s a

e other
when a
uld be
 object
ke soft-
equest-

cipient
nversa-
 imme-
 things
. If the
 worse,
es the

ttempt
e ben-

d. The
l is sent
nt and

 simply
has the
ith the
 ignore

Neward15_06_12.fm Page 433 Tuesday, June 13, 2000 12:17 PM
TECHNOLOGIES

and DCOM are not the be-all and end-all technology any more than EJB or C
are. COM/DCOM are, however, sometimes the most practical solution for w
with code and systems on the Windows platform. Given that the Windows p
commands an overwhelming presence on the desktop market, Java develope
whole simply cannot ignore the presence of this technology as an option.

15.3.7 Message-Oriented Middleware: JMS

One of the problems with traditional call-based synchronous systems such as C
RMI, or COM/DCOM is that they’re notoriously unforgiving. If the server is
the call fails. If the network connection happens to lose a few of the packets
call, the call fails. If there is any version or marshaling discrepancy between th
and the server, the call fails. A traditional call-synchronous system is so inflexib
wonder it works at all.

In addition, a traditional call-based system requires a recipient object on th
side. It becomes more difficult and awkward to implement a clustered system
specific target has to be known before the call is made. In many cases, life wo
much simpler if we could simply dump the call into a queue for any available
to pull, answer, and send a response. In a lot of ways, we’d like to be able to ma
ware calls in the same manner in which we send email, instead of the current r
respond system, which more closely imitates a phone conversation.

This analogy is actually a very accurate one. With a phone call, the exact re
must be known, and the recipient must be available in order for the phone co
tion to take place. The call is intrusive, in that the recipient must spend time
diately to be a part of the conversation; sometimes the recipient can do other
while participating, but this is recipient-specific and not always guaranteed
phone lines are noisy or bad, the conversation may not be able to take place, or
the content of the conversation may be garbled or misunderstood. Sometim
recipient is busy and can’t answer the phone, and the caller has to abandon the a
at some point and either try the call again or figure out how to cope without th
efit of the call.

In an email conversation, however, many of these requirements are relaxe
recipient only has to be known insofar as the email account to which the emai
needs to be known; any individual (or group of individuals) can access the accou
read the sent message. Email is inherently nonintrusive, in that the message is
(and silently) deposited into the email account, and the recipient, when he/she
time, can access the message and take appropriate action whenever it best fits in w
current schedule. If a more pressing concern is at hand, the recipient can simply

EWARE

the request until a more convenient time. If the recipient can do multiple things simul-
taneously, he/she can answer multiple messages at once; if not, they are handled in serial
fashion. The recipient is thus permitted greater latitude in optimizing their behavior.

If the network drops a packet or two, the email system can either request the
 not be

e, the
e recip-
 best to
request

essages
uation)
ate and
t sink,
s com-
or not,

ries or
a com-
vides a
rovides

clients:
sts to a
hat the
s of the

s.
s
o
st
r-
e
le
e

3

Neward15_06_12.fm Page 434 Tuesday, June 13, 2000 12:17 PM
434 CHAPTER 15 MIDDL

packet over again, or send a message back to the sender that the message could
delivered. The sender can then decide whether or not to retry. At the same tim
email system may decide to let the recipient make that decision, and inform th
ient of the message and its garbled nature. The recipient can then decide how
handle the situation, either by attempting to ungarble the message, or simply
a retransmission of the request.

Enter MOM.
A message-oriented system, as its name implies, is one that uses discrete m

between client and server (although these terms aren’t exactly correct in this sit
to communicate, much as individuals in a corporation use email to communic
corroborate. The sender creates a message, and sends it to the recipient’s inpu
which accepts the message. At this point, the first phase of the conversation i
plete, with no expectations left on either side. The recipient can respond,
depending on what it chooses to do.

Although a number of MOM systems exist, including IBM’s MQSe
Microsoft’s MSMQ, Java presents Java Message Service (JMS), which presents
mon interface and API for using any messaging system. In effect, JMS pro
Façade interface over any and all messaging systems. A messaging system that p
a JMS API is called a JMS provider.

In this manner, JMS allows the maximum amount of vendor flexibility:

One of the principal advantages this offers is the notion of disconnected
a client can physically disconnect from the server or network, and send reque
persistent queue of messages for later transmission and receipt. This means t
software using the middleware no longer has to worry about the connectednes
client; the client simply sends the message.

“Some systems are capable of broadcasting a message to many destination
Others only support sending a message to a single destination. Some system
provide facilities for asynchronous receipt of messages (messages delivered t
a client as they arrive). Others support only synchronous receipt (a client mu
request each message). Each messaging system typically provides a range of se
vice that can be selected on a per message basis. One important attribute is th
lengths to which the system will go to insure delivery. This varies from simp
best effort to guaranteed, only once delivery. Other important attributes ar
message time-to-live, priority and whether a response is required.”

Java Message Service Specification 1.01a p. 1

435

The drawback, of course, is that if the request is one requiring an immediate
response, the client needs to be written in such a way as to tie the response to the
request. This means that an inventory system, for example, can be built with JMS, and
the salesman running the client-side application doesn’t have to be connected to the

 and as
 to the
discon-
is “am-

 imple-
do so.
mobile
g data,
e or in
mobile
its own
ssifieds
e agent
factory
 call to
doesn’t
duct its
g itself

, where
e mean
e from
 other

r when

 object
ber, it

quired.
e code

and no
r server
ntified
ortant
 to the

Neward15_06_12.fm Page 435 Tuesday, June 13, 2000 12:17 PM
TECHNOLOGIES

Internet to process an order. Instead, the JMS system queues up the message,
soon as the JMS provider is able to make the send, it passes the message on
server, which processes the request and sends a reply (or not). Try this sort of
nected operation with RMI, CORBA, or DCOM, and you’ll have to manage th
I-connected?” differentiation yourself.

15.3.8 Objects across the wire: Mobile objects

As its name implies, a mobile object is free to move from its current process or
mentation space into another one with few, if any, restrictions on its ability to

One key aspect to understand is the difference between mobile objects and
agents. A mobile object is an object, both executable code and its accompanyin
that can migrate from one process space to another, either on another machin
a separate process on the same machine. A mobile agent is a specialized form of
object, one that contains the necessary intelligence to understand and direct
course. For example, a mobile agent might be dispatched to an auction or cla
site with orders to find Sacramento Kings playoff tickets for under $100; th
would also contain the necessary data to complete the transaction once a satis
result is found, perhaps the user’s credit card number or a phone number to
allow humans to complete the transaction. This is an “intelligent” agent, and
necessarily imply mobility. The same agent, for example, might be able to con
search entirely from a remote client/server approach instead of physically pickin
up and moving to the server site.

Mobile objects take the concept of the distributed object to one extreme
an object is completely location-independent, but location-specific. By that, w
that the object lives in one and only one JVM, but that exact JVM can chang
one moment to the next. The mobile object cannot be seen from any other JVM
than the one in which it currently lives, but may move (either when called o
told to) to that same JVM as necessary to complete its business.

Mobile objects offer a number of advantages over remote procedure call or
request broker systems. Because the object is always local to its clients (remem
can’t be seen outside of its current living space), no stub or skeleton code is re
When the object moves, the code to execute the object moves with it. Because th
always moves with the object, no deployment issues are at stake—no stubs
skeletons means no need to make sure that code exists on both client and/o
environments. Encapsulation can be preserved, because the object can be ide
through a well-known interface and nothing more specific. And, even more imp
in high-traffic distributed object systems, network bandwidth can be reduced
minimum necessary to transmit the object itself and nothing more.

EWARE

Consider, for example, a mobile transaction object in a database system. Instead
of opening a transaction space on the server, the client creates a mobile transaction
object on the client. It loads up the transaction object with the requested changes
to the database entities by making the changes to the transaction object itself. Then,

saction
equests
 move
 object
ion for
and no
mitted

cause it
a call

 be exe-
ased or
d with

ect that
nality;

-object
objects
bject’s
ow the
t it can

creased
pposed
educed
ample,
e server
ly does
ore, so
ains on
 object
g it all

ending
atabase
s been
. (SQL
recisely

Neward15_06_12.fm Page 436 Tuesday, June 13, 2000 12:17 PM
436 CHAPTER 15 MIDDL

when the client wants to commit the entire transaction, the mobile tran
object picks itself up, moves to the server, and executes each of the database r
directly on the server. If one of the requests fails, the transaction object can
back to the client with the reason for the failure; if it succeeds, the transaction
returns with the success indicator. If the client needs to cancel the transact
any reason, it simply throws away the transaction object before it is sent,
server activity was wasted on a transaction that wasn’t ever going to be com
in the first place.

The mobile object paradigm works well for object-oriented developers be
is inherently object-based. Both RPC and ORB systems are functionally based—
to a remote object involves sending the parameters to the call across the wire to
cuted over there, and retrieving the return value back over here. The RPC-b
ORB-based object, despite the appearance it tries to present of being colocate
the client, consists of two parts: a local Proxy object, and the remote Server obj
does the actual work. A mobile object, on the other hand, has no such dual perso
it is either local or not there.

The mobile object paradigm also fits in well with the encapsulated thread
concept discussed in chapter 4 and other Java Threading discussions. Just as
can now be active, with a Thread tied specifically to the object to execute the o
code, now the object can use that Thread to move from process to process. N
object can not only execute independently of other objects in the process, bu
operate independently of process boundaries as a whole.

One big disadvantage to the mobile object concept, however, is the in
overhead of transmitting the object overhead from one process to another as o
to making a standard distributed call. This sounds contradictory with the r
bandwidth discussion, but it depends on the context of the discussion. For ex
for a one-shot request-response protocol such as HTTP, moving the object to th
and back again for that one request is horribly inefficient. Remember, not on
the object’s data need to be moved, but if the object has never been there bef
may the object’s code. The payoff comes in two forms: when the object rem
the server to conduct a number of requests one-after-the-other, and when the
can conduct filtering or other processing on the server instead of having to brin
back to the client.

Consider the mobile-object database system discussed earlier—instead of s
the ResultSet back to the client for the client to filter, the mobile-object d
request can instead filter it on the server. Then, after the appropriate data ha
found, the mobile object moves back to the client with its reduced data set
experts will scoff at this simplified example, since well-written SQL can do p

437

the same sort of filtering, which accomplishes the same result: filtering the data on the
server. Typically, however, database systems can’t apply a filter across multiple data-
bases, where a mobile-object system could—load a result set from one database, check
it against the results from another database, and bring the reduced result set back to

mobile
s, then

bject—
d mali-
answer
tranet.

d (code
irus, or
g with

 of the
 above.
ests or
ontains
rver, to
mplate
 moves
 on the
 object
r until

tomers

llection
e server
e gate-
 servers
ith the

failover
 object
riod of
 server.
 servers
f-access
t’s type
he mail
servers)

Neward15_06_12.fm Page 437 Tuesday, June 13, 2000 12:17 PM
TECHNOLOGIES

the client. A better example might be a POP3 mobile object system, where the
object journeys to the server, applies its filter rules to filter out spam message
returns only those messages not filtered out.)

Another particularly sensitive disadvantage is the very notion of a mobile o
obtaining code from another source to be executed on this machine. This, if use
ciously, is a huge security hole, and one which mobile object vendors have to
before they can be taken seriously for anything outside of a well-protected in
Because the mobile object server cannot necessarily discern good code from ba
that starts deleting files across the hard drive could either be a mobile-object v
a periodic sweep-the-garbage daemon), extreme care is necessary when workin
mobile objects in anything but the most trusted of environments.

Mobile object systems have tremendous possibilities completely outside
mobile agent arena. Mobile objects can be used for transactioning, as described
A mobile object can contain the necessary data to apply a variety of requ
demands on a variety of different servers—for example, a mobile object that c
a single email template request. The mobile object first moves to a database se
execute a set of SQL statements to obtain a list of customers to whom the email te
will be sent. After storing the results set into the mobile object, the object then
to the email system, generating a single email whose contents may vary based
data retrieved from the result set. Once the emails have been sent, the mobile
can remain on the server until a response is received from each email recipient, o
delivery has been guaranteed, and returns to the client with a list of those cus
whose emails failed, or whose responses were received by a certain date.

Mobile object systems also offer some load-balancing opportunities. A co
of servers is set up, each with a mobile object server running on it, and a singl
is designated as the gateway server. Mobile Request objects are forwarded to th
way mobile object server, which then takes note of the CPU loads on each of the
in this primitive cluster, and dispatches the incoming mobile object to the one w
lowest CPU load. The same approach can be taken to provide a limited form of
support—an object, upon receipt, is first dispatched to the primary mobile
server. If it fails to respond, or the mobile object fails to return after a certain pe
time, the incoming mobile object can be redispatched to a secondary or tertiary

This collection of mobile object servers also provides the ability to hide
from public access. Incoming mobile objects are dispatched to a single point-o
mobile object server, which then examines the actual incoming mobile objec
and redirects the object to another server. In this manner, the database server, t
server, and other machines with sensitive data (including distributed object
can be hidden from public view.

EWARE

Lastly, the mobile object concept offers disconnected operations, a capability that
no RPC or ORB system can match. Because the mobile object’s network bandwidth
comes in one whole shot, and requires no further connection back to its sender, should
the network go down between the sender and the recipient, the mobile object isn’t

p until
 entire
ect can
cceeds.
ference
, we’ve
able to
, we’re
essfully
ncern)
mpt to

 wide-
egin to
tability
daries.

e. And,
ch Java
ed.
 over a
ave the
m one

d sends
cipient
 by the
. If the
 loaded
 repre-
ly cre-

he only
cution
ough a
te once
ansfer.

Neward15_06_12.fm Page 438 Tuesday, June 13, 2000 12:17 PM
438 CHAPTER 15 MIDDL

adversely affected. In fact, it will continue to operate just as it normally would u
the point it needs to return. Then, rather than being forced to abandon the
operation, as might be necessary with an RPC or ORB system, the mobile obj
sleep for a few minutes, hours, or days, periodically trying to move until it su
In an unreliable or unguaranteed network, this can mean the crucial dif
between 99.9 percent reliability and 50 percent reliability. By doing this
reduced the vulnerability of the system to the network. Instead of being vulner
outages the entire time the client is attempting to communicate with the server
now only vulnerable during the object’s dispatch. Should the object fail to succ
transfer, the object (and its inherent state, which is the far more critical co
remains alive and well in its original process space. The object can then atte
retry right away, with no loss of service except a bit of time.

Java’s suitability for mobile objects

Mobile objects have been around in research circles for years, but not until the
spread acceptance of Java as a real development language did mobile objects b
gain credibility as an enterprise production system option. Java’s inherent por
allows for mobile object systems to transcend machine/operating system boun
Java’s Serialization support allows for easy transference of objects across the wir
to top it all off, Java’s ClassLoading mechanism offers a strong model by whi
can bring new code into the system and unload it again when necessary or desir

In fact, if you stop to think about it, by combining Object Serialization
Socket with the SocketClassLoader system discussed in chapter 6, you already h
basic makings of a mobile object system. The object, when it wishes to move fro
JVM to another, opens a connection to the recipient JVM on a given Socket, an
its class name and a Serialized representation of itself across the wire. On the re
end, the mobile object server tries to instantiate an instance of the class given
class name sent using a SocketClassLoader that points back to the sender’s JVM
recipient has the code for the mobile object, the rules of Java 2 say that it will be
before asking the sending JVM; if not, the sending JVM will send the bytecode
sentation. The recipient then deserializes the object representation into the new
ated object, and the object has suddenly moved from one JVM to the other. T
tricky part at this point is getting the newly transferred object to restart exe
within the method which caused the object to move; this can be achieved thr
variety of ways, including having the sender include a method name to execu
the object is transferred, and leaving it to the object to deal with its sudden tr

439

Mobile object basics

Currently, two mobile object implementations are in wide use: the Voyager system
from ObjectSpace, and the Aglets toolkit from IBM. The Voyager toolkit enjoys bet-
ter name recognition and has better commercial recognizability, owing principally to

ly ven-
ide fol-
.
ike the

s it the
ove the

 Aglet-
 Aglet.

Neward15_06_12.fm Page 439 Tuesday, June 13, 2000 12:17 PM
TECHNOLOGIES

its position as the product of the only widely known vendor (perhaps the on
dor, period) of a mobile object system, but the Aglets toolkit also enjoys a w
lowing, and IBM’s work in (and support of) Java is certainly nothing to ignore

Implementing a mobile object in the Aglets toolkit looks something l
following:12

public class CreationChild extends com.ibm.aglet.Aglet
{

public CreationChild()

{
// Print to the console...

}

public void onCreation(Object init)
{

// Print to the console...
}

public void run()

{
// Print to the console...

}

}

In the Aglets toolkit, a mobile object must extend the Aglet class; this give
basic functionality to move from one JVM to another. To actually create and m
Aglet, use something like the following:

public class CreationExample extends Aglet

{

public void run()
{

try

{
getAgletContext().createAglent(

getCodeBase(), “CreationChild”, null);
dispatch(new URL(“atp://some.host.com/context”));

}

catch (Exception e)
{ System.out.println(e.getMessage()); }

}

}

In this code, the CreationExample needs to extend Aglet in order to obtain the
Context (the host for all Aglets running in this process) in order to create the

12 Programming and Deploying Java Mobile Agents with Aglets, pp. 43, 54

EWARE

The createAglet method expects an array of Objects in the third parameter,
which it then directly passes on as the parameter to the created Aglet’s onCreation
method. After the Aglets’ onCreation is called, it’s given its own Thread to operate
within, and the Aglet’s run method is called. The dispatch method then does the

ansport

mobile
to, and
essfully
er run-
r server

ser and
 and

toolkit,
re nec-
remote

obility
des the
ethods
areness
ing the
 object

is that
ed sys-
ect, on
r ORB
xy, the
 on the

.0

Neward15_06_12.fm Page 440 Tuesday, June 13, 2000 12:17 PM
440 CHAPTER 15 MIDDL

actual move of the object to the remote machine, in this case using the Aglets Tr
Protocol (ATP) to move the Aglet from the current host to the remote host.

Implementing a mobile object in Voyager13 is as simple as calling the
object’s moveTo method with the URL of the host-and-port to send the object
optionally the name of the method on the class to call when the object is succ
transferred. The code below14 creates a StockMarket object on the Voyager serv
ning on port 8000 on the machine named “dallas”, and moves it to the Voyage
running on port 9000 on the machine named “tokyo”:

IStockmarket market =

(IStockmarket)Factory.create(“Stockmarket”, “//dallas:8000”);

// . . .

IMobility mobility = Mobility.of(market);

mobility.moveTo(“//tokyo:9000”);

In essence, it’s that simple. The IStockmarket interface is written by the u
the Stockmarket class is a custom class that implements the IStockmarket
Serializable interfaces. Note how Voyager, in comparison to the Agelts
requires no other hooks or base classes in your class implementations. None a
essary—Voyager will synthesize the necessary code where required to enable
communications, as we discussed in chapter 2.

Clients (or the objects themselves) can also receive notifications on m
events by implementing Voyager’s IMobile interface, which in turn provi
preDeparture , preArrival , postArrival , and postDeparture m
for Voyager to call as each event takes place. This capability gives the object aw
of the environment into which it has been moved, which can be useful in giv
object some self-awareness or self-direction capability (in short, moving the
closer to becoming a mobile agent instead of just a mobile object).

Mobile object design

One of the issues that immediately confronts the mobile object developer
designs must accommodate this shift in thinking. Server objects in a distribut
tem are hung out off the server system for anyone to find them; a mobile obj
the other hand, lives in one and only one process. Where a client in an RPC o
system creates a connection to the single server object and obtains its own pro
client in a mobile object system fires his own object at the mobile object server

13 These examples are using Voyager 2.0; as of this writing, ObjectSpace had released Voyager 3
14 ObjectSpace Voyager Core Technology 2.0 User Guide, p. 40

441

server machine, and waits for the object to return with the completed request. Or the
client sends some sort of lightweight message to a server object (by using a messaging
call, in Voyager, or perhaps by dispatching a lightweight mobile object) and obtains
his own mobile object server back. Regardless, this is now completely different from

t-based
ch and
 to the
 object

he very
aking

o every
 on the
 a new
etwork
 object
bound-
pers to
ing no
t fits in

 center
eeds to
en join
 of the
ng the
 shared
sses the
ling for

annels,
 to cre-
ions, a

y form.

oment,
ave all

Neward15_06_12.fm Page 441 Tuesday, June 13, 2000 12:17 PM
TECHNOLOGIES

what RPC/ORB developers are accustomed to.
This isn’t to say that it’s any more difficult to work with a mobile-objec

distributed system; it’s only to say that it’s different, and requires a new approa
new way of thinking. Instead of thinking in terms of opening connections
server, think in terms of sending an object to make a request, and receiving an
containing the reply in return.

15.3.9 Objects across the wire: shared objects

Shared objects, such as mobile objects, take the object-oriented paradigm to t
edges of the distributed world, but in the opposite direction. Instead of m
objects move across the network one node at a time, a shared object is visible t
node across the network, simultaneously and asynchronously. If one process
network modifies the shared object, every process sees that modification. If
object is placed into the shared space by one process, every node on the n
immediately knows about it and has access to it. In short, where the mobile
paradigm told developers to ignore the limitations of machine and/or process
aries by granting the object mobility, the shared object paradigm tells develo
ignore the limitations of machine and/or process boundaries by simply pay
attention to the middleware in between. It’s an exciting concept, and one tha
even more nicely with the general notion of object-oriented development.

Shared object basics

While a number of shared object implementations are available, all basically
around the same concept: in order to share an object across the wire, space n
be created into which these objects can be placed. Clients (peers, actually) th
that particular space, and request objects from the space to obtain a local copy
shared object. Once retrieved, clients can modify the shared copy by setti
object’s value via its accessor/mutator (get/set) methods, and the underlying
object system takes care of the details from there. The next time a client acce
shared object, its new values are presented, without having to worry about pol
its new values or making a call to the remote server object.

Some systems also carry the more primitive/basic notion of information ch
to which clients can subscribe for messages sent down the channel. As opposed
ating a shared canvas on which each client is free to make its own modificat
channel creates a public chat room to which clients can make comments of an
The difference is subtle.

Any time an object can be modified by more than one entity in a single m
synchronization issues arise. Until now, synchronization/concurrency issues h

EWARE

been within a multithreaded context—multiple threads attempting to access and/or
modify a single instance at the same time. Within Java, this is corrected by using the
synchronized keyword, and by using the Object methods wait and notify or
notifyAll to guard against sensitive areas of code being accessed by more than one

f a par-
hreads
s. This
 shared
oncur-
 system
pically,
 a lock
rrently

ailable:
.alpha-
roduct
 of the
oolkit.

ontext,
rder to
 a clus-
ecause

, all the

ontains
bject-

ent. In
s this is
reates a
text is
shared

haring-

Neward15_06_12.fm Page 442 Tuesday, June 13, 2000 12:17 PM
442 CHAPTER 15 MIDDL

Thread at a time.
Unfortunately, Java monitors are entirely intraprocess; this means that i

ticular Thread has a lock on an instance, that lock is good for that JVM only. T
running in separate JVMs have no idea the lock—or even the instance—exist
raises a distinct problem when data is being shared across multiple JVMs, as
objects are. A shared-object system must provide for some kind of cross-JVM c
rency synchronization, or the same thing will happen within the shared-object
as happens in unsynchronized multithreaded JVM applications—chaos. Ty
this answer is to provide, explicitly or implicitly, the ability for a client to obtain
on a given shared object, to which no other client will be given until the cu
holding client releases it.

Four implementations of the shared object approach are currently freely av
IBM’s SDO (Shared Data Objects) from the AlphaWorks IBM site (www
works.ibm.com), ObjectSpaces’s Subspace mechanism within its Voyager p
(www.objectspace.com), Sun’s JavaSpaces implementation that comes as part
Jini toolkit (www.javasoft.com), and Sun’s independent Java Shared Data T
(http://java.sun.com/products/java-media/jsdt/index.htm).

IBM Shared Data Objects

In the IBM SDO toolkit, shared objects must be registered within a SharingC
which runs on a particular server. Because an SDO server must be running in o
permit the SharingContext to be found and connection established, SDO is not
tered object-sharing approach as much as a client/server object-sharing approach. B
of that, SDO will not offer clustering-reliability benefits—if the server goes down
shared objects within the SharingContexts held by that server go down with it.

The starting point of the SDO toolkit is the ObjectFactory class, which c
a number of static methods to retrieve various SDO objects; for example, the O
Factory class must be used to create the SharingContext for this particular cli
fact, the ObjectFactory doesn’t create the SharingContext on the server (unles
the first client to attempt a connection with the given SharingContext), but c
Proxy to the SharingContext within this client’s JVM. Once the SharingCon
retrieved, objects implementing the SDO SharableObject interface can be
(placed into or copied from) the SharingContext.

To connect to a particular server and retrieve an object “Foo” from the S
Context “Bar”, for example, the following code would be used:

String userName = “Joe”;

SharingContext ctx = ObjectFactory.createSharingContext();

443

ctx.join(“server”, “Bar”, userName, userName, null);

SharableObject obj = ctx.share(“Foo”);

The join call has several forms; the above call uses “server” as the server to connect
to, “Bar” as the name of the SharingContext to join, “Joe” (inside userName) as the

als (for
xt, the
ate the
ontext,
:

 clients
d, and

ve even
ead, by
pal dif-
 within
onsible
so will

Session
e, port,
tations,
 differ-
P com-
I calls.

ible via
uld not
 it.
ed Ses-
r ORB

t-server
 appro-
Session
mitted,
 either
 or can
outside

Neward15_06_12.fm Page 443 Tuesday, June 13, 2000 12:17 PM
TECHNOLOGIES

user’s authentication name and nickname, and null as the user’s credenti
security purposes). To create an object to be shared within the SharingConte
various forms of the create<objectType> methods may be used to cre
Sharable instance; the instance still has to be registered within the SharableC
however, before its state is copied to all clients that will look to register with it

SharableString stringObj = ctx.createSharableString();

stringObj.setValue(“This is a shared String”);

stringObj.share(ctx, “Foo”);

Each SharingContext has a limited lifetime—it exists only so long as it has
connected to it. Once the last client leaves the SharingContext, it is destroye
any shared objects within it are lost. If the shared objects need to remain ali
while no clients are connected, a PersistentSharingContext can be used inst
calling ObjectFactory’s createPersistentSharingContext . The princi
ference between this and the nonpersistent version is that any shared objects
the SharingContext will never die—instead, clients will be individually resp
for destroying the shared instances within the SharingContext. Failure to do
result in bloated SharingContexts, but no other detrimental effects.

Java Shared Data Toolkit

JSDT’s notion of shared space is a Session object, and peers access (or create) a
by using a specialized form of URL to identify a unique Session by host nam
connection type, and name. JSDT, unlike the other shared object implemen
explicitly allows for varied communication wire protocols. JSDT provides four
ent implementations for the communications layer: TCP/IP sockets, using HTT
mands, using an external lightweight reliable multicast package (LRMP), or RM
Note that a Session using one of these communications layers is not access
another communications implementation; so, for example, a socket Session wo
be accessible to a Client wishing to use the RMI protocol to communicate with

JSDT shared objects also have to have a centralized point by which creat
sions can be found by those wishing to connect to the host, just as RPC and/o
systems have. (This means JSDT is similar to IBM’s SDO, in that it is a clien
object-sharing system.) Correspondingly, JSDT requires that an instance of the
priate communications layer’s Registry be running when attempting to create a
on that host. Multiple Registries for different communications layers are per
but multiple Registries for a single communications layer are not. Clients can
rely on the appropriate Registry instance to be run outside of the current JVM,
create an instance of the Registry within the local JVM. Running the Registry

EWARE

the current JVM requires that it be fired up as a separate process, a la the RMI Registry;
running the Registry instance inside the current JVM means that the lifetime of the
Registry is tied to that of the current Java process, and since only one Registry can be
running on a given host at a given time for a given protocol, all shared objects living

 single
 neces-
st one,
s, since
 down.
 Client
onsists
Client

to con-

ession”
ol, and

Neward15_06_12.fm Page 444 Tuesday, June 13, 2000 12:17 PM
444 CHAPTER 15 MIDDL

in that Registry die when the Registry goes down. For a system on which only a
JSDT application is running, this is not a problem, since the Registry won’t be
sary once the application quits. Should other JSDT applications join that fir
however, it becomes less feasible to run the Registry instance within the proces
other applications may depend on that Registry; when it goes down, they all go

Objects which wish to participate in JSDT are required to implement the
interface if they wish to create or access shared objects. The Client interface c
of two methods, getName and authenticate . The first identifies the
uniquely within the Session, while the second gives the shared object a chance
trol which Clients are permitted to join the Session (or objects therein).

The following code demonstrates a Client accessing the Session “TestS
running on the host “localhost” on the port 4567, using the socket protoc
accessing the ByteArray called “Test”:

import com.sun.media.jsdt.*;

import com.sun.media.jsdt.event.*;

public class ClientMain

implements Client

{

private Session m_session;

private String m_name;

public ClientMain()

{

m_name = "TestClient" + System.currentTimeMillis();

}

public static void main(String[] args)

{

//

ClientMai n m = new ClientMain();

// Create the JSDT URL

URLString url =

URLString.createSessionURL("localhsot", 4567, "socket",

"TestSession");

// Connect to the Session; if the Session isn’t there yet,

// spin in a loop, sleeping every 5 seconds, until it is

boolean created = false;

try

{

// Connect

while (created==false)

{

445

if (SessionFactory.sessionExists(url))

{

m_session =

SessionFactory.createSession(m,

url,

e’ll use
 “local-
g is an
correct

Neward15_06_12.fm Page 445 Tuesday, June 13, 2000 12:17 PM
TECHNOLOGIES

true);

created = true;

}

else

{

try

{

Thread.sleep(5 * 1000);

}

catch (InterruptedException intEx)

{ }

}

}

// Get the ByteArray object

ByteArray byteArray =

m_session.createByteArray(m, "TestBA", true);

Object obj = byteArray.getValueAsObject();

}

catch (JSDTException jsdtEx)

{

jsdtEx.printStackTrace();

}

catch (Exception ex)

{

ex.printStackTrace();

}

}

//===

// Client methods

public Object authenticate(AuthenticationInfo info)

{

return null;

}

public String getName()

{

return name;

}

}

In the preceding code, main , after creating the ClientMain object instance w
to access the shared objects, first creates a JSDT URL that references the host
host”, on port 4567, using sockets, and the Session “TestSession”. URLStrin
assistant class that provides several static convenience methods for building
JSDT URLs; the above URL, when written out as a String, appears as:

EWARE

jsdt://localhost:4567/socket/Session/TestSession

The URLString method createURLString simply builds them with less chance of
a typo introducing a bug.

Next, the main method attempts to connect to the Session given by the above
 deter-
t sleeps
 could

Session
 is col-
equest-

ion
ishes to
ameter
eed not

ook up
f these
ate-
enting

data-
m any
onized.
tempts
stance

alizable

SDT—
ner ,
pe:

d, or a
istener
ruction
register

Neward15_06_12.fm Page 446 Tuesday, June 13, 2000 12:17 PM
446 CHAPTER 15 MIDDL

URLString. It uses the sessionExists method of the class SessionFactory to
mine whether the Session given by that URLString is actually available; if not, i
for five seconds before trying again. Note that this isn’t required; the method
simply call createSession without checking to see if it exists already. If the
didn’t exist, createSession would go ahead and create it. Remember, this
laborative computing: any Clients in the Session are peers, not simply clients r
ing actions of a server.

Once the Session exists, ClientMain connects to it by calling createSess
on the SessionFactory class. The createSession call takes the Client that w
join/find/create the Session, the URLString of the Session, and a boolean par
indicating whether the Client wishes to immediately join the Session. Clients n
join it right away; they may have good reason not to just yet.

Once the Client has joined the Session, it can participate in Channels, l
or create ByteArrays, attempt to obtain Tokens, or listen to events fired by any o
objects. Creating or joining a Channel is as simple as calling the Session’s cre
Channel method, and listening for data sent down the Channel means implem
the ChannelConsumer interface and providing an implementation to the
Received method. Note that because dataReceived can be called fro
Thread in the system, dataReceived must be thread-safe and/or marked synchr

In the ClientMain sample, after joining the TestSession Session, main at
to obtain the ByteArray named “Test”, and store its value to the local Object in
obj . ByteArrays can store either raw arrays of Java byte data, or store Seri
Object data.

Interested parties can also implement one of the Listener interfaces in J
SessionListener , ChannelListener , ByteArrayListener , TokenListe
or ClientListener , and register themselves with the appropriate object ty

public class MyListener

implements ByteArrayListener
{

// . . . i mplement the ByteArrayListener methods here
}

ByteArray ba = session.createByteArray(client, “Test”, true);

ba.addListener(new MyListener());

Now, whenever the ByteArray named “Test” is joined by a Client, or is change
Client leaves, is expelled from, or is invited to join the ByteArray, the MyL
object will be notified. (Clients wishing to be notified on the construction or dest
of a ByteArray will need to implement the SessionListener interface and
themselves with the Session itself.)

447

Shared object design

As with the mobile object approach, shared object design requires a bit of forethought
on the part of the system architect in order to create a successful software system. In
some ways, shared objects make the architect’s life easier, by allowing the design to

th. No
actory
ate the

see it.
sider a

presen-
serious
s (that
ividual
s. Yet a
ecause
some

-object
jects to

specific
r those

no per-
ross all
e must
 up, all
he data
lerance
emory
.
tations
e peer/
Session
nected
erate a
reate a
so that
ct type
ooking
ct, and
hich in

Neward15_06_12.fm Page 447 Tuesday, June 13, 2000 12:17 PM
TECHNOLOGIES

focus on the object model, and not on the middleware technology undernea
more focusing on client or server arrangements, no more time spent building F
objects that in turn created the objects in which clients are interested. Simply cre
object to be shared in a shared object space, and let every node on the network

Unfortunately, this carries with it its own set of drawbacks, as well. Con
classic three-tier system consisting of the usual database, business object and
tation layer. Simply placing all of the database objects into a shared space has
ramifications regarding scalability—if the database grows to hold a million row
is, a million separate entities, each of which will probably translate into an ind
object), a million objects in the shared object space will easily kill most server
traditional RPC/ORB system can deal with such a large-sized database easily, b
it is understood that not all of these objects will be needed at the same time—
can be safely removed from working space and cached off to disk. If a shared
system attempts to do the same sort of caching, then the act of moving the ob
and from disk is exposed to clients.

Worse yet, because any peer can modify the objects in the shared space, a
listener must be established to listen to changes to any of these objects, and mirro
changes back to permanent storage (database, file, OODBMS, and so forth). If
manent storage system is in place, the system runs a risk of a power outage ac
the machines bringing down the system's data. Interestingly enough, the outag
affect all of the machines participating in the shared space; if even one remains
of the data will be preserved, since that machine will have localized copies of all t
stored in the shared space. This has some interesting ramifications for fault-to
and failover, but equally disturbing ramifications about the amount of core m
that must be available on each system participating in the shared-object session

Additionally, one of the problems faced by several shared-object implemen
is the assumption that code for the shared object is already present within th
client’s name space. For example, if I try to put a custom object up into a JSDT
(using the socket type), and the code for the object isn’t present in another con
Client’s JVM, that Client, when it attempts to reference the object, will gen
ClassNotFoundException . One approach to working around this is to c
specialized ClassLoader Session that in turn is shared across all peers, as well,
any object type placed up into a Session can also have the code for that obje
placed up in the corresponding ClassLoader Session, as well. Then, any Client l
to obtain the object can ask the ClassLoader Session for the code for that obje
everybody is back on the same page. (Because JavaSpaces is based on Jini, w
turn uses RMI as its communications layer, JavaSpaces lacks this problem.)

EWARE

Just as mobile object systems required some special attention to particular aspects
of the design, so do shared object systems. In the past, using RPC/ORB systems, we
were able to get away with a certain amount of laziness and sloth regarding encapsu-
lation of the data-access layer because the RPC/ORB system hid the actual implemen-

us that

mits us
e’d like
hnolo-
ely, our

 to cre-
ck and
ity and
y value,
hecked
clumsy,
with.

er RMI
menta-
DBMS)
unting
roach.

f RMI.

ft net-
 offers
 in an

such as
alEdge
 to call
proach:

Neward15_06_12.fm Page 448 Tuesday, June 13, 2000 12:17 PM
448 CHAPTER 15 MIDDL

tation from clients by nature. A shared object system, however, doesn’t offer
implicit shield, and so the design will need to do so instead, if necessary.

15.4 EMPLOYEE MIDDLEWARE MODELS

Going back to our Employee system, we’re still looking for a solution that per
to access the IEmployeeModel instance from any JVM, from any machine. W
to take advantage of the opportunities offered by the various middleware tec
gies, but which technology we finally use depends in large part on what, precis
goals are in distributing the system. Our options include:

• Sockets
The old Internet standby. We use the Serialization techniques from chapter 7
ate objects in a RemoteObjectStorage instance, and simply pass them ba
forth. What this approach offers in simplicity (at first), it lacks in scalabil
really lacks in connectivity—because all the objects are being passed around b
it means that any changes made locally will not take effect until they are c
back into the server, and all clients immediately obtain the new instance. It’s
awkward, and highly inefficient, but sometimes, it’s all you have to work

• RMI
The old Java Client/Server RPC standby. We can build a standard client/serv
(either RMI/JRMP or RMI/IIOP, it won’t matter much to the actual imple
tion) server that in turn wraps an IEmployeeModel (either Hashtable or R
instance for the actual storage. This is the most popular (at least when co
example implementations in books, magazines and conference papers) app

• CORBA
Another version of the Client/Server-RPC system, using CORBA instead o

• DCOM
Probably not an option in a heterogenous system, but on an all-Microso
work, given DCOM’s integration into the Windows OS layers, this
opportunities that CORBA or RMI can’t. DCOM will really fall down
Internet-distributed system, whereas RMI or CORBA will shine.

• CORBA/RMI/DCOM Hybrid
This offers excellent options. Using a commercial COM-CORBA bridge,
that offered by Iona (www.iona.com), Jintegra (www.linar.com) or Visu
(www.visualedge.com), we can “glue” COM and CORBA objects together
transparently from one to the other. This offers us a best-of-both-worlds ap

449

use RMI or CORBA to reach across heterogenous systems, and COM/DCOM to
integrate more tightly into a Windows environment.

• RmiJdbc 2-tier RDBMSModel
By placing the RDBMSModel on each client, and using the RmiJdbc JDBC

onnec-
 isn’t a
hidden

build a
ployee,
nd and
usiness
Model.

pdates/
pdates

n event
nt data

t could
estion,
ack. It
higher
onality
 either
s when
ve any
me up
or this

Clients
in turn
t hosts

ibilities
 conti-
y grow

Neward15_06_12.fm Page 449 Tuesday, June 13, 2000 12:17 PM
EMPLOYEE MIDDLEWARE MODELS

driver to reach across the network to the server, we can gain very quick c
tivity without requiring any additional development. Unfortunately, this
true n-tier model, but since all the details of the actual model used are
behind the IEmployeeModel interface, clients neither know nor care.

• Shared-object model
Despite the inherent scalability restrictions, it’s certainly possible to
JSDTModel or SDOModel that places all the business objects (IPerson, IEm
and so forth) into a shared space for any and all clients (peers, actually) to fi
modify. A designated listener peer can then listen for changes to each of the b
objects and store them back to some permanent storage, such as the RDBMS

• JMS
Using JMS, we can define a message-based system—clients would send u
change messages to the JMS Server, which would then apply the changes/u
to the centralized storage system. Optionally, JMS could then broadcast a
to registered parties, allowing those clients interested in up-to-the-mome
to be aware of the change.

• Mobile-object model
A mobile-object system could be used in a couple of ways. First, a clien
fire off to the server a mobile object request for a copy of the object in qu
which would populate it with the data requested and send the object b
incurs an additional amount of overhead, since mobile-objects incur
bandwidth costs to move around. Worse, this sort of request-reply functi
is more a client/server approach, and won’t suit mobile objects well. We
decide that each business object is its own mobile object (What happen
two clients want the same business object?), or we decide that we can ha
number of mobile objects representing a business object (we have to co
with some way to keep them all synchronized regarding their contents). F
type system, the mobile-object model may not be the best choice.

• Client/Server-to-Shared-object/Federated-system model
This approach actually comes dazzlingly close to a clustered server system.
use a traditional client/server approach to make calls on a server, which
is part of a cluster of machines (a Federation, according to Nelson15) tha
a shared-object space containing all of the objects. It offers exciting poss
in a number of ways: the actual cluster can be distributed across entire
nents, and the chances of all of the machines going down simultaneousl

15 Programming Mobile Objects in Java, p. 581.

EWARE

exponentially more remote as each new machine is added to the Federation.
Permanent storage may even be unnecessary, since the only advantage of perma-
nent storage is the retention of data after power is removed from the system;
with a Federation of machines, chances are likely that power will never be

arries a
s alive,
jects to
 across
e clus-

ir local
unica-

equests
JMS to
g. This
nology,
he up-
 on the
object;
r regis-
 choose
lays all
ne—it
d pro-
DP/IP

recisely
stening
dth on
taining

o such
remote
oint of
g JSDT
d. This
dwidth
uitable
o share
are the
tive.

Neward15_06_12.fm Page 450 Tuesday, June 13, 2000 12:17 PM
450 CHAPTER 15 MIDDL

removed from all machines at any time. Because each machine in turn c
complete copy of the entire shared space, so long as one machine remain
all machines can connect back and restore the complete collection of ob
their local memory. In addition, because these machines can be scattered
a variety of locations, if a communications breakdown occurs, shattering th
ter, the individual members of the cluster can continue to support the
clients’ requests, and merge the changes back together once the comm
tions breakdown is restored.

• Client/Server-JMS Hybrid model
Under this model, we use standard client/server technology to make our r
of the server, but then register listeners on event channels published via
receive notifications of modification to the objects we’re currently holdin
prevents the polling inherently required of a traditional client/server tech
and allows us to publish objects by value, while still being able to receive t
to-the-second modifications on that object. This in turn reduces the load
server: each business object no longer has to be exported as a remote
instead, we pass it by value to the client, then the client is responsible fo
tering an interest in that object’s modifications. This also allows clients to
how synchronized they wish to be; for example, a client that simply disp
of the Persons in the system doesn’t need to register an interest in each o
doesn’t care about any changes to any of them. This reduces bandwidth an
cessing necessary on both the client and the server. Further, if we use a U
broadcast system such as iBus, the actual cost of sending the updates is p
one per object update, instead of the n, where n is the number of clients li
on a TCP/IP socket. This reduces the total amount of consumed bandwi
the network channel, and in turn reduces the necessary overhead of main
these broadcast updates.

As you can see we have a variety of options. In this section, we’ll examine tw
approaches. In the first, we’ll do the standard old Java thing: using RMI to make
method calls on the server’s RMIModelServer. This is intended mostly as a p
reference rather than a recommendation. In the second approach, we’ll be usin
to hang the Employee objects off the server for shared communication all aroun
may not be the most scalable approach regarding peer memory and ban
requirements, but it is an intriguing model, nonetheless. While it may not be s
for large databases consisting of millions of objects, those systems which need t
only a few objects (distributed games, for example, typically would like to sh
same GameBoard and GamePieces objects) will find this approach very attrac

451

15.4.1 RMI implementation

The RMI model is, by far, the most popular choice for Java middleware models—it is
natural Java syntax, it is well-supported by the Java community, and its approach is
one that’s relatively well understood by Java developers. For many development

go over

 parts:
Server.
s Deco-
r actual
el (the
ossible

e RMI-
e RMI-
ects for
t RMI-
est way
h, is to
ll back
 design
 worse.
 name,
ale dis-
ct back
a state-
 proto-

ger sys-
jects in
ss pro-

s server
unlike
usiness
 all, the
 well as

Server.
easy to
similar
eption

request

Neward15_06_12.fm Page 451 Tuesday, June 13, 2000 12:17 PM
EMPLOYEE MIDDLEWARE MODELS

shops, this would be the natural approach to take. For reasons of space, we’ll
the basic concepts of building an RMI implementation, and leave it at that.

To start with, the design of our hypothetical RMI model is split into two
RMIModel, which is the client-side proxy to the other side, the RMIModel
RMIModelServer wraps an instance of IEmployeeModel to do the real work; thi
rator pattern approach allows us to use any sort of IEmployeeModel instance fo
storage. For now, the only choices are between HashtableModel or RDBMSMod
far more likely choice), but an OODBMSModel or FileSystemModel are easily p
and shouldn’t be excluded from being able to be accessed remotely.

RMIModelServer, in turn, exports a variety of RMI objects for use by th
Model clients. This means that, unlike the RMI example from chapter 5, th
ModelServer is not a stateless machine, and instead exports a number of obj
clients to connect to individually. We do this because the business objects tha
ModelServer wants to export need to be constant and always up-to-date. The b
to accomplish this, while realizing that this is going to tie up network bandwidt
export the business objects, and have the local proxies to the remote instances ca
to the remote objects on each get/set method. It’s not as scalable as a stateless
would be, but the bandwidth requirements in a stateless design would be even

Assume, for the moment, that every object changes its internal values (first
last name, SSN, etc.) every second; not an unreasonable assumption in a large-sc
tributed system. This means that for all practical purposes, clients must reconne
to the server each and every time they request any of the object’s data, which in
less system means just as many calls back to the server. By not using a stateless
col, we avoid having to send the entire object back on each call.

We can get away with the stateless approach in the GJAS RMIServerMana
tem (from chapter 5) for two reasons. First, because Services aren’t stateful ob
the same manner as are business objects, the ServerManager system fits a statele
tocol approach more easily. Secondly, because attempting to wrap a stateles
around a business objects layer is usually an exercise in complete frustration—
the GJAS model, a business objects layer is usually fraught with change as the b
adapts and modifies its product line, its customer base, and so on. That is, after
reason we build a business objects layer, so development speed of the layer, as
its maintainability, will in many cases outweigh the need for scalability.

With these points in mind, let’s get back to our hypothetical RMIModel
Since we want to create individually exported RMI objects, it’s relatively
imagine RMIModelServer’s logic. Upon each create request, it issues a
request to the wrapped IEmployeeModel instance. If the request fails, the exc
is wrapped inside a RemoteException and thrown back to the client. If the

EWARE

succeeds, the resulting business object instance is wrapped inside of an RMI equiva-
lent, exported, and handed back to the client for use from there. Upon a find
request, the entire array returned is similarly wrapped and exported. Upon a remove
request, the RMIModelServer first unbinds the object, then makes the similar call

ect will
y client
f those
me (or
 client.
objects
ul, and

nts the
call the
nected
in turn
e RMI-
source-

odel-
 from

nges to

he sort
pecifies
e could
rface to
uld the
ys have
nnects
unnec-

e RMI
of scal-
, rather
ended

Neward15_06_12.fm Page 452 Tuesday, June 13, 2000 12:17 PM
452 CHAPTER 15 MIDDL

to the wrapped instance.
By itself, this approach would be fine except once exported, an RMI obj

remain exported until the server explicitly unbinds it. This means that once an
has called for the list of all Persons, Employees, Managers, and so on, all o
objects remain bound and exported. Because that client could then require so
all) of the objects thus returned, we need to export every object returned to that
This means that, in a system containing 1,000 Persons, 1,000 RMIPerson
would be exported upon the findAllPersons call. This is obviously wastef
needs to be addressed.

Fortunately, RMI provides a useful answer. If a remote object impleme
java.rmi.server.Unreferenced interface, RMI guarantees that it will
Unreferenced interface’s unreferenced method when all clients have discon
(that is, are garbage-collected on the client-side) from the remote object. This
allows us to register the object with a low-priority Thread, running within th
ModelServer, to unbind and clean up the remote object, thus removing the re
drain that object was creating.

RMI/IIOP implementation

Thanks to the RMI/IIOP implementation from Java, we can make our RMIM
Server an IIOP-communicating object, thereby giving us access to the system
CORBA clients. To do so, as described, we need make the few cosmetic cha
RMIModelServer, and call it RMIIIOPModelServer.

One drawback, however, to using IIOP is the fact that RMI/IIOP lacks t
of Unreferenced capability that RMI/JRMP has; this is because IIOP in turn s
that no sort of garbage collection takes place across the wire, as does JRMP. W
provide a release() or finished() method on the exported Remote inte
allow clients to explicitly release their reference, but this in turn means that sho
client crash while holding a reference to the server object, that server will alwa
a reference count of one more than it should. Even if every other client disco
successfully, the crashed client’s reference can never be released, which leads to
essary server objects on the server machine.

15.4.2 JSDTModel: Shared-object implementation

The JSDTModel offers an entirely different approach to sharing data from th
model. As discussed earlier, shared-object systems typically offer less in the way
ability since all objects in the system have to reside in the shared-object space
than on disk until called for. As a result, the code presented here is not recomm

453

for a production system, at least not without some form of listener to catch modifica-
tions to each object and in turn capture the modifications to disk in some fashion.

With that in mind, let’s look at how we’re going to make this work. In many
respects, what we’re really looking to do is to take the various objects, store them into

’t need
e data.

Model,

 Hash-
various
g 15.2)

Neward15_06_12.fm Page 453 Tuesday, June 13, 2000 12:17 PM
EMPLOYEE MIDDLEWARE MODELS

the session space, and then let anybody make modifications on them. We don
to worry about persistence, disk storage, or any other concerns—just capture th
This is precisely what we did two chapters ago, when we built the Hashtable
so we’ll use that as our starting point.

JSDTModel is, as always, our IEmployeeModel-implementing class. Like
tableModel, it defines several Vectors which form the core data storage for the
business objects stored within the system. Notice, however, that JSDTModel (listin
contains several constructors.

public class JSDTModel

implements IEmployeeModel, java.io.Serializable,

Client, SessionManager, SessionListener

{

// Package-friendly data

//

Session m_jsdtSession = null;

// Internal data

//

private String m_clientName = "";

private URLString m_jsdtURL = null;

private ByteArray m_byteArray = null;

private Hashtable m_persons = new Hashtable();

private Hashtable m_employees = new Hashtable();

private Hashtable m_managers = new Hashtable();

private Hashtable m_addresses = new Hashtable();

private Hashtable m_emails = new Hashtable();

private Hashtable m_phones = new Hashtable();

private Hashtable m_positions = new Hashtable();

private Hashtable m_departments = new Hashtable();

public JSDTModel(String name, String host)

{

this(name, host, 4567, "socket", "JSDTModelSession");

}

public JSDTModel(String name, String host, int port,

String type, String session)

{

m_clientName = name;

URLString url =

URLString.createSessionURL(host, port, type, session);

boolean created = false;

try

Listing 15.2 Code for JSDTModel

EWARE

{

// Create the Registry if it doesn't exist yet; this

// should probably be in a separate process

if (RegistryFactory.registryExists(type) == false)

{

 (using
e name
 server;

Neward15_06_12.fm Page 454 Tuesday, June 13, 2000 12:17 PM
454 CHAPTER 15 MIDDL

RegistryFactory.startRegistry(type);

}

// Create the Session if it doesn't exist yet

m_jsdtSession =

SessionFactory.createSession(this, url, true);

// Put up or get the HashtableModel

if (m_jsdtSession.byteArrayExists("HashtableModel"))

{

// Retrieve it

m_byteArray = m_jsdtSession.createByteArray(this,

"HashtableModel", true);

retrieve();

}

else

{

// Put it up

m_byteArray = m_jsdtSession.createByteArray(this,

"HashtableModel", true);

submit();

}

// Add a listener to track changes to the shared object

m_byteArray.addByteArrayListener(new ByteArrayAdaptor()

{

public void byteArrayValueChanged(ByteArrayEvent e)

{

System.out.println(e.toString());

retrieve();

}

});

}

catch (JSDTException jsdtEx)

{

jsdtEx.printStackTrace();

}

}

// . . .

}

The first is a shorthand form of the second, using some predefined defaults
port 4567, over standard sockets, using the name “JSDTModelSession” as th
for the Session). Notice that there is no differentiation between client and

455

remember, in a shared-object scenario, everybody is a peer. As a result, the only differ-
entiation within the second constructor to mark the server from any connecting cli-
ents is the check to determine if the ByteArray holding the Vectors holds any data yet.
If not, then this is the first JSDTModel to connect on this host, so it establishes the

nto the
enting
, and

ct that
nticate
el also

ements
Model

n place
sponse
red up

already
T Cli-
true of

 of the

Neward15_06_12.fm Page 455 Tuesday, June 13, 2000 12:17 PM
EMPLOYEE MIDDLEWARE MODELS

(empty) Vectors into the session space.
There are a couple of JSDT-specific points to notice before we move on i

core implementation. First, notice that JSDTModel, in addition to implem
IEmployeeModel , also implements JSDT’s Client , SessionManager
SessionListener interfaces. The Client interface is obvious—any obje
wishes to participate in a JSDT Session must have a Client to identify and authe
it, and it makes sense to have the JSDTModel be its own Client. JSDTMod
wants to identify and screen out unauthorized Clients, so JSDTModel impl
SessionManager to force authentication on any Clients joining the JSDT
Session. For this model, no real authentication takes place, but having it i
makes it simple to provide it later, perhaps using PGP or other challenge-re
security measures. It also has to implement Serializable in order to be sto
into the Session space.

First, notice that our Client implementation is very straightforward:

public class JSDTModel

implements IEmployeeModel, java.io.Serializable,

Client, SessionManager, SessionListener

{

// . . .

//===

// Client methods

public Object authenticate(AuthenticationInfo info)

{

return null;

}

public String getName()

{

return m_clientName;

}

// . . .

}

The member m_name is set within the JSDTModel constructor, and we’ve
discussed the fact that we use no authentication scheme. It means that any JSD
ent is free to connect and access our JSDTModel Session, but the same holds
our RMIModel, as well.

This authentication policy is expressed in the sessionRequest method
SessionManager interface JSDTModel implements:

EWARE

public class JSDTModel

implements IEmployeeModel, java.io.Serializable,

Client, SessionManager, SessionListener

{

// . . .

be here
t be to
y some
orm.
anony-
ing the
ut any

ved the
 much

e mini-
Model
-driven
a get -
 actual
e :

Neward15_06_12.fm Page 456 Tuesday, June 13, 2000 12:17 PM
456 CHAPTER 15 MIDDL

//===

// SessionManager methods

public boolean sessionRequest(Session session,

AuthenticationInfo info,

Client client)

{

String challenge = "<challenge>";

String expectedResponse = "<response>";

String reply = null;

info.setChallenge(challenge);

reply = (String)client.authenticate(info);

return (reply == null);

// For the moment, they *all* return null (no security)

}

// . . .

}

In the event we wanted to add a security policy to the JSDTModel, it would
that the modifications would take place. A simple authentication model migh
send a blank challenge String and receive a username and password separated b
delimiter, which the JSDTModel could check against a user database of some f

 Toward the very end of the second constructor, notice that we build an
mous ByteArrayAdapter to listen for changes on the ByteArray instance contain
JSDTModel stored in Session space. We have to do this in order to know abo
changes to the shared object, and to retrieve it. We could avoid this if we retrie
data from the ByteArray on every call within JSDTModel, but that’s simply too
work to manage all over the place; instead, by pulling it only when it changes, w
mize the amount of work we have to do. Should it come to pass that the JSDT
is spending too much time tracking changes, we can switch to a more demand
pull-type model for retrieving changes. In that event, any time a user makes
style call on any of the objects, the entire JSDTModel needs to be retrieved. The
retrieval of the JSDTModel occurs within the package-friendly method retriev

public class JSDTModel

implements IEmployeeModel, java.io.Serializable,

Client, SessionManager, SessionListener

{

// . . .

void retrieve()

{

try

{

457

byte[] bytes = m_byteArray.getValueAsBytes();

ByteArrayInputStream bais =

new ByteArrayInputStream(bytes);

ObjectInputStream ois =

new ObjectInputStream(bais);

om the

er adds
s in the
 object
s taken

Neward15_06_12.fm Page 457 Tuesday, June 13, 2000 12:17 PM
EMPLOYEE MIDDLEWARE MODELS

m_persons = (Hashtable)ois.readObject();

m_employees = (Hashtable)ois.readObject();

m_managers = (Hashtable)ois.readObject();

m_positions = (Hashtable)ois.readObject();

m_departments = (Hashtable)ois.readObject();

m_contactInfo = (Vector)ois.readObject();

}

catch (ClassNotFoundException cnfEx)

{

cnfEx.printStackTrace();

}

catch (java.io.IOException ioEx)

{

ioEx.printStackTrace();

}

catch (JSDTException jsdtEx)

{

jsdtEx.printStackTrace();

}

}

// . . .

}

As you can see, it’s a simple exercise in Serialization, reading each collection fr
ObjectInputStream.

The reverse is true for any modification of the data within this JVM; if a us
an EMail instance, creates a Person, or removes a Department, the other peer
system need to know about it. As a result, within each of the various business
implementation classes (JSDTPerson, for example), after the modification ha
place, we call the package-friendly method submit on JSDTModel:

public class JSDTModel

implements IEmployeeModel, java.io.Serializable,

Client, SessionManager, SessionListener

{

// . . .

void submit()

{

try

{

ByteArrayOutputStream baos =

new ByteArrayOutputStream();

ObjectOutputStream oos =

new ObjectOutputStream(baos);

EWARE

oos.writeObject(m_persons);

oos.writeObject(m_employees);

oos.writeObject(m_managers);

oos.writeObject(m_positions);

oos.writeObject(m_departments);

rm the
teArray
s con-
update

l in the
ence to

Neward15_06_12.fm Page 458 Tuesday, June 13, 2000 12:17 PM
458 CHAPTER 15 MIDDL

oos.writeObject(m_contactInfo);

byte[] bytes = baos.toByteArray();

m_byteArray.setValue(this, bytes);

}

catch (java.io.IOException ioEx)

{

ioEx.printStackTrace();

}

catch (JSDTException jsdtEx)

{

jsdtEx.printStackTrace();

}

}

// . . .

}

Again, this is nothing more than a simple exercise in Serialization to transfo
various collections into a single array of bytes, then set those bytes into the By
instance. Because each JSDTModel is listening to ByteArray changes, all JVM
nected to the JSDTModel Session on this host will receive the change and
themselves accordingly.

We set up the “hook” between a JSDT-business object and the JSDTMode
appropriate create method, by setting a package-friendly JSDTModel refer
point to this ; for example, here’s the implementation for createPerson :

public class JSDTModel

implements IEmployeeModel, java.io.Serializable,

Client, SessionManager, SessionListener

{

// . . .

public IPerson createPerson(

String firstName, String middleName, String lastName,

String ssn)

throws BusinessLayerException, DuplicateObjectException

{

if (m_persons.get(ssn) == null)

{

JSDTPerson person =

new JSDTPerson(firstName, middleName,

lastName, ssn);

// Hook the JSDTPerson to the JSDTModel

person.m_model = this;

459

m_persons.put(ssn, person);

submit();

return person;

}

 for the
e is in
ance is

 where
odel to
ns that

Neward15_06_12.fm Page 459 Tuesday, June 13, 2000 12:17 PM
EMPLOYEE MIDDLEWARE MODELS

else

{

throw new DuplicateObjectException();

}

}

// . . .

}

The code is precisely the same as what occurs within HashtableModel, except
statement setting the JSDTPerson member m_model to this . This referenc
turn used to tell the JSDTModel to update itself each time the JSDTPerson inst
modified by a user:

class JSDTPerson

implements IPerson, java.io.Serializable

{

// Internal members

//

private String m_firstName;

private String m_middleName;

private String m_lastName;

private String m_ssn;

private Vector m_contactInfo = new Vector();

JSDTModel m_model;

public void setFirstName(String fName)

throws BusinessLayerException

{

m_firstName = fName;

m_model.submit();

}

// . . .

}

This approach has some bad implications if the JSDTModel is used in a system
frequent modification of objects takes place. Because we’re asking the JSDTM
serialize itself on each and every modification of any business object, that mea
a sequence of calls such as

JSDTModel model = new JSDTModel(...);

IPerso n p = model.createPerson(...);

p.setFirstName(“Joe”);

p.setMiddleName(“Bob”);

p.setLastName(“Smith”);

EWARE

will in turn generate one deserialization and four serialization efforts. Given that
Serialization is not the fastest process, this is a large burden to bear just to modify
the Person’s name.

15.4.3 Analysis

 of our
ch one
t actual

 a blind
urity—
to have
a man-
matter.
y client
a small
rn vali-
 to pro-

del, for
sing the
s being
. That
ed, the
d build
l Proxy
 chain
strated
d Seri-
system
, where
f doing
play.
because
l , we
before,
 imple-
e pro-
lution,
leware
 band-

Neward15_06_12.fm Page 460 Tuesday, June 13, 2000 12:17 PM
460 CHAPTER 15 MIDDL

We’ve built two middleware systems for providing access to and distribution
fictitious Employee system: an RMI-based model and a JSDT-based model. Ea
offers its own unique strengths and weaknesses, but reality usually dictates tha
production software will not be this simple or straightforward.

For example, several times during the development of these models, I turned
eye to issues that might complicate the example code. One such issue is that of sec
we usually don’t want just anybody in the company or outsiders, for that matter,
access to the company’s personnel records. Providing a security layer is usually
datory item for an enterprise system, but the implementation thereof is another

One approach is to create a generic security doorway through which an
must pass before even allowing access to any resources. This doorway can be
URLClassLoader-loaded dialog that obtains username and password, and in tu
dates that the client can access the application, or something so sophisticated as
vide access roles and privileges, tying into Java’s SecurityManager.

Another issue has been that of performance and scalability. The JSDTMo
example, is an inherently nonscalable approach. However, if it turns out that, u
RMIModel, enough clients are using the system such that every business object i
exported anyway, it may be a resource savings to use the JSDTModel approach
way, instead of making calls across the network each time an attribute is request
calls go across the network only when the attributes change. Note that we coul
an RMI-based system that performs the same sequence of steps—create a loca
that uses RMI to obtain the object’s initial state, then registers itself in a callback
when the server receives a change to that object. Of course, we’ve also demon
that we could also build an RPC-style system like RMI using just plain sockets an
alization; in fact, we could drop out of Java completely and build the entire
using 80x86 assembly language, too. There comes a trade-off point, however
complexity of the resulting application source code far outweighs the benefits o
it all from scratch. That’s where the art of our particular industry comes into

This, however, demonstrates the power (and necessity) of encapsulation:
both the RMI approach and the JSDT approach implement IEmployeeMode
don’t have to change our client code to use the new approach. It’s been said
but it deserves repeating: by burying the details of how the IEmployeeModel
mentation handles the details underneath the IEmployeeModel interface, w
vide flexibility and allow for the evolution of the system. Allowing for that evo
in turn, reduces the necessary development cost when moving from one midd
approach to another, or (more likely) integrating one or more together to solve
width or resource bottlenecks.

461

15.5 ADDITIONAL READING

• “Java Object Serialization” specification, Sun Microsystems. Available from http://
www.javasoft.com.

rializa-
 have a

w.java-

arbage
pter 3),
“Hello,

 http://

, aside
already

h C++

t what
far the
tages is
 reason
ach for
book is

1999).
BA; for

ashion,
ou will

dison-

 to use
xample

Neward15_06_12.fm Page 461 Tuesday, June 13, 2000 12:17 PM
ADDITIONAL READING

This is the definitive work on Java’s Serialization mechanism; because Se
tion is so key to RMI/JRMP, developers working with RMI/JRMP need to
good feel for what gets serialized and when.

• “Java RMI” specification, Sun Microsystems. Available from http://ww
soft.com.
The RMI Specification covers JRMP (chapter 10), the RMI Distributed G
Collection scheme (chapter 9), and RMI’s use of dynamic class loading (cha
among other points. Any developer wishing to move beyond basic
world!” RMI applications needs to have this next to the workstation.

• “Java RMI-IIOP Programmer’s Guide,” Sun Microsystems. Available from
www.javasoft.com.
At the moment, this is the sole source of documentation on RMI/IIOP
from the OMG documents on the IIOP protocol itself. It assumes you are
familiar with RMI programming.

• “JavaIDL,” Sun Microsystems. Available from http://www.javasoft.com.

• Michi Henning and Steve Vinoski, Advanced CORBA Programming wit
(Addison-Wesley, 1999).
CORBA isn’t just about Java, and it helps to get a good, hard look a
CORBA implementations look like in other languages. This book is by
best C++/CORBA book on the market. Remember, one of CORBA’s advan
its cross-linguistic capabilities, so if your distributed object system has no
to communicate with other languages, CORBA may not be the best appro
your system; if it does, C++ is likely to be one of those languages, and this
invaluable in that realm.

• Dirk Slama, Jason Garbis and Perry Russell, Enterprise CORBA (Prentice Hall,
Messaging, security, fault-tolerance, load-balancing, failover, all using COR
CORBA lovers, it doesn’t get much better than this.

• Don Box, Essential COM (Addison-Wesley, 1998).
If you use Java on Microsoft operating systems, in either client or server f
you will almost inevitably run into COM in some fashion. In that event, y
want this book to teach you precisely what COM is—and isn’t.

• Don Box, Keith Brown, Timothy Ewald, and Chris Sells, Effective COM (Ad
Wesley, 1998).
As with Essential COM, this book is a must-have for anybody looking
COM/DCOM, regardless of source language—although much of the e

EWARE

code is given using C++, the basic concepts hold for Java/DCOM implementa-
tions as well.

• Mark Hapner, Rich Burridge, and Rahul Sharma, “Java Message Service”
specification 1.01a Sun Microsystems. Available from http://www.javasoft.com.

 is had
mation

lishing,

ference
3 soft-

Mobile

 called
mercial
nts the

aster-
eferred

Neward15_06_12.fm Page 462 Tuesday, June 13, 2000 12:17 PM
462 CHAPTER 15 MIDDL

This is the basic bible on JMS, and until more discussion and experience
with JMS as a middleware system, it is likely to be the best source of infor
on JMS for a long time.

• Jeff Nelson, Programming Mobile Objects with Java (Wiley Computer Pub
1999).
An excellent book that was one of the first to make clear the key dif
between mobile agents and mobile objects, Nelson’s book also contains 1
ware design patterns specifically adapted or mined for mobile objects.

• Danny B. Lange and Mitsuru Oshima, Programming and Deploying Java
Agents with Aglets (Addison-Wesley, 1998).
One of the first books out on mobile objects (mobile agents, they were
then), Lange now works at General Magic Inc, one of the other com
mobile object/agent vendors. As with Nelson’s book, Lange/Oshima prese
basic sketches of ten more mobile object/agent patterns, two of which (M
Slave and Itinerary) they explore in detail. If the Aglets toolkit is your pr
platform for mobile object development, this book is indispensable.

C H A P T E R 1 6
Java Native Interface

16.1 Java Native Interface (JNI) 464

16.2 JNI essentials 472

16.3 Other methods of Java-to-native

16.5 Other JNI uses 506
16.6 Summary 508
16.7 Additional reading 508
interaction 494

de written
VM. Even
word, not
16.4 Integrating the server: GJAS goes
native 495

From its conception, Java gave programmers the ability to interact with co
specifically for the operating system or hardware underneath the executing J
since the days of the Java 1.0, Java has specified the word native as a Java key

to be used anywhere else within a Java source file. And although it received little fan-

e (such
eatures.
s other
 ability
. Con-
se data
not be
or you.
e APIs.
nd just
463

fare (and still does), this ability of Java’s to interact with natively compiled cod
as that written in C or C++) is quite possibly the most powerful of all of Java’s f

Without this capacity to go native, Java becomes a closed system, much a
languages are. Most of the RAD tools and systems on the market contain the
to interact with an RDBMS; in fact, most are optimized for that particular task
sider, however, that you are a programmer working for a large corporation who
already resides within a system (mainframe, RDBMS, OODBMS) that can
accessed except through a closed API set. None of these RAD systems work f
They can’t, because they are closed systems, lacking the ability to call any of thes
Java, without this ability to interact with native code, would be just as closed a
as useless for real work.

RFACE

16.1 JAVA NATIVE INTERFACE

Java’s official mechanism for native code interaction is the Java Native Interface. JNI
is, in fact, Java’s only mechanism for interacting with the platform underneath the

rces or
r other
ains no
eloped

e pub-
ill con-
PI set.

lling to

ust be
 (DLLs
 means
ust be

y from

ode, so
 aren’t
r.

deleted
ers safe
ndling

arbage-

 which
pilers,

f all of
gger—
ent to
oss the
rintf or
464 CHAPTER 16 JAVA NATIVE INTE

JVM. Any method in the Java packages which requires access to native resou
behavior (such as filesystem access, sockets, or the ability to launch and monito
processes) in turn goes through JNI code to accomplish it. The JVM itself cont
knowledge of how to do any of these things. It relies on the native methods dev
for the particular platform on which it is running to carry out these requests.

By exposing the method by which Java interacts with native libraries to th
lic, Sun allows anyone to do the same. This means that you can use Java, and st
tinue to use that legacy system that permits access only through its C-language A
This ability offers a tremendous amount of power to the Java programmer wi
endure the complexity it presents.

However, using JNI comes with its share of costs:

• Administrative
Utilizing a native library in your Java code means that the native library m
installed, in whatever form is necessary for that particular platform
Win32 platforms, shared libraries for UNIX platforms, and so forth). This
that wherever that code is to be run, its corresponding native library m
written, compiled, tested, and installed on that machine. We move awa
zero deployment and zero development when we do this.

• Security
Native libraries have the freedom to do anything they choose. It’s native c
it exists outside of the Java Security model. This is the reason applets
allowed to load native code when downloaded to the client’s Web browse

• Robustness
Remember all the bad things that happen with pointers when they’re
twice, or accessed after they’re released? The Java language made point
and handled all the issues regarding ownership. In C++, you’re back to ha
these things on your own, if you’re not delegating them to a third-party g
collecting library.

• Development
Developers working with native libraries now have two environments to
they must acclimate themselves, Java and C/C++. This implies two com
two debuggers, two sets of naming conventions, and two languages. O
those, the worst adjustment is the complete lack of a C++-and-Java debu
debugging the JNI code means using a native C++ debugging environm
trap the JNI calls, and flipping back and forth between the two as calls cr
barrier between the two. Quite frankly, it’s usually easier to use the old p
System.out.println debugging trick when faced with this prospect.

465

• Portability
Native code isn’t portable. A DLL compiled for Win32 won’t run under Solaris.
In some cases, the C/C++ code won’t even compile when ported to other plat-
forms. “Write Once, Run Anywhere” becomes impossible the moment a Java

00 per-

ample,
reduces
y break

at will
achine
hange.
, Java’s
uations
ved are
eeds to
ed spe-

at Java
-Time
ke exe-
 makes
it is an
ntially)
ly used
cution

 do the
emem-
g, and

ly writ-

; if not,
oving
ediate

bers in
JAVA NATIVE INTERFACE

developer adds the native keyword to any part of his/her code, and Sun 1
cent Pure Java certification becomes a distant, unattainable, goal.

Why bother with native code if the costs are so high? Java’s portability, for ex
has been one of the paramount reasons for its existence. Writing native code
that portability. Why would any logical, sane, Java-loving developer deliberatel
one of Java’s greatest strengths?

16.1.1 Native code on the server

Let’s stop to consider precisely where we are. The code in question is code th
be executing on a server. By strict definition of the term, this means that the m
on which this code will be executing will be well-known and unlikely to c
This in turn means that Java’s portability is of lesser concern to us. In fact
portability is of little to no use in server-side development, except in those sit
where the server environment is heterogenous. Even then, the systems invol
well-known to the developers, and those situations where the same code n
execute on multiple machines can have the necessary native methods develop
cifically for those machines.

More importantly, there is a performance gain from using native code. Th
has made significant performance improvements is not being debated—Just-In
compilers inside the JVM, optimizing bytecode compilers, and faster JVMs ma
cution of Java code that much faster. However, for all the improvements Java
to its ability to interpret bytecodes, it cannot get beyond the basic fact that
interpreter. It will always be at least marginally (and in some cases substa
slower than natively compiled executable code. Using native code for high
routines within your Java code can result in a substantive improvement in exe
speed, in much the same way that using assembly code in C++ systems can
same. However, before you start coding common Java routines in C or C++, r
ber the painful lessons learned by C++ programmers who did the same thin
found that well-written, well-designed C++ code could often outperform poor
ten or poorly designed C++/assembly code.

This chapter presumes that the reader is at least passingly familiar with JNI
at least glance over the Sun JNI specification document or a JNI tutorial before m
on. This chapter also presumes that the reader understands C/C++ at an interm
(one year or so of experience) level.

As a crude benchmark, consider this code, which generates prime num
both Java and C++:

RFACE

// JPrimes.java: Java front-end to calculating prime numbers

//

import java.awt.*;

public class JPrimes extends Frame
466 CHAPTER 16 JAVA NATIVE INTE

implements java.awt.event.ActionListener

{

public static void main(String[] args)

{

// Build the GUI frame

//

JPrime s f = new JPrimes();

f.show();

}

// GUI-related public interface

//

JPrimes()

{

/*

* Local initialization

*/

super("Java vs. C++ Primes calculation sample");

// Turn off layout manager--we'll do it ourselves

setLayout(null);

reshape(100, 100, 310, 200);

// Set height & width

/*

* Insert controls

*/

// Close button

m_btnClose = new Button("Close");

m_btnClose.reshape(5, 25, 100, 25);

m_btnClose.setActionCommand("Close");

m_btnClose.addActionListener(this);

this.add(m_btnClose);

// "Java" button

m_btnJava = new Button("Java");

m_btnJava.reshape(105, 25, 100, 25);

m_btnJava.setActionCommand("Java");

m_btnJava.addActionListener(this);

this.add(m_btnJava);

// "Native" button

m_btnNative = new Button("Native");

m_btnNative.reshape(205, 25, 100, 25);

m_btnNative.setActionCommand("Native");

m_btnNative.addActionListener(this);

this.add(m_btnNative);

467

// Labels for calculation times

Label l = new Label("Time started:");

l.reshape(5, 55, 100, 20);

this.add(l);

l = new Label("Time ended:");

reate a
Labels.

ons are
uttons,
tend to
cessary
JAVA NATIVE INTERFACE

l.reshape(5, 75, 100, 20);

this.add(l);

// Calculation time labels

m_lblTimeStarted = new Label("");

m_lblTimeStarted.reshape(105, 55, 100, 20);

this.add(m_lblTimeStarted);

m_lblTimeStopped = new Label("");

m_lblTimeStopped.reshape(105, 75, 100, 20);

this.add(m_lblTimeStopped);

m_lblPrimes = new Label("");

m_lblPrimes.reshape(5, 100, 300, 20);

this.add(m_lblPrimes);

}

The code, up until this point, is a straightforward exercise in Swing—we c
Frame with a couple of buttons (“Close,” “Native” and “Java”) and a couple of

// ActionListener

//

public void actionPerformed(java.awt.event.ActionEvent e)

{

if (e.getActionCommand() == "Close")

{

dispose();

System.exit(0);

}

The actionPerformed method is, of course, called when any of the butt
clicked. (We implement ActionListener , and register this with all three b
above. Normally, I’d use an anonymous class to be the Listener, since it will
clutter this class if the UI is nontrivial, but this is a simple example, and not ne
here.) If “Close” is clicked, exit the application. Plain and simple.

else if (e.getActionCommand() == "Java")

{

m_lblPrimes.setText("");

// Note starting time

java.util.Date start = new java.util.Date();

String result = calculatePrimes(50000);

// Note ending time

java.util.Date end = new java.util.Date();

m_lblTimeStarted.setText(start.getHours() + ":" +

start.getMinutes() + ":" + start.getSeconds());

RFACE

m_lblTimeStopped.setText(end.getHours() + ":" +

end.getMinutes() + ":" + end.getSeconds());

m_lblPrimes.setText(result);

}

else if (e.getActionCommand() == "Native")

te/time
 either

current
468 CHAPTER 16 JAVA NATIVE INTE

{

m_lblPrimes.setText("");

// Note starting time

java.util.Date start = new java.util.Date();

String result = nativeCalculatePrimes(50000);

// Note ending time

java.util.Date end = new java.util.Date();

m_lblTimeStarted.setText(start.getHours() + ":" +

start.getMinutes() + ":" + start.getSeconds());

m_lblTimeStopped.setText(end.getHours() + ":" +

end.getMinutes() + ":" + end.getSeconds());

m_lblPrimes.setText(result);

}

}

Otherwise, if the “Java” or “Native” buttons were clicked, note the current da
(by constructing a new Date object), calculate the Primes up to 50,000 using
the calculatePrimes or nativeCalculatePrimes methods, note the
date/time after the call, and display the difference.

// Internal implementation

//

public String calculatePrimes(int stop)

{

String primes = new String();

// Algorithm cribbed from Sedgewick's "Algorithms in C++"

int i;

int j;

int a[] = new int[stop + 1];

for (a[1]=0, i=2; i<= stop; i++)

a[i] = 1;

for (i=2; i<stop/2; i++)

for (j=2; j<=stop/i; j++)

a[i*j] = 0;

for (i=1; i<=stop; i++)

if (a[i] != 0)

primes + = i + " ";

return primes;

}

The calculatePrimes method is

469

public native String nativeCalculatePrimes(int stop);

static

{

System.loadLibrary("JPrimes");

}

lemen-
ee, this
I. The
for the
n,

Primes
s later,
 calcu-
hms in

e load-
ith JNI
JAVA NATIVE INTERFACE

The nativeCalculatePrimes method isn’t defined here—the native imp
tation of nativeCalculatePrimes lives in the file JPrimes.cpp. As we’ll s
file implements two methods, only one of which is directly related to JN
DllEntryPoint function is required by Win32 DLLs and can be ignored
moment. (Non-Win32 platforms won’t need this function.) The other functio

JNIEXPORT jstring JNICALL Java_JPrimes_nativeCalculatePrimes

(JNIEnv* env, jobject, jint stop)

is the actual routine the JVM will call when Java code indicates a call to the J
nativeCalculatePrimes method. We’ll go over the first two parameter
but the stop parameter is the upper end of the number range for which we’re
lating prime numbers. (For a description of the algorithm used, see Algorit
C++, by Robert Sedgewick.)

// Internal data

//

private Button m_btnClose;

private Button m_btnJava;

private Button m_btnNative;

private Label m_lblTimeStarted;

private Label m_lblTimeStopped;

private Label m_lblPrimes;

}

That’s the .java side of the JNI approach. Next, we’ll look at the C++ side.

#include "JPrimes.h"

#include <windows.h>

#include <stdlib.h>

#include <sstream>

using namespace std;

// Basic scaffolding that must be in place for every Win32 DLL

//

DWORD WINAPI DllEntryPoint(HINSTANCE, DWORD, LPVOID)

{

return TRUE;

}

Again, DllEntryPoint is a Win32-specific function dealing solely with th
ing of the DLL into a process’s address space; it, in itself, has nothing to do w
except provide a useful place for doing per-DLL initialization.

RFACE

// Prototypes/stubs taken from javah-generated JPrimes.h

//

/*

* Class: JPrimes

* Method: nativeCalculatePrimes

named
+ 5.0.)
ith just

e link-
 shared
and so
 Under
470 CHAPTER 16 JAVA NATIVE INTE

* Signature: (I)Ljava/lang/String;

*/

JNIEXPORT jstring JNICALL Java_JPrimes_nativeCalculatePrimes

(JNIEnv* env, jobject, jint stop)

{

char* tmpbuffer = new char[stop];

::memset(tmpbuffer, 0, stop);

// Algorithm cribbed from Sedgewick's "Algorithms in C++"

int i, j;

int* a = new int[stop + 1];

for (a[1]=0, i=2; i<= stop; i++)

a[i] = 1;

for (i=2; i<stop/2; i++)

for (j=2; j<=stop/i; j++)

a[i*j] = 0;

for (i=1; i<=stop; i++)

if (a[i])

{

char stringifiedI[10];

itoa(i, stringifiedI, 10);

strcat(tmpbuffer, stringifiedI);

strcat(tmpbuffer, " ");

}

delete [] a;

// Convert to Java java.lang.String object

jstring primes = env->NewStringUTF(tmpbuffer);

return primes;

}

This code must be compiled with a Win32 C++ compiler into a DLL
JPRIMES.DLL. (In this case, the code was written assuming Microsoft Visual C+

Lastly, notice that the JPrimes.java file contains a static initializer block w
one statement:

static

{

System.loadLibrary("JPrimes");

}

This loads the native library “JPRIMES” into the JVM, performing all run-tim
ing. (Because it needs to do this linking at run time, the native library must be a
library appropriate to that platform—DLLs for Win32, shared libs for Unix,
on.) The actual filename the JVM looks for will vary according to the platform.

471

the Sun Win32 JDK, it will look for “JPRIMES.DLL”, while the Sun Solaris JDK looks
for “libJPRIMES.so”. Other platforms may look for other names—check the docu-
mentation of the JVM you are using. Where the JVM expects to find this shared library
is, again, platform-specific. Under Win32, for example, the Sun JVM expects to find

LL—in
rectory.
ar JVM
 allows

e, and
g con-
e faster
version
es offer
ne par-
k only
viron-

y CPU-
 reason.
O, will
n. This
ng Java
ove the
. Does
 on the
before,
evelop-

va code
written
t could
ughout
 cases,

ch Java
ing the
r us as

h will be
INDOWS
JAVA NATIVE INTERFACE

the native libraries in the same manner the Win32 engine expects to find any D
the current directory, along the PATH, or in the “Windows”1 or “System32” di
Again, check the JVM documentation to find out the details for your particul
implementation. Placing the DLL in the same directory as the JPrimes.class file
the JVM to find it when required.

This is a crude and unscientific benchmark. It is unoptimized Java cod
attempts to take no code shortcuts to speed things up. For example, the strin
catenation within calculatePrimes uses Java’s += syntax, as opposed to th
method of calling StringBuffer’s append method directly, whereas the C/C++
uses the much-quicker stdio function strcat . Still, in spite of all that, it do
some insight into the relative speedup offered by natively compiled code: on o
ticular run, the “Java” option took five seconds, while the “Native” option too
one. (This run took place on a Pentium-II/266 laptop, under the JDK 1.2 en
ment with JIT active.)

This is not a fair comparison. The calculation of prime numbers is highl
intensive, and will be biased, by its very nature, in favor of the native code for that
Benchmarks of a more realistic nature, such as tests involving file or socket I/
even out somewhat, and the Java code can be written in a more optimized fashio
is not intended to start a debate or discussion about the relative merits of usi
as opposed to C++ or C for fast execution. This example intends solely to pr
point that JNI code offers a speed increase over (mostly) equivalent Java code
this imply that all of your Java code should immediately be converted to C++,
grounds that it will be faster? Absolutely not. Execution speed, as we’ve stated
is not the sole benchmark in an enterprise application—there is also speed of d
ment, which can be particularly crucial in fast-moving enterprise systems.

By far, the most important virtue of JNI comes in the fact that it allows Ja
to interact with your legacy code. By legacy code, I mean that body of code
in C (or C++) which must continue to be used for reasons outside our control. I
be a library, framework, or set of in-house routines used in applications thro
the enterprise for any reason—security, data-access, or even I/O. Under certain
this legacy code will actually be facilities of the operating system itself to whi
has no default access, such as native GUI controls or special device drivers. Hav
ability to lean on this already-written body of native code means less work fo
Java developers, and that’s a direct move towards zero development.

1 This name can vary, which is why I use quotes; under a standard NT installation, the pat
C:\WINNT and C:\WINNT\SYSTEM32 , whereas on a standard Win95/98 system will be C:\W

and C:\WINDOWS\SYSTEM32.

RFACE

As we’ll see, Java’s ability to call C routines allows for tremendous code reuse
opportunities within the Java environment. At the same time, JNI’s ability to allow
native C/C++ applications to in turn create a JVM within the native process space
offers some powerful integration opportunities.

ill not
able to
 to one
hapter.
o most:

 imple-
rofiling
perfor-

 dictate
rder to
easy to
.

PI set.
reate a
 just as
 makes
e some
ode to

ature is
h.

 for us

ase, the
 native
n turn,
obably
ethod

ng, but
 native
472 CHAPTER 16 JAVA NATIVE INTE

16.2 JNI ESSENTIALS

JNI is substantially more than can be explained in one chapter. As a result, this w
be an exhaustive discussion of JNI, but enough to get you past the basics and
recognize what’s going on within the code. For detailed discussion of JNI, refer
of the books mentioned in the “Additional reading” section at the end of this c

JNI breaks down into three categories, arranged in order from least complex t

• Java calling native code
This is the easiest to work with—the Java code calls into the native code
mentation, which executes and returns when it is finished. If you are p
your Java code, looking for places to drop native code in order to gain a
mance improvement, this will likely be the only form of JNI you write.

• Native calling Java code
Not all native code interactions will be one-way. Circumstances will often
that the native code be able to call into Java routines or the JVM itself in o
obtain more data or manipulate objects. This area of JNI is conceptually
understand, but occupies the most amount of space in any JNI discussion

• Native applications creating and using a JVM
This is probably the trickiest, and most powerful, option within the JNI A
Using the Invocation API, as it’s called, a native C/C++ application can c
JVM within its process space, load Java classes, execute them, and so forth,
if the Java code had been launched from the command line. This feature
Java unique among every other programming language—while others hav
facility for calling out to native code, no other language allows native c
create its execution environment within a different process space. This fe
a powerful one, allowing us to use Java in ways other languages can’t touc

Let’s go over these three options to give you an idea of what JNI can do
on the server.

16.2.1 Java calling native

The JPrimes sample examined earlier demonstrates this sort of usage. In this c
interaction of Java to native code goes entirely one-way; the Java code calls a
method, the native method executes, perhaps calling other native methods i
then returns. Because the native code never calls back into the JVM, this is pr
the simplest of the JNI styles, and the easiest introduction into JNI/native-m
development. Most of the complexity involved here is not in the programmi
in understanding what tools to use, when to use them, what Java expects of the

473

code, and what the native code in turn can expect from Java. Typically, this style will
be used to access a native API or optimize/hand tune a frequently called Java routine.

Be very conservative when optimizing or hand tuning a frequently called Java rou-
tine, and make certain you undertake it as a last resort; rewriting or restructuring the

coding.
oost.
-Java-

r class,

 ability
all. For
Win32
re por-
lemen-
JNI ESSENTIALS

flow of the Java code quite often provides enough of a speedup to avoid native
Still, for CPU-intensive operations called often, this can provide a substantial b

In both cases, the interaction between the JVM and the native code is from
to-native-and-back-again.

Usually, the native calls will be wrapped privately within an API wrappe
thereby hiding from clients the fact that the method call is, in fact, native:
public SomeObject
{

// . . .

public void doSomething()

{

nativeDoSomething();

}

private native void nativeDoSomething();

}

By encapsulating the actual implementation of the call, implementors have the
to provide next-best-thing behavior on those platforms that lack the native c
example, it will be faster for Java applications running in a JVM on the same
machine to use memory-mapped files to share memory, instead of using a mo
table Jini/JavaSpaces or Java Shared Data Toolkit approach. However, this imp
tation will only work on a Win32 platform:
public class Foo

{

public void writeData(int offset, byte[] data)

{

if (s_useNative)
nativeWriteData(offset, data);

else

portableWriteData(offset, data);

}

public byte[] readData(int offset, int length)

{

if (s_useNative)

nativeWriteData(offset, data);
else

portableWriteData(offset, data);

}

private native void nativeWriteData(int offset, byte[] data);

private native byte[] nativeReadData(int offset, int length);

private void portableWriteData(int offset, byte[] data)

{

// details omitted

RFACE

}

private byte[] portableReadData(int offset, int length)

{

// details omitted

}

ad-
ing the
. If the
le (but

se of a
Primes
ble, or

ation is
knowl-
474 CHAPTER 16 JAVA NATIVE INTE

static

{

try

{

System.loadLibrary(“foo”);

s_useNative = true;

}

catch (Exception ex)

{

s_useNative = false;

}

}

static boolean s_useNative;

}

The magic of the above occurs during the static initializer block. If the System.lo
Library() call succeeds, it means the JVM found a shared library implement
native methods expected, and the static member s_useNative is set to true
call fails, the JVM couldn’t link the library, and the code should use the portab
slower or less feature-rich) code.

Practitioners of design patterns will recognize an opportunity for the u
Bridge pattern here, instead of the above approach. In the following code, the J
example from above is rewritten to make use of a native library if one is availa
the portable Java implementation if not. Again, because the actual implement
shielded from the client, the client need not make any decisions or require any
edge of the switch:

interface PrimeCalculator

{

public String calculatePrimes(int stop);

}

class NativePrimeCalculator

implements PrimeCalculator

{

NativePrimeCalculator()

throws Throwable

{

System.loadLibrary("JPrimes");

}

public String calculatePrimes(int stop)

{

return nativeCalculatePrimes(stop);

}

475

private native String nativeCalculatePrimes(int stop);

}

class PortablePrimeCalculator

{

public String calculatePrimes(int stop)
JNI ESSENTIALS

{

// Details omitted

}

}

public class JPrimes extends Frame implements java.awt.event.ActionListener

{

// GUI-related public interface

//

JPrimes()

{

// Details omitted (initialize the GUI)

// Which calculator should we use?

try

{

m_calculator = new NativePrimeCalculator();

}

catch (Throwable t)

{

m_calculator = new PortablePrimeCalculator();

}

}

public void actionPerformed(java.awt.event.ActionEvent e)

{

if (e.getActionCommand() == "Calculate")

{

m_lblPrimes.setText("");

// Note starting time

java.util.Date start = new java.util.Date();

String result = m_calculator.calculatePrimes(50000);

// Note ending time

java.util.Date end = new java.util.Date();

m_lblTimeStarted.setText(start.getHours() + ":" +

start.getMinutes() + ":" + start.getSeconds());

m_lblTimeStopped.setText(end.getHours() + ":" + end.getMinutes() +

":" + end.getSeconds());

m_lblPrimes.setText(result);

}

}

// Internal data

//

private PrimeCalculator m_calculator;

// ...

}

RFACE

Notice how, by moving the logic into separate stand-alone classes, JPrimes now has no
knowledge (and, therefore, no dependency) on whether the implementation is done
in a native or portable fashion. This is in keeping with the Bridge pattern’s Intent:
“Decouple an abstraction from its implementation so that the two can vary indepen-

 family
gy lets
gs pat-
ble.

rns, the
should
ecision
t. True
actory

culator:

with a
actory-
476 CHAPTER 16 JAVA NATIVE INTE

dently.”2 This discussion applies equally well to the Strategy pattern: “Define a
of algorithms, encapsulate each one, and make them interchangeable. Strate
the algorithm vary independently from clients that use it.”3 As with most thin
tern-related, the intent of the code (the “forces”) defines which is more applica

To be true to the Bridge and Strategy patterns, as defined by Design Patte
actual implementation (NativePrimeCalculator or PortablePrimeCalculator)
be encapsulated. In the previous example, our client, JPrimes, has to make the d
regarding which implementation to use, which breaks the very encapsulation sough
encapsulation requires either a wrapper class that contains the knowledge, or a F
object that performs the construction step and hands back an instance of PrimeCal

public class PrimeCalculatorFactory

{

public static PrimeCalculator manufacture()

{

try

{

return new NativePrimeCalculator();

}

catch (Throwable t)

{

return new PortablePrimeCalculator();

}

}

}

Another approach would be to have PrimeCalculator be an abstract class
static method by which instances can be obtained, a variation of the above F
based approach:

public abstract class PrimeCalculator

{

/**

* Derived classes must implement this

*/

public abstract String calculatePrimes(int stop);

/**
* Same as PrimeCalculatorFactory.manufacture(), above,

* but now the code’s all in one place.

*/

2 Design Patterns, p. 151
3 Design Patterns, p. 315

477

public static PrimeCalculator manufacture()

{

try

{

return new NativePrimeCalculator();

, which
g RMI,
ass will

ffering
native,

mecha-
mmu-

cations
tion.

use sig-
 system
w send

onfigu-
atabase
tion do
y want
mation
tabases
 a Java
lar file

ce inher-
plement
f extend.
JNI ESSENTIALS

}

catch (Throwable t)

{

return new PortablePrimeCalculator();

}

}

}

The expense of this approach, of course, is that PrimeCalculator is now a class
must be extended, instead of an interface. This implies that implementin
CORBA, or other PrimeCalculator classes that must extend some other base cl
be more difficult.4

A large number of native API calls can be wrapped using this approach, o
Java the ability to interact with the operating system directly, or even other,
applications. Some examples include:

• Accessing Win32 Inter-Process Communication mechanisms
A number of applications on the NT/Win9x platform use Win32 IPC
nisms (mailslots, named pipes, memory-mapped files, and so forth) to co
nicate. By wrapping Java classes around these API calls, Java appli
executing on the Win32 platform can also participate in this communica

• Accessing UNIX signals
A significant percentage of C/C++ code written for UNIX-based systems
nals for fast forms of simple IPC communication. By wrapping the UNIX
call into a Java class with JNI implementations, Java applications can no
those same signals to native UNIX processes.

• Access the Registry
Under the Win32 platform, a well-behaved Win32 application stores all c
ration and/or user-preferences information in a central hierarchical d
called the Registry. While it’s not recommended that a pure Java applica
this, a Java application that interacts with native Win32 applications ma
or need to access the Registry to extract necessary configuration infor
(such as user name, ODBC names, or settings for accessing ODBC da
using the JDBC/ODBC bridge, and so on). This holds especially true if
application needs to know which application is associated with a particu
extension on the user’s system.

4 Remember, in Java extension (implementation inheritance, as opposed to “implements,” or interfa
itance) is a precious resource—you can only extend one-and-only-one class, whereas you can im
any number of interfaces. This means that where there’s a choice, choose to implement instead o

RFACE

• Use Microsoft RPC
Microsoft remote procedure calls, a derivative of DCE RPC, are used at the C
level to allow two processes, executing either locally on the same machine, or
across the network, to execute methods remotely within the other. The same can

s. Java
f RPC-

g these

ll back
e JVM

 throw
eads to

as easy
e code
 calling
dealing
 either

er code
y forms
ressing
essage
478 CHAPTER 16 JAVA NATIVE INTE

be said of ONC RPC (Sun’s standard RPC mechanism) on Solaris platform
code wrappers the calls to the RPC server, and thereby extends the life o
based servers without having to convert to RMI or CORBA.

Readers will, no doubt, come up with other ideas. The nature of makin
API calls makes this approach to JNI extremely easy to implement.

16.2.2 Native calling Java

Most of the JNI specification’s API listings deal with allowing native code to ca
into the JVM for any purpose. Just about anything that can be done within th
can also be done via the JVM’s JNI calls—load classes, instantiate objects,
exceptions, catch exceptions, enter synchronization blocks, and so on. This l
some very interesting possibilities for native code to control the JVM.

When talking about Java calling native code, the situation and context w
to understand. The JVM would only call into the native code when the nativ
was there, and when a native-marked Java method was called. Under the native
Java situation, the context isn’t quite so simple. This is particularly true when
with many asynchronous native mechanisms, such as signal handlers (under
UNIX or Win32).

For those unfamiliar with signal handlers, the C/C++ standard allows us
to establish a series of callback routines to be called when particular signals (earl
of exceptions) are raised, either by the OS or another process. For example, p
CTRL-C in the console window of the following C application spits out a m
instead of immediately quitting:
// if using MSVC++ 5, use “cl signal.cpp”;

//

#include <signal.h>

#include <iostream>

using namespace std;

extern "C" void sig_handler(int sig);

void sig_handler(int sig)

{

cout << "Signal " << sig << " received" << endl;

//exit(-1);

}

int main(int argc, char* argv[])

{

if (argc <= 1)

{

// Register sig_handler

479

cout << "Registering signal handler" << endl;

for (int i=0; i<63; i++)

signal(i, sig_handler);

// loop forever, waiting for signal

cout << "Looping forever" << endl;

ich are
in32.

etween
elopers
JNI ESSENTIALS

while(1)
;

}

}

Signal handlers can be established for a variety of conditions, not the least of wh
segmentation faults, or access violation exceptions, as they are called under W
(Experienced Win32 developers will immediately recognize the similarities b
signal handlers and structured exception handling.) This offers us as Java dev
some interesting possibilities. Consider the following Java/C++ class:
/**

* Signal.java

*/

import java.io.*;

public class Signal
{

public static void main(String[] args)
throws Exception

{

Signal s = new Signal();

System.out.println("Setup complete");

while (true)
Thread.yield();

}

public Signal()
{

setSignalHandler();
}

private static void signalSent()

{

System.out.println("Signal handler called");
}

private native void setSignalHandler();

static
{

System.loadLibrary("signal");

}
}

// Signal.cpp (Win32/MSVC++ 5.0)

//
#include "Signal.h"

#include <iostream>

using namespace std;

RFACE

#include <signal.h>

// Internal signal handler

void signalHandler(int sig)

{

cout << "signalHandler called with value " << sig << endl;

infinite
le, the

value 2
 Sig-

can call
 handle
e. This
; with-
 imple-
 in the
pletely
480 CHAPTER 16 JAVA NATIVE INTE

// We have to attach this thread to the JVM

JavaVM** vmBuff = new JavaVM*[1];

jsize bufLen = 1;

jsize numVMs;

jint i = J NI_GetCreatedJavaVMs(vmBuff, bufLen, &numVMs);

if (numVMs > 0)

{

JNIEnv* envPtr;

vmBuff[0]->AttachCurrentThread((void**)&envPtr, 0);

jclass cls = envPtr->FindClass("Signal");

jmethodID methodID =

envPtr->GetStaticMethodID(cls, "signalSent", "()V");

envPtr->CallStaticVoidMethod(cls, methodID);

}

else

cout << "No JavaVMs created?!?" << endl;

cout << "ready to return " << endl;

}

/*

* Class: Signal

* Method: setSignalHandler

* Signature: ()V

*/

JNIEXPORT void JNICALL Java_Signal_setSignalHandler

(JNIEnv* env, jobject thisPtr)

{

// Set signal handler for all signals 0 through 63

for (int i=0; i<63; i++)

signal(i, signalHandler);

}

In this code, we call a native method to set up the signal handler, then enter an
spin/yield loop inside of Signal.main() . If you press CTRL-C at the conso
signalHandler() function in the C/C++ code is called with the signal
(SIGINT, as defined by Visual C++’s signal.h file), then calls the static method
nal.signalSent() . Notice the rigamarole we have to go through before we
the Java method, however. Because Win32/VisualC++ uses multiple threads to
signal callbacks, we have to attach the thread to the JVM established by java.ex
also has the desired side-effect of giving us a local JNIEnv pointer to call through
out that, we’d have to store it off in the Java_Signal_setSignalHandler
mentation. Notice also that I’m completely ignoring synchronization issues
above code. Any method that the signal handler calls back into must be com

481

re-entrant (as it is in the above example) or guarded with synchronization mecha-
nisms to prevent concurrent-access problems.

All details aside, this short snippet of code offers some powerful capabilities; if
you’re not shivering at the thought of all the potential lying under the surface, you

execut-
 trace a
 signals

stablish
cation.
ikely) a
al han-
 chance

UNIX/
ly on a
st.
ammer
ifically,
y hand,
e (and
st also

ds are.
ans the
s caller:
JNI ESSENTIALS

should be. Here are two possibilities:

• Diagnostic controls
Remember all those diagnostic messages GJAS sends to the console as it’s
ing? It’s too much information for anyone other than a developer trying to
problem. Use signal handlers (and the UNIX kill command, which sends
to a process) to raise and lower the diagnostic output accordingly.

• Crash protection
Because signal handlers can catch a variety of different signals, you can e
a signal handler to catch segmentation faults at the start of your Java appli
In the event that the JVM has a bug in it which causes a crash, or (more l
native library routine called has a bug in it which causes a crash, the sign
dler gets an opportunity to handle the exception. This in turn gives it the
to either correct for it or exit in a more graceful manner.

The ideas aren’t limited to only signal-handlers; they just provide a
Win32-portable way of providing such behavior. This kind of power, especial
server application, goes a long way toward making your Java code more robu

When calling back into the JVM from native code, the native-code progr
has to take extra steps to make certain Java’s semantics are preserved. Spec
Java’s support for exception handling and synchronization needs to be coded b
since Java implements both of these within the JVM, rather than using nativ
nonportable) mechanisms. Moreover, the reverse is true—the native code mu
guarantee that none of its mechanisms escape back into the JVM.

Native methods are not constrained by Java exceptions the way Java metho
Normally, in standard Java code, calling a method with a throws clause me
calling method must either catch the exception type(s), or pass them back to it
public class Example

{

private void doSomething()

throws Exception

{

// . . .

}

private void callingMethod()

{

doSomething();

// will not compile; callingMethod() must either catch Exception

// or declare a “throws Exception” clause of its own

}

}

RFACE

Native methods, however, are under no such restriction. This offers a serious loop-
hole in the Java exception-checking semantics:

public class Example

{

 in JNI
piler’s

 clause
 a Java
de:
482 CHAPTER 16 JAVA NATIVE INTE

private void doSomething()

throws Exception

{

throw new Exception();

}

private native void doSomethingNative();

// Assume that the native implementation simply calls doSomething()

private void callingMethod()

{

doSomethingNative();

// will compile; because doSomethingNative() doesn’t declare

// a “throws” clause, this method is not in violation of the

// exception rules

}

}

Practically speaking, this implies that any native methods that raise exceptions
code should be declared with a throws clause. These are solely for the Java com
benefit, however—the JNI stub generated by javah does nothing with the
whatsoever. This raises a dangerous possibility—the native code could throw
exception within it that isn’t declared in its throws declaration on the Java si

public class Example

{

// . . .

private native void doSomething();

// Notice--no way of knowing on the Java side that

// this method throws Exception

}

/*

* Class: Example

* Method: doSomething

* Signature: ()V

*/

JNIEXPORT void JNICALL Java_Example_doSomething

(JNIEnv* env, jobject thisPtr)

{

// Throw an Exception

env->ThrowNew(env->FindClass(“java.lang.Exception”),

“This is an exception from doSomething()”);

return;

}

483

Because Java programmers are so dependent on javadoc-generated documentation or
the source code itself, there is absolutely no way for the Java programmer calling this
native method to know that he/she needs to catch this exception type.

The other half of the exception-handling problem comes when implementing
n abso-
ut of a
 bypass
 within
as even
ust be

ut of it:

ations.
t’s rela-
r heap-
 if your
n those
are not
JNI ESSENTIALS

native code using C++. Sure enough, C++ exceptions and Java exceptions mea
lutely nothing to one another. This means that if a C++ exception propagates o
native method called from within the JVM, the C++ exception will immediately
the rest of the JVM and terminate the application (unless the JVM is wrappered
a C++ try block; see the next section). This in turn means that if native code h
the smallest possibility of seeing a C++ exception, the entire native block m
wrapped within a C++ try /catch block that disallows any exception to filter o

/*

* Class: Example

* Method: doSomething

* Signature: ()V

*/

JNIEXPORT void JNICALL Java_Example_doSomething

(JNIEnv* env, jobject thisPtr)

{

// Wrap all C/C++ code in a try/catch block

try

{

// Do something

}

catch (MyExceptionType& ex1)

{

// Throw corresponding Java exception type

}

catch (YourExceptionType& ex2)

{

// Throw corresponding Java exception type

}

catch (...) // catch all exception types

{

// Signal to the JVM that a C++ exception was thrown

env->ThrowNew(env->FindClass(“java.lang.Throwable”),

“Unknown C++ exception thrown”);

return;

}

}

Make it a standard habit to do this with any of your native code implement
Because C++’s exception-checking mechanism is a fair bit looser than Java’s, i
tively simple for a C++ exception (especially those dealing with RTTI-casting o
allocation) to be thrown and not caught within the code you call. That means
native code implementation doesn’t catch it, nobody will. What’s more, eve
native-code programmers who believe they have nothing to worry about—

RFACE

writing C++ code, after all, just straight C—and still have to worry about this. Many
C++ compilers use the same run-time library implementation for both C and C++
code, and may have C++ semantics turned on by default. Check your compiler docu-
mentation to be certain.

if you
ry pos-
icult to
 a Java

all into

mecha-
phores,
ve code
t in its
ng, but
u defi-

 poten-
 a JVM
 hasn’t
ve inti-
 under-

weren’t
ndling
system
Scripts
nd-line
 (line-

r is the
 as if it

 a JVM,
ot par-
reate a
484 CHAPTER 16 JAVA NATIVE INTE

The same sorts of considerations go for Java synchronization monitors—
need to hold one from within native code, make sure you release it through eve
sible control path. Otherwise, deadlock results, and it will be fiendishly diff
track down. For the most part, if you need to hold onto a Java monitor, create
method (or class) to do the synchronized call, and have the native method c
that. This way, all of Java’s standard synchronization mechanics are satisfied.

The reverse is true, as well, if you create any native-code synchronization
nisms within your native code (under Win32, this includes events, sema
mutexes and/or critical sections). Make sure that they aren’t held when the nati
returns the JVM, or subsequent native calls (using that synchronization objec
implementation) will fail. These are standard rules in concurrent programmi
need to be reiterated here; remember, you’re not in Java-land anymore, and yo
nitely need to obey the local customs.

16.2.3 JNI invocation

The last form of JNI, called JNI invocation, by far outstrips the rest of JNI in
tial, in my opinion. The ability for native code to create, call into, and control
offers so much in the way of flexibility and integration that it’s surprising more
been written on the subject. This holds doubly true on the server, where we ha
mate knowledge (and concrete needs to access the nonportable features) of the
lying operating system.

For example, Java would make a wonderful tool-building language, if only it
so clumsy to use from the command line. By this, I mean that Java’s string-ha
mechanism and high-level syntax make it nearly trivial to create tools for
administrators and environment-maintenance developers to ease their tasks.
and batch files only go so far; for example, it would be nice to have a comma
utility that converted DOS line-terminator (newline-linefeed) pairs into UNIX
feed) line-terminators. Java is perfect for this, except that the JVM-interprete
executable to be launched, and we’d much rather be able to refer to the tool
were an executable.

The code in listing 16.1 does precisely as the Sun “java” tool does—creates
loads a class given on the command line, and calls its main() method. While n
ticularly interesting by itself, once we have this code created, we can actually c
tool-building tool—code that in turn creates code.

485

#include <jni.h>

// StdC++ headers

Listing 16.1 Code for JNItest.cpp
JNI ESSENTIALS

#include <iostream>
#include <fstream>

#include <string>

#include <vector>

// Namespaces in use

using namespace std;

int main(int argc, char* argv[])

{

vector<string> jvm_argv;

string classname;

string classpath;

bool verbose = false;

// We must have reached the classfile

classname = argv[1];

// The remainder of the arguments are assumed to be command-line

// parameters to the Java class

int j;

for (j=2;j<argc;j++)

jvm_argv.push_back(argv[j]);

JavaVMInitArgs vm_args;

JavaVMOption options[4]; int n=0;

options[n++].optionString = "-Djava.compiler=NONE";

/* disable JIT */
options[n++].optionString = "-Djava.class.path=.";

/* user classes */

//options[n++].optionString = "-Djava.library.path=c:\mylibs";

/* set native library path */

//options[n++].optionString = "-verbose:jni";

/* print JNI-related messages */

vm_args.version = JNI_VERSION_1_2;

vm_args.options = options;

vm_args.nOptions = n;

vm_args.ignoreUnrecognized = true;

/* Note that in JDK 1.2, there is no longer any need to call
* JNI_GetDefaultJavaVMInitArgs.

*/

JavaVM* vm;

JNIEnv* env;

jint res = JNI_CreateJavaVM(&vm, (void **)&env, &vm_args);

// argv[1] is the Java class to load

jclass cls = env->FindClass(argv[1]);

if (!cls)

RFACE

{

cout << argv[1] << ".class not found" << endl;

return -1;

}

jmethodID cls_main =
486 CHAPTER 16 JAVA NATIVE INTE

env->GetStaticMethodID(cls, "main", "([Ljava/lang/String;)V");

if (!cls_main)

{

cout << "main(String[]) not found" << endl;

return -1;

}

// Build args to main()

jvalue call_args[1];

jclass cls_java_lang_String = env->FindClass("java/lang/String");

jobject defaultValue = env->NewStringUTF("");

jobjectArray args =

env->NewObjectArray(argc-1, cls_java_lang_String, defaultValue);

// Populate "args"

int i=0;

for (vector<string>::iterator iter = jvm_argv.begin();

iter != jvm_argv.end();

iter++)

{

jstring str = env->NewStringUTF((*iter).c_str());

env->SetObjectArrayElement(args, i++, str);

}

call_args[0].l = args;

//

// Call "main"

//

env->CallStaticVoidMethodA(cls, cls_main, call_args);

//

// Report any uncaught Java exceptions thrown from within the JVM

//

jthrowable ex;

if ((ex = env->ExceptionOccurred()) != NULL)

{

env->ExceptionDescribe();

}

//

// Clean up

//

vm->DestroyJavaVM();

return 0;

}

487

As stated earlier, JNITest.cpp isn’t particularly interesting by itself. Simply duplicating
the behavior of the JDK java interpreter isn’t exactly exciting. However, if we were to
replace the argv[1] argument with a hard-coded class name, we would have a
native executable whose implementation was actually Java code.

ss over-
he class
r script

s (new
scussed

d calls
ic.
va sun.

 know
M in a
hidden

se that
 create
pment
anage-

ions.
omati-

execute
va.exe,
ptions

created

upport
I calls

eaders,
ses, call
JNI ESSENTIALS

Using Invocation to create the JVM within C/C++ code will seem like gro
kill to many. Why not just build a script or batch file to launch java.exe and t
name? As awkward and unwieldly (compared to just writing a simple batch o
file), JNI Invocation offers some very credible reasons for using it:

• The Invocation-related C++ code needn’t be treated as a black box.
C++ developers can use it as a basic starting point, adding other feature
options to the Java compiler, perhaps establishing the signal handlers di
in the previous section, and so forth) to the C++ code.

• Precedent.
This is precisely what the JDK itself does—javac.exe builds a JVM an
sun.tools.javac.Main() , rmic.exe builds a JVM and calls sun.rmi.rm
Main , and so on. The JDK does it because forcing developers to type “ja
tools.javac.Main MyCode.java” is, let’s face it, awkward.

• Encapsulation of implementation.
There will be times we, as developers, don’t want clients or customers to
that the code is written in Java. By wrapping the invocation of the JV
native executable in a native-code shell, we keep the Java portion of it
from casual prying.

Not all enterprise systems will want or need to make use of this. For tho
do, though, there’s real potential for superscripting here; I’ve used JNIGen to
shells around a number of Java applications that comprise tools in my develo
environment to automate makefile-generation and maintenance, configuration m
ment, and so forth.

Drawbacks and caveats

Unfortunately, Invocation isn’t as simple as this. As always, there are complicat
To begin with, some of the featureset given in the Java executable isn’t aut

cally supported by the JVM created by Invocation. For example, the ability to
a JAR file (as described in chapter 3) is a function of the native C/C++ code in ja
not part of Invocation itself. Passing “-jar <jar-file-name>” in as one of the JVM o
(through the use of the JavaVMOptions array) will have no effect. If your JVM
by Invocation is to support this ability, you need to code it in yourself.

Secondly, Sun changed (in the Win32 JDK, at least) how the native-side s
for Java was loaded and executed by the OS. Under JDK 1.1, you made these JN
(with slightly different syntax for the options to the VM), included the JNI h
and linked in the JNI libs. The native process would create the JVM, find clas

RFACE

methods, and so on. So long as the necessary DLLs were someplace the OS could find
them when it was asked to load them, everything ran precisely as expected.

With the advent of JDK 1.2, however, Sun threw something of a monkey wrench
into the works. With 1.1, all that was necessary to run the JVM from native code was

PATH,
K saves
hs rela-
ere the

RE bin
pot JIT
e if the
e. The
spot—
 of the

e JVM
 either

ne is to
n is no
 every-

 to the
 so on.
t ships
ncher.
 as the
y pro-

s more
e code
es.
wing C

n here.
ed by a
e, and
nately,
on can

age that
488 CHAPTER 16 JAVA NATIVE INTE

to be sure that the JDK or JRE bin directory was somewhere along the system
for both Windows and Solaris. In Java 2 (JDK 1.2), this changed; now, the JD
a path to the installed JRE in the Windows Registry, and uses that, and not pat
tive to the bin directory in which the appropriate DLL was found, to locate wh
installed Java execution engine resides.

To complicate matters further, it’s not sufficient to just put the JDK or J
directory on the path. In an effort to support drop-in JIT support (for its Hots
compiler), Sun uses Win32 C/C++ run-time linking to dynamically determin
Hotspot compiler is present, and if so, to load it instead of the classic JVM engin
idea is quite cool—we don’t need to add any more support or code to install Hot
just drop the native-side files into a hotspot directory under the bin directory
JDK/JRE, and Hotspot comes along for free.

What this means, however, is that not all of the files necessary to execute th
reside in the bin directory anymore. Some reside in bin, and others will reside in
classic or hotspot, depending on whether the normal or the JIT execution engi
be used. What this means to us, as Java developers, is that using JNI Invocatio
longer simple. Where before we could simply call JNI_CreateVM and expect
thing to work flawlessly, now we have to worry about obtaining the path
installed JDK out of the Registry, run time loading the appropriate DLLs, and

Fortunately, Sun helps out immeasurably with this; in the src.jar file tha
with the Win32 or Solaris JDK download bundle are four files, under src/lau
This is the native code that Sun uses in its own native-code development, such
java.exe (and other) execution engines; specifically, this is the code for java.exe. B
viding this code under the standard download license (as opposed to Sun’
restrictive Source Community License), you are able to either cut and paste th
into your own native development, or compile and link in the relevant routin

The four files, java.c, java.h, java_md.c, and java_md.h, contain the follo
API5 functions:

• main (java.c):
This is the standard entry point in C/C++, and performs the same functio
The main function will create a JVM (either Hotspot or classic, as defin
command-line argument), find the class passed on the command lin
invoke it with the command-line arguments following the class. Unfortu
main will also be unusable in its current form, since a C/C++ applicati

5 The code is presented in C, so as to be accessible from either C or C++ (or any other langu
understands the Win32 C API, such as Delphi, VB or even PowerBuilder).

489

only have one main , and that (usually) will be the main defined in your own
native code. Still, looking at the main implementation gives a good idea of how
to load the JVM and start it, and nothing prevents us from changing the name
from main to java_main , to allow it to be loaded and linked as a library from

ile not
, does

 either
 in the
rneath
e if the
pplica-
tion is

l home
he JDK
tory in
 found
mpt to
DK 1.2
, it will
e JVM

n pro-
cations
s. This
minis-
 user’s
nstalla-
de will
rd Java

 System
ew ver-
e a new
strators
This is
ur user

for our
ve exe-
he files
JNI ESSENTIALS

other native apps.
• LoadJavaVM (java_md.c): This is a general-purpose routine that, wh

quite as detailed or feature-ridden as the main implementation in java.c
go through all the necessary rigamarole required to load and run the JVM
as the classic or the JIT/Hotspot JVM. In fact, it will check for a JRE first
same directory as the native application (looking for a bin directory unde
the current application directory). If not found there, it then checks to se
application shipped a private JRE (in a jre subdirectory underneath the a
tion’s home directory). Note that the launcher assumes that the applica
being launched from a bin directory underneath the application’s actua
directory; for example, it assumes a directory layout similar to that of t
download itself. The home directory may be C:\JDK1.2 , but the direc
which the executable resides is C:\JDK1.2\bin . If no jre subdirectory is
(in C:\JDK1.2\jre , for example), it checks the Win32 Registry to atte
find (what it calls) a public JRE installation. If you look carefully at the J
installation, this precise hierarchy is established—when java.exe is created
find that it has a jre subdirectory under its home directory, and will use th
support files found there.

This three-step approach to finding the JRE to use as the JVM for Invocatio
vides a tremendous amount of flexibility—now we can ship native C/C++ appli
that use a colocated or private JRE implementation to provide Java capabilitie
is a tremendous step toward zero administration. Instead of making system ad
trators responsible for installing the appropriate version of the JRE onto a
machine, with all the versioning problems thus incurred, we can drop a JRE i
tion in the same directory as our native application. The C/C++ launcher co
pick it up automatically, and, more importantly, it won’t interfere with a standa
installation on the user’s machine.

In fact, this offers an interesting solution to an oft-cited complaint of Java.
administrators, particularly, have often complained about Sun’s release of a n
sion of the JDK every two to four months. As we’ve discussed before, every tim
release of software is made that is in use by a corporation, the system admini
are the ones who have to go around to all the users’ machines and install it.
not a good way to make friends with the system administrators, especially if yo
base is scattered across multiple buildings, cities, states, or even countries.

We’ve already discussed ways to create a zero deployment environment
Java code, but the JVM/JRE itself is another matter. It would be awkward to ha
cuting Java code try to download a new version of the JRE and install it, since t

RFACE

being replaced are currently being executed. Not only does this present a potential
sharing violation, but now the Java code has to somehow shut itself down and restart
the application, so as to take advantage of the new code.

JNI offers an interesting solution to this issue. Instead of asking Java code to do this
st invo-
est ver-
, make
 of the
 on the
ormat),
.
und to
es, and
mbling
or your

ly into
nto the
rs need
lection
ultiple
e JVM

h itself

s. One
nt-end
recisely
490 CHAPTER 16 JAVA NATIVE INTE

sort of upgrade-the-JDK-on-the-fly, run a custom java.exe launcher that, upon fir
cation, uses native C/C++ code to contact a central deployment server for the lat
sion of the JRE in use. The JNI code can even go so far as to construct the JVM
a System.getProperties(“java.version”) call to obtain the version
JVM in use and compare it against the version on the remote server. If the version
remote server is greater, download the new JRE (most likely in .zip or .tar.gz f
explode it on top of the user’s current working directory, and then start the JVM

Your system administrators are happy because they don’t have to walk aro
every user’s machine, they don’t have to ask the users to do the install themselv
they’re still able to support your development efforts and not seem as a stu
block to continued progress. You, meanwhile, bask in the glory of their praise f
system even as you upgrade the JDK to the latest and greatest, as needed.

One final problem with using Invocation is that because we’re so deep
native code, we need to pay very close attention to the context when calling i
JVM. Any exceptions thrown need to be handled, any synchronization monito
to be carefully tracked, and global and local references (to prevent garbage-col
of Java objects) need to be held where necessary. When working within m
native-thread code, special care must be taken in order to prevent a crash from th
native code—each thread that wishes to access or call on the JVM must attac
to the JVM before making a single call on it.

Still, JNI Invocation is by far the most underrated API of the Java API set
idea offering interesting possibilities is to embed a JVM within your user fro
application, and use Java as your application’s user macro language; this is p
what Java Server Pages do.

Debugging tip

Interestingly, reading the launcher code also yields a very practical benefit:
/*

* Entry point.
*/

int
main(int argc, char **argv)

{
/* . . . */

if (getenv("_JAVA_LAUNCHER_DEBUG") != 0) {

debug = JNI_TRUE;
printf("----_JAVA_LAUNCHER_DEBUG----\n");

}

/* . . . */

}

491

For non-C/C++ developers, the foregoing code checks for the presence of an environment
variable _JAVA_LAUNCHER_DEBUG, and if found, turns on a debug flag that causes all
sorts of interesting information to be displayed when the executable is running:

C:\Projects\Books\SSJ\cd\Src\Chap13>java Hello

path to
viron-

 on the
e pro-

ith the
JNI ESSENTIALS

Hello, world!

C:\Projects\Books\SSJ\cd\Src\Chap13>set JAVA_LAUNCHER_DEBUG=1

C:\Projects\Books\SSJ\cd\Src\Chap13>java Hello
----_JAVA_LAUNCHER_DEBUG----

Path to JVM is C:\PRG\JDK1.2\jre\bin\classic\jvm.dll

JavaVM args:

version 0x00010002, ignoreUnrecognized is JNI_FALSE, nOptions is 1

option[0] = '-
Djava.class.path=.;C:\JRE\1.2\lib\rt.jar;C:\PRG\JDK1.2\lib\to

ols.jar;C:\PRG\JDK1.2\lib\dt.jar'

678724 micro seconds to InitializeJVM

Main-Class is 'Hello'

Apps' argc is 0

224188 micro seconds to load main class
----_JAVA_LAUNCHER_DEBUG----

Hello, world!

C:\Projects\Books\SSJ\cd\Src\Chap13>

As you can see, we get quite a collection of information that comes back—the
the JVM, the arguments to the JVM (including the value of the CLASSPATH en
ment variable), the Main-Class loaded, which will be either the class specified
command line, or the Main-Class directive in the JAR’s Manifest file, and som
filing information.

Just for curiosity’s sake, this is what we get when we run “javac” w
_JAVA_LAUNCHER_DEBUG turned on:

C:\Projects\Books\SSJ\cd\Src\Chap13>set CLASSPATH=

C:\Projects\Books\SSJ\cd\Src\Chap13>javac Hello.java
----_JAVA_LAUNCHER_DEBUG----

Path to JVM is C:\PRG\JDK1.2\jre\bin\classic\jvm.dll

JavaVM args:

version 0x00010002, ignoreUnrecognized is JNI_FALSE, nOptions is 3

option[0] = '-Dapplication.home=C:\PRG\JDK1.2'

option[1] = '-
Djava.class.path=C:\PRG\JDK1.2\lib\tools.jar;C:\PRG\JDK1.2\cl

asses'

option[2] = '-Xms8m'

625375 micro seconds to InitializeJVM

Main-Class is 'sun.tools.javac.Main'
Apps' argc is 1

argv[0] = 'Hello.java'

450462 micro seconds to load main class

----_JAVA_LAUNCHER_DEBUG----

C:\Projects\Books\SSJ\cd\Src\Chap13>

RFACE

Interesting. In this snippet, we first set the CLASSPATH to be empty, to demonstrate
what the launcher code does with the CLASSPATH if none is found. As you can see, it
builds its own classpath, consisting of the application home path with lib\tools.jar
and classes appended. (This is the CLASSPATH used for the execution of the

 classes

 for us
ct, this

ation is
ompile
un the
t be as

inistra-
ured to

braries.
anges.

ecifica-
DK 1.2
cant, a

 it will

n; this
nction
rary is

to per-
onnec-
library,
 entry-
++) to

w pro-
written
492 CHAPTER 16 JAVA NATIVE INTE

sun.tools.javac.Main class, not the CLASSPATH used by the compiler to find
defined in your own code.)

This is useful information to have when debugging Java, and it’s all there
to see just by turning on this undocumented feature of the launcher code. In fa
is a handy trick for development in general; one of the keys to zero administr
the ability to turn on debugging information without having to redeploy or rec
the application. In this case, simply define an environment variable and rer
application, and debug information begins to pour across the screen. It may no
interactive as using a Java debugger, but it’s a quick-trick that the system adm
tors can do themselves. Then, if the problem persists, the output can be capt
file and given to the developers for examination.

16.2.4 JNI changes in JDK 1.2

With the release of JDK 1.2 came some changes in the nature of native li
Unfortunately, no corresponding JNI 1.2 specification has come with those ch
As of this writing, the JNI 1.2 specification consists of reading the JNI 1.1 sp
tion and the JNI 1.2 enhancements document that comes as part of the J
download. While the changes made to JNI for 1.2 aren’t profound or signifi
few new features added offer additional flexibility you may welcome:

• Native library startup/shutdown routines
When the JVM loads the native library via the loadLibrary method,
attempt to look for a function in the library with the signature

jint JNI_OnLoad(JavaVM* vm, void* reserved);

The JNI_OnLoad function must return the JVM version it requires to ru
means that if any native-code implementations use JNI 1.2 features, this fu
must return JNI_VERSION_1_2 . Conversely, when the native lib
unloaded from the JVM, it will call

void JNI_OnUnload(JavaVM* vm, void* reserved);

This behavior was introduced to allow native libraries the opportunity
form on-load or on-unload initialization (for example, to establish/close c
tions to a database, or perform initialize/uninitialize calls to a third-party
and so forth). Under the Win32 platform, DLLs have the ability to use a DLL
point function (DllMain under Visual C++, DllEntryPoint under BorlandC
do the same thing. Other platforms may do so, as well. Because Java no
vides a mechanism to do this, however, any new native-library code
should use the JNI_OnLoad /JNI_OnUnload functions.

493

• Reflection support
One discrepancy in JNI 1.1 was the fact that JNI jmethodIDs and jfieldIDs
had no relationship to Reflection, other than twice looking up the same field or
method by name (once in Reflection and once in JNI). This meant that within a

odID
om the
l Get-
gh the

I 1.2, it

anism.
ToRe-
.reflect.

roduc-
 struc-
 0 to n

ils.
JNI ESSENTIALS

native library, if the native-code implementation needed to find the jmeth
of a java.lang.reflect.Method instance, it had to get the Class instance fr
Method, turn the Class into a jclass, get the name from the Method, cal
MethodID on the jclass using the Method’s name, and finally call throu
jmethodID , all of which took an extraordinary amount of time. In JN
boils down to a single call:

// Convert “methodObj” (a jobject) into a jmethodID

jmethodID methodJNI_ID = envPtr->FromReflectedMethod(methodObj);

// Note that methodObj must be a jobject referencing a

// java.lang.reflect.Constructor or java.lang.reflect.Method

// object instance, or Bad Things will occur

This gives JNI code the ability to conveniently use Java’s Reflection mech
This can also go both ways—the JNI methods ToReflectedMethod /
flectedField convert a JNI jmethodID or jfieldID to a java.lang
Method/java.lang. reflect.Constructor or java.lang.reflect.Field instance.

• Changes in the Invocation mechanism
Because of the way the JNI 1.1 JDK1_1InitArgs structure was written, int
ing features to the JVM via Invocation was impossible. In JNI 1.2, a new
ture was introduced, JavaVMInitArgs, which in turn contains an array of
JavaVMOption structures; the JNITest.cpp file demonstrated this:

JavaVMInitArgs vm_args;

JavaVMOption options[4];

options[0].optionString = "-Djava.compiler=NONE";

/* disable JIT */

options[1].optionString = "-Djava.class.path=c:\myclasses";

/* user classes */

options[2].optionString = "-Djava.library.path=c:\mylibs";

/* set native library path */

options[3].optionString = "-verbose:jni";

/* print JNI-related messages */

vm_args.version = JNI_VERSION_1_2;

vm_args.options = options;

vm_args.nOptions = 4;

vm_args.ignoreUnrecognized = TRUE;

/* Note that in JDK 1.2, there is no longer any need to call

* JNI_GetDefaultJavaVMInitArgs. */

res = JNI_CreateJavaVM(&vm, (void **)&env, &vm_args);

A few other items came in as well; see the JDK documentation for further deta

RFACE

16.3 OTHER METHODS OF JAVA-TO-NATIVE INTERACTION

JNI isn’t the only way by which Java can communicate with native code.

16.3.1 Sockets

s to use
 nature
ble has
unica-
kets to
n Java,
ly text-
 of any

unicate
rite the
TCP/IP
sure of
 which
ultiple

d carry
rmance
 repre-
oss the
 speci-

s, some
is, but

d well-
de can
e if the
extual-
ic case
change

ss non-
g, tar-
guages
easure
ORBA
494 CHAPTER 16 JAVA NATIVE INTE

One of the easiest ways to get Java code to communicate with non-Java code i
TCP/IP sockets to facilitate the communication. Because of their ubiquitous
and the popularity of the Internet, just about every language commonly availa
the capacity to open and communicate over a socket. In fact, this sort of comm
tion occurs almost constantly, as web browsers written in C or C++ use soc
communicate with web (and other) servers that may or may not be written i
C/C++, Python, or Visual Basic. Because the HTTP protocol is a complete
based protocol, no big-endian/little-endian concerns apply; the same is true
text-based protocol, which explains its popularity among Internet standards.

This in turn implies that if you require your Java application to comm
with a C++ server, simply specify a text-based socket protocol for both sides, w
necessary code to read and write from those sockets, then ensure that clear
communication exists between the two processes. Sockets also possess a mea
location transparency. They can be used for either a local IPC mechanism, in
two processes on the same machine communicate, or as remote IPC across m
machines. Either way, the sockets neither know nor care.

There are, however, drawbacks to the sockets alternative. Sockets are slow an
a fairly hefty amount of overhead in establishing connections. In a high-perfo
application, this could easily become a sizable bottleneck. Additionally, binary
sentations of objects cannot be shared, but must instead be sent entirely acr
socket. If your non-Java environment understands the Java Object Serialization
fication, the entire object tree can be Serialized and sent over, but without thi
other form of representation must be used. XML is a good candidate for th
requires an XML parser for both sides.

Consequently, unless the separation between the two systems is clean an
defined, sockets as an interface mechanism between Java and non-Java co
quickly become more trouble than they are worth. This can especially be tru
desire to move to non-Java code is one of performance. In those cases where a t
based system and/or well-known binary data exchange is possible (the class
being a web server), sockets provide an easily understood mechanism for the ex
of data between Java and external code.

16.3.2 CORBA

CORBA also, because of its multilinguistic nature, also allows Java code to acce
Java code. This is entirely by intent. CORBA has been, from its very beginnin
geted as a cross-language, cross-platform solution that brings together all lan
into a unified whole. The cost of this software bus, as the OMG calls it, is a m
of complexity not found in pure Java code, coupled with the overhead of the C

495

ORB and related code on each side. The overhead of IIOP will certainly defeat most
attempts to use CORBA as a native-code performance-tuning mechanism.

In some ways, using CORBA to access code written in C/C++ (or any of the other
languages for which CORBA has bindings, including Ada and COM/DCOM Automa-

ing the
ORBA

ts own,
ur Java

asier to
 inter-
ng lan-
ust be
mand

system
d it by
 won’t

of dae-
, is an
d FTP

ed into
es up.
achine

ith any
erating
aram1
y strict
es very
ceiving

y won-
n, and

e—NT
ns run-
process
ell you,
INTEGRATING THE SERVER: GJAS GOES NATIVE

tion) doesn’t quite qualify as native interaction, since the Java code isn’t access
native code directly (as it is with JNI). Instead, the Java code calls into the C
ORB, which in turn passes the request on to the recipient CORBA object in i
native, form. Still, regardless of the technical discrepancies, CORBA allows o
code to communicate directly with C/C++ code, which is precisely the goal.

16.4 INTEGRATING THE SERVER: GJAS GOES NATIVE

Despite Java’s incredible flexibility as a server-side tool, sometimes it’s simply e
use and administer an application if it is a native executable, rather than an
preted bytecode (or script) file. For example, Java would make a strong scripti
guage, to replace complex UNIX shell scripts, except that a Java application m
fired off as the Java interpreter, with the class name to execute as part of the com
line. This requirement makes using Java as an integral part of the operating
suite of tools an awkward and clumsy process. We might be able to work aroun
using batch or script files to hide the Java interpreter, but that’s still clumsy, and
work in many cases.

16.4.1 Making GJAS an NT service

One such area where Java’s interpreted nature can trip itself up is in the arena
mon processes. Daemons, for those unfamiliar with the UNIX terminology
application that runs irrespective of user presence. For example, most HTTP an
server processes are run as daemons, so that even if no user is currently logg
the system, the process will still run and execute as soon as the system com
Under NT, daemons are called Services, and are started as soon as the NT m
boots, just like daemons.

Unfortunately, where a daemon process can be any Unix executable w
command-line (daemons are specified in plain text files specific to each Unix op
system, so firing off a Java app is as simple as specifying “java MyClass p
param2”), NT has a very specific mechanism. Services in NT must follow a ver
form, and cannot be simply any executable—it must be an executable that tak
specific steps, registering itself with the NT Service Control Manager, and re
callbacks from the SCM as the load process proceeds.

Because of this, a Java application cannot, by itself, be a Service. Some ma
der why this is even an issue—after all, we just log in, start the Java applicatio
leave it running, correct? Those familiar with NT know this is not the cas
refuses to log out so long as a user-created process (like a Java process) remai
ning. This means that the only way, other than to create a Service, to have a
running on NT is to leave it logged in. This is, as any NT administrator will t

RFACE

a huge security hole, as it means that anyone with physical access to the server can now
(deliberately or accidentally) alter or shut down the Java process.

Instead, we need to create a native NT Service to create a JVM, load a class specified
in the Service’s command-line parameters, and execute it. Unlike a normal Java appli-

nstead,
reate a
ce.
cessary
ecause
r JVM.
.

 named
emory-
 in the
 a wide
unicate
Again,
tform.
e class
of con-
utput-

ctively.
classes,
t’s spe-
496 CHAPTER 16 JAVA NATIVE INTE

cation, however, we’re not going to try and filter everything through main ; i
we’re going to make use of JNI’s ability to call any method on the class and c
pseudo-protocol for allowing any arbitrary Java class to behave as an NT servi

This isn’t a book on NT Services, so I’m not going to go through the ne
steps to build an NT Service.6 The key point to draw away from this is that b
of JNI, we can create a custom-OS-specific application that in turn wrappers ou
This lets us poke Java into just about any place on the platform that we want

16.4.2 Using NT IPC mechanisms: Named pipe

The Win32 API also has a rich set of interprocess communication mechanisms:
and anonymous pipes, atoms, the Windows clipboard, DDE, system hooks, m
mapped files, mailslots, standard sockets, even the WM_COPYDATA message
windowing layer. As a result, native Win32 applications can communicate in
variety of ways. Because of this, we may want our Java code to be able to comm
with these native Win32 applications using their mode of communication.
this is precisely what JNI is for—to allow us to call down to the underlying pla

We’ll use the basic design that Java uses for Sockets. The NamedPip
(listing 16.2) will parallel the Socket class, a basic encapsulation of the details
necting to a given NamedPipe. From that NamedPipe instance, we’ll obtain an O
Stream and InputStream for writing to and reading from the named pipe, respe
These will be the NamedPipeOutputStream and NamedPipeInputStream
although they shouldn’t be visible to users of the NamedPipe, just as the Socke
cific OutputStream and InputStream classes aren’t visible.

/**
* This class serves the same purpose as the Java Socket class;

* a simple abstraction of connecting to and using a named pipe.
*/

public class NamedPipe
{

static

{
System.loadLibrary("NamedPipe");

}

// Constants

//

6 Essential JNI, mentioned in the “Additional reading” section, does precisely this.

Listing 16.2 Code for NamedPipe.java

497

public static final int DUPLEX = 3;

public static final int WRITE = 2;

public static final int READ = 1;

// Internal members

//
INTEGRATING THE SERVER: GJAS GOES NATIVE

/*package-friendly*/ int m_hPipe;

private int m_openMode;

public NamedPipe()

{ }

public NamedPipe(String pipeName, int openMode, int timeout)

throws IOException

{

m_openMode = openMode;

open(pipeName, openMode, timeout);

}

public void finalize()

{

close();

}

public void open(String pipeName, int openMode, int timeout)

throws IOException

{

m_hPipe = nativeOpen(pipeName, openMode, timeout);

if (m_hPipe == 0xFFFFFFFF)

{

throw new IOException("NT NamedPipe error");

}

}

public void close()

{

nativeClose(m_hPipe);

}

public OutputStream getOutputStream()

throws IOException

{

if ((m_openMode == DUPLEX) ||

(m_openMode == WRITE))

{

return new NamedPipeOutputStream(this);

}

else

throw new IOException("Named-Pipe is inbound only");

}

public InputStream getInputStream()

throws IOException

{

if ((m_openMode == DUPLEX) ||

(m_openMode == READ))

{

RFACE

return new NamedPipeInputStream(this);

}

else
throw new IOException("Named-Pipe is outbound only");

}

 simply
2 UNC
s:

 “pipe-
alhost”

 “pipe-
ill exist

e pipe
xist on

roblem.
 “pipe-
omain,

e UNC
ll.
ate tree
498 CHAPTER 16 JAVA NATIVE INTE

// Native methods
//

static private native

int nativeOpen(String name, int mode, int timeOut);
static private native

boolean nativeClose(int pipeHandle);

}

The NamedPipe class, like the Socket class, offers two constructors: a default that
creates the instance and performs no initialization, and one that takes the Win3
name of the named pipe to connect to. This name will be one of a variety of form

• “\\.\pipe\pipename”: Tells the Win32 API to connect to the pipe named
name” on the local machine; using “.” is the named pipe equivalent of “loc
as the host name to a Socket.

• “*\pipe\pipename”: Tells the Win32 API to connect to the pipe named
name” anywhere on the network; this means that only one “pipename” w
across the entire NT domain or workgroup.

• “\\machinename\pipe\pipename”: Tells the Win32 API to connect to th
“pipename” on the machine “machinename”. Only one “pipename” can e
“machinename”, but “pipename” could exist on other machines without a p

• “\\domain\pipe\pipename”: Tells the Win32 API to connect to the pipe
name” on the domain “domain”; only one “pipename” will exist for the d
but will not conflict with “pipename” on individual machines.

The NamedPipe class itself does no validation or sanity-checking of th
name; it just passes it directly on to the JNI methods to give to the Win32 ca

NamedPipe has three native methods, which are implemented in a separ
on the CD (in the “Src/native/win32” subdirectory), and look like this:

#include "com_javageeks_net_NamedPipe.h"

#include <windows.h>

#include <iostream>

using namespace std;

/*
* Class: com_javageeks_net_NamedPipe

* Method: nativeOpen

* Signature: (Ljava/lang/String;II)I
*/

JNIEXPORT jint JNICALL Java_com_javageeks_net_NamedPipe_nativeOpen

499

(JNIEnv* env, jclass, jstring pipeName, jint mode, jint timeOut)

{

int debug = (getenv("_JAVAGEEKS_DEBUG") != 0);

// Convert from Java to UTF-8; we're in trouble if we ever use

// Unicode as a pipeName, but I don't want to deal with
INTEGRATING THE SERVER: GJAS GOES NATIVE

// Unicode-to-ASCII conversions right now

const char* c_pipeName = env->GetStringUTFChars(pipeName, NULL);

if (debug)

{

cout << "Java_com_javageeks_net_NamedPipe_nativeConstruct: "

<< "c_pipeNam e = " << c_pipeName << endl;

}

DWORD fileMode;

if (mode==com_javageeks_net_NamedPipe_DUPLEX)

{

fileMode = GENERIC_READ | GENERIC_WRITE;

}

else if (mode==com_javageeks_net_NamedPipe_READ)

{

fileMode = GENERIC_READ;

}

else if (mode==com_javageeks_net_NamedPipe_WRITE)

{

fileMode = GENERIC_WRITE;

}

else

{

// Uh-oh; we didn't expect this

if (debug)

{

cout << "What is mode " << mode << "???" << endl;

}

}

// Make the call

HANDLE hPipe = ::CreateFile(c_pipeName, fileMode,

0, NULL, OPEN_EXISTING, 0, NULL);

// Check for busy

if (hPipe == INVALID_HANDLE_VALUE)

{

if (::GetLastError() == ERROR_PIPE_BUSY)

{

// Wait up to the timeout parameter; after that, it's

// a failed connect and return

if (::WaitNamedPipe(c_pipeName, timeOut))

{

hPipe = ::CreateFile(c_pipeName, fileMode, 0, NULL,

OPEN_EXISTING, 0, NULL);

}

}

}

RFACE

if (hPipe == INVALID_HANDLE_VALUE)

{

DWORD error = ::GetLastError();

if (debug)

{

Win32
C/C++
his is a
nother
de still
tring is
ed as a
500 CHAPTER 16 JAVA NATIVE INTE

cout << "hndl == INVALID_HANDLE_VALUE; "

<< "ErrNo: " << ::GetLastError() << endl;

}

hPipe = (void*)-1;

}

// Release

env->ReleaseStringUTFChars(pipeName, c_pipeName);

return (jint)hPipe;

}

/*

* Class: com_javageeks_net_NamedPipe

* Method: nativeClose

* Signature: (I)Z

*/

JNIEXPORT jboolean JNICALL Java_com_javageeks_net_NamedPipe_nativeClose

(JNIEnv* env, jclass cls, jint namedPipe)

{

int debug = (getenv("_JAVAGEEKS_DEBUG") != 0);

HANDLE hPipe = (HANDLE)namedPipe;

if (::CloseHandle(hPipe))

{

return JNI_TRUE;

}

else

{

if (debug)

{

cout << "ConnectNamedPipe failed; error "

<< ::GetLastError() << endl;

}

return JNI_FALSE;

}

}

For those who aren’t C++ gurus, this is a fairly basic exercise in both JNI and
API calls. The nativeOpen call decodes the jstring argument into a native
char* string, and passes that into the CreateFile call. Note that because t
client (and not a server), if the named pipe doesn’t exist, an error will result. A
danger: remember that in Java, all Strings are Unicode, but most C/C++ co
works with the ASCII character set. When decoding Strings from Java, if the S
entirely ASCII, it can be safely used as an ASCII string when retrieved/convert

501

UTF-8 String; should somebody pass in a Unicode name as the choice of the named
pipe, however, the JNI code mentioned is going to blow up—big time. I’m not
including any code to convert Unicode to ASCII for the simple reason that it clutters
the example; if this code is intended for an international market, such conversion

ariable
efined,
ld even
 (1 and

ods of
eInput-
INTEGRATING THE SERVER: GJAS GOES NATIVE

would probably be necessary before deployment to production.
Note how we make use of the “_JAVA_LAUNCHER_DEBUG” environment-v

trick in the JNI code; if the environment variable “_JAVAGEEKS_DEBUG” is d
we spit out some interesting debugging information along the way. We cou
make this more sophisticated by setting the environment variable to various levels
up), corresponding to more and more output, but this works, for now.

Notice that the getOutputStream and getInputStream meth
NamedPipe return new instances of NamedPipeOutputStream and NamedPip
Stream, respectively:

/**

* Receive input from an NT named pipe (presumably with INBOUND

* mode set on it). Can only be obtained from a NamedPipe instance;

* cannot be instantiated on its own.

*/

public class NamedPipeInputStream extends InputStream

{

// Internal members

//

private NamedPipe m_pipe;

/**

* Package-friendly constructor. Used solely by NamedPipe.

*/

/*package-friendly*/ NamedPipeInputStream(NamedPipe pipe)

{

m_pipe = pipe;

}

public int available()

{

return 0;

}

public void close()

{

// Do nothing--the named pipe may still be open in outbound

// mode, so we don't want to close it

}

public boolean markSupported()

{

return false;

}

public int read(byte[] b)

{

return nativeRead(m_pipe.m_hPipe, b);

}

RFACE

public int read()

{

return nativeRead(m_pipe.m_hPipe);
}

// Native methods
502 CHAPTER 16 JAVA NATIVE INTE

//
private static native void nativeAvailable(int hPipe);

private static native int nativeRead(int hPipe, byte[] b);

private static native int nativeRead(int hPipe);
}

The JNI implementation looks like:

#include "com_javageeks_net_NamedPipeInputStream.h"

#include <windows.h>

#include <iostream>

using namespace std;

/*

* Class: com_javageeks_net_NamedPipeInputStream

* Method: nativeAvailable
* Signature: (I)V

*/

JNIEXPORT void JNICALL
Java_com_javageeks_net_NamedPipeInputStream_nativeAvailable

(JNIEnv* env, jclass, jint namedPipe)

{
int debug = (getenv("_JAVAGEEKS_DEBUG") != 0);

HANDLE hPipe = (HANDLE)namedPipe;

// Not sure what to do here....

}

/*

* Java_com_javageeks_net_NamedPipeInputStream_nativeRead__I not

* shown here for brevity
*/

/*
* Class: com_javageeks_net_NamedPipeInputStream

* Method: nativeRead

* Signature: (I[B)I
*/

JNIEXPORT jint JNICALL

Java_com_javageeks_net_NamedPipeInputStream_nativeRead__I_3B
(JNIEnv* env, jclass, jint namedPipe, jbyteArray bytes)

{

int debug = (getenv("_JAVAGEEKS_DEBUG") != 0);

HANDLE hPipe = (HANDLE)namedPipe;

// Read bytes.length characters

DWORD arrayLength = env->GetArrayLength(bytes);

DWORD nRead;

503

CHAR* recvArray = new CHAR[arrayLength];

if (!::ReadFile(hPipe, recvArray, arrayLength, &nRead, NULL))

{

if (debug)

{

 many
this. In
normal
ld add

, again,

imilar:

t) under
 API call
INTEGRATING THE SERVER: GJAS GOES NATIVE

cout << "ERROR: Unable to read from named pipe" << endl;

}

}

// recvArray now holds the named pipe data; transfer it to

// the 'bytes' array

env->SetByteArrayRegion(bytes, 0, nRead, (jbyte*)recvArray);

return nRead;

}

Note that InputStream provides available , a method for determining how
bytes can be read before blocking, but that the JNI code does nothing with
fact, the Java code in NamedPipeInputStream simply returns 0. This is the
response to use when working with a stream that offers no buffering. We cou
buffering of the named pipe to the input stream without much difficulty, but
would make the JNI code much more complex.7

NamedPipeOutputStream.java and its corresponding JNI code look very s

package com.javageeks.net;

import java.io.*;

public class NamedPipeOutputStream extends OutputStream

{

// Internal members

//

private NamedPipe m_pipe;

/*package-friendly*/ NamedPipeOutputStream(NamedPipe pipe)

{

m_pipe = pipe;

}

public void close()

{

// Do nothing--the named pipe may still be open in incoming

// mode, so we don't want to close it

}

public void flush()

{

nativeFlush(m_pipe.m_hPipe);

}

7 In addition, attempting to support this functionality in its purest form (lookahead suppor
Win32 could be somewhat problematic or inefficient, since it would require making a separate
to determine how many characters are left to read on the named pipe.

RFACE

public void write(byte[] b)

{

nativeWrite(m_pipe.m_hPipe, b);

}

public void write(int ch)

ent JNI
; this is
504 CHAPTER 16 JAVA NATIVE INTE

{

nativeWrite(m_pipe.m_hPipe, ch);

}

// Native methods

//
private static native void nativeFlush(int hPipe);

private static native void nativeWrite(int hPipe, byte[] bytes);

private static native void nativeWrite(int hPipe, int ch);

}

Notice that we provide an implementation for flush , even though the curr
implementation always sends the data down the named pipe in the write call
(again) to support buffering later, if we choose to do so.

The JNI implementation is as follows:

#include "com_javageeks_net_NamedPipeOutputStream.h"

#include <windows.h>

#include <iostream>

using namespace std;

/*

* Class: com_javageeks_net_NamedPipeOutputStream
* Method: nativeFlush

* Signature: (I)V

*/

JNIEXPORT void JNICALL
Java_com_javageeks_net_NamedPipeOutputStream_nativeFlush

(JNIEnv* env, jclass, jint pipe)

{

int debug = (getenv("_JAVAGEEKS_DEBUG") != 0);

HANDLE hPipe = (HANDLE)pipe;
}

/*

* Java_com_javageeks_net_NamedPipeOutputStream_nativeWrite__II not

* shown here for brevity

*/

/*

* Class: com_javageeks_net_NamedPipeOutputStream

* Method: nativeWrite

* Signature: (I[B)V

*/

JNIEXPORT void JNICALL
Java_com_javageeks_net_NamedPipeOutputStream_nativeWrite__I_3B

(JNIEnv* env, jclass, jint pipe, jbyteArray bytes)

505

{

int debug = (getenv("_JAVAGEEKS_DEBUG") != 0);

if (debug)

{
cout << "Entering NamedPipeOutputStream_nativeWrite__I_3B" << endl;

wn the
 ch)

, send-
dPipe-
ethod,
int

m call
edPipe

ta down
and-use-
tStream,
.

INTEGRATING THE SERVER: GJAS GOES NATIVE

}

HANDLE hPipe = (HANDLE)pipe;

// Convert jbyteArray to char*

DWORD arrayLength = env->GetArrayLength(bytes);
CHAR* sendArray = new CHAR[arrayLength];

env->GetByteArrayRegion(bytes, 0, arrayLength, (jbyte*)sendArray);

if (debug)

{

cout << "Sending: '" << sendArray << "'" << endl;
}

DWORD cbWritten;

// Do the Write

BOOL success = ::WriteFile(hPipe, sendArray, arrayLength + 1,
&cbWritten, NULL);

if (!success)

{

if (debug)

{
cout << "ERROR: WriteFile failed: " << ::GetLastError()

<< endl;

}

}
}

We do nothing inside of nativeFlush , since we’re sending the messages do
named pipe as soon as the write call is made. Note also that the write(int
method, under a nonbuffered implementation, is going to be an expensive call
ing a single character down the named pipe on each call. This is why the Name
OutputStream class provides an implementation of the write(byte[] b) m
instead of using the default: simply looping across the array and calling write(
ch) would be horribly inefficient.8

A couple of other notes about the NamedPipe implementation:

• “Close” support
Neither the NamedPipeInputStream nor the NamedPipeOutputStrea
CloseHandle on the named pipe handle, instead leaving it to the Nam

8 This is also why the sample code in NamedPipe’s main uses the write method to send the da
the pipe, instead of the more Java-familiar wrap-a-PrintWriter-around-the-OutputStream-
println . Because PrintWriter writes each character using the write(int) method of Outpu
to send a collection of bytes it’s more efficient to use write directly, even if it is more awkward

RFACE

to do this during its garbage-collection step (or when its close method is called
directly). This is because a given InputStream and OutputStream could both be
attached to the same handle, and having one close it would deny it to the other.
Instead of trying to build a complex reference-counting scheme, we let Java do

til any
ycled),

r “mes-
herent

 mode,
eved at
 to the
C/C++
amed-

ode the

mples,
en use

t to the

JVM to

System
he Java
ivial to
e them
upport
of this

use the
 when

s” under
 that be-
ed to be
506 CHAPTER 16 JAVA NATIVE INTE

the work for us. When NamedPipe gets recycled (which it never will, un
NamedPipeInputStream or NamedPipeOutputStream instances are also rec
it closes the named pipe itself.

• No named-pipe “byte” versus “message” differentiation.
Under Win32, named pipes can be in one of two modes, either “byte” o
sage” mode. In “byte” mode, bytes are simply written and sent, with no in
break between one send and the next. Contrary to this, in “message”
when one message is sent down the named pipe, the entire message is retri
once, making transaction-based communications easier. Adding support
NamedPipe class would be a simple exercise in additional JNI/Win32
calls. Unfortunately, it would complicate the NamedPipeInputStream/N
PipeOutputStream classes, because they would need to know in which m
named pipe was operating, and make translations as necessary.

As a test, the Microsoft Visual C++ compiler comes with a number of sa
one of which is a multithreaded named-pipe server.9 Compile and start it, th
the main method of NamedPipe (not shown in the previous listing) to connec
Microsoft named pipe server, and exchange data between clients.

16.5 OTHER JNI USES

There is more to JNI than being able to call down the OS or create an opaque
use. JNI also offers the opportunity for API control of the JVM itself.

16.5.1 Debugging support

I have lamented the loss of Java’s placement of environment variables into the
“properties” Properties instance. Given that we have the source available for t
interpreter for both the Win32 and Solaris platforms, it would be relatively tr
use native C/C++ code to walk through the environment variables and plac
into the System’s properties. This would, in turn, give us the debugging s
from environment variables that Java itself uses, but would require the use
specialized interpreter.

This, by itself, may not be all bad—it means that production code can
standard Java interpreter, and use our customized debugging interpreter only

9 Use the documentation that comes with MSVC, or an MSDN subscription, to look up “Pipe
the “PlatformSDK” heading, and use the “Multithreaded Named Pipe Server” example. Note
cause the Java implementation uses byte-oriented named pipes, the MSVC sample will ne
modified to use byte-oriented (instead of message-oriented) named pipes.

507

the debugging or problem-tracking needs to take place. It probably wouldn’t qualify
as 100 percent pure Java, however, and other Java-based products that control the
JVM, such as EJB Application Servers or Servlet-compliant HTTP servers, wouldn’t
have this support. Still, for developers, this may be a useful trick to have for debugging

PI that
oduced
rd Java

ating a
g capa-
a code-
 set up
use JNI
sary, as
een (or
 execu-
res any
roduce

applies
arty, or
ode to
ld pos-
n extra
 unex-
ailable

n order
de the
n-the-
a class,
’s Jikes
 of Java
use the
me the

flags to
OTHER JNI USES

or administration support.

16.5.2 JVMDI

The Java Virtual Machine Debugger Interface (JVMDI) is a native-code A
allows native libraries to have special control with the JVM. JVMDI was intr
with the release of JDK 1.2, and while Sun claims it to be part of the standa
platform, it is (so far) only implemented within the Sun JDK 1.2 release.

Some would believe that knowing this API would only interest those cre
debugger for Java; in fact, JVMDI (and its partner, JVMPI) offers interestin
bilities, especially in the area of JVM events. For example, we can implement
unintrusive, line-by-line method trace by using JVMDI to attach to the JVM,
frame-entry and frame-exit event handlers. Within the event-handler callback,
to extract the class and method name, and the parameters to the call, if neces
well as the thread on which the call was made, and display all of this to the scr
file, or wherever the trace information is destined). While it reduces the JVM’s
tion speed to a crawl (especially since JVMDI, at least in its current form, requi
JIT compiler to be turned off), only running the code in a debugger would p
a more detailed report of what happened within the JVM.

Additionally, because this technique occurs within the JVM itself, it
equally well to any Java code, whether it was developed in-house, by a third-p
even parts of the JDK run-time library itself. This reduces the need for trace c
be written within the Java code and offers the ability to trace any code we cou
sibly execute. Having the ability to act as a debugger gives server applications a
measure of robustness—we can use the JVMDI API to not only report on any
pected conditions, but to handle the problem in a manner that would be unav
to us within standard Java code.

For example, we can use JVMDI to trap events relating to class loading, i
to preempt the standard class-loading mechanism, by obtaining the byteco
JVM wants to load from some other source. Recall the discussion regarding o
fly compilation of Java code; instead of routing the compilation through a Jav
we can use native code to execute a native-code Java compiler (such as IBM
compiler) in a separate process. Or, in order to determine the smallest number
classes that need to be distributed when an application is shipped, we can
JVMDI API call GetClasses to list all the classes loaded in the JVM at the ti
JVM shuts down.

A JVMDI shared library must be loaded with some special, nonstandard
the Sun JDK interpreter:

java -Xdebug -Xnoagent -Djava.compiler=NONE -Xrunjvmdi YourClass

RFACE

The “-X…” options are nonstandard JDK options that may or may not be the same
for non-Sun Java distributions. More details on each are in the JVMDI documenta-
tion. Again, because JVMDI is so new, it is likely that non-Sun implementations of
Java 2 will not have JVMDI.

et stan-
rofiling
ns (for
he way
hin the
 usage

ortable

oppor-
y of C/
 comes
ictions

 to call
g plat-

s capa-
tability
e target
pler to

lly and
e work
is book
.

DK 1.2

olts of
s is the
508 CHAPTER 16 JAVA NATIVE INTE

16.5.3 JVMPI

The Java Virtual Machine Profiler Interface (JVMPI) is another JNI API, not y
dardized, specifically geared for creating Java code profilers. Because of its p
emphasis, the JVMPI API set contains far more in the way of event-notificatio
example, notifications when garbage-collection begins and ends), but less in t
of ability to control the JVM itself (such as the ability to set breakpoints wit
loaded code). In any event, until the JVMPI API is standardized by Sun, any
within your own code must be classified as experimental and completely nonp
to other JVMs.

16.6 SUMMARY

Getting Java code to talk to non-Java code presents some best of both worlds
tunities on the server. Thanks to JNI, we can combine the speed and capabilit
C++ code with the high-level constructs and developmental ease of Java. This
with a cost, however. Coupling with native code, in any form, forces some restr
on Java code that may or may not be acceptable to you.

Native code offers too many advantages to ignore, however. The ability
down to the underlying platform, the ability to provide hooks for the underlyin
form to call into the JVM, and the ability to integrate with the native platform’
bilities are simply too tempting to ignore or pass by. What’s more, Java’s por
loses some of its necessity when dealing with server-side applications, since th
system will already be known when the application is deployed, making it sim
use JNI and native code.

16.7 ADDITIONAL READING

• Rob Gordon, JNI By Example (Addison-Wesley, 1998).
The only book of its kind available, JNI By Example focuses specifica
exclusively on JNI. If you are a beginner to the JNI, or plan to do extensiv
with it, this is a good place to go for an exhaustive discussion of JNI. Th
also discusses another approach to making Java/NT-Service combinations

• “Java Native Interface” specification, Sun Microsystems Inc. Available in the J
documentation set at jdk1.2\docs\guide\jni\spec\jniTOC.doc.html.
Written for the JNI 1.1 release, this specification details the nuts and b
working with JNI. While terse in some places, and vague in others, thi
best reference work for JNI.

509

• “JNI Enhancements in JDK 1.2,” Sun Microsystems Inc. Available in the
JDK 1.2 documentation set at jdk1.2\docs\guide\jni\jni-12.html.

This is the official Sun document detailing the enhancements made to JNI for
the JDK 1.2 release, at least until the JNI Specification document is updated to
ADDITIONAL READING

reflect these changes.

C H A P T E R 1 7

act of a

Neward17_06_12.fm Page 510 Tuesday, June 13, 2000 12:30 PM
Monitoring
17.1 Importance grows 510
17.2 Summary 533

Processes fail. Exceptions are thrown. Threads die. Applications crash. It’s a f

ffort spent
 adminis-

n between
developer’s life that bugs creep into a project, regardless of the amount of e
to find them. Unfortunately, this translates into a fact of life for the system
trator as well. Therein lies the cause for a significant amount of tensio
developers and support staff that needs to be addressed.
g, and
mount
evelop-
al rem-

ers and
 appli-
ck the
ine on

 UNIX)

erprise.
arise in
coding
510

Developers typically don’t see the work necessary in managing, configurin
monitoring an application. Developers are also usually under a tremendous a
of pressure to deliver the application. Because many (if not most) software d
ment projects run longer than expected and cost more than predicted, the usu
edy is to cut features not seen as critical to the application’s functionality.

Unfortunately, this arrangement usually comes back to haunt develop
administrators, because system administrators are responsible for ensuring the
cation is running at all times. System administrators constantly have to che
application’s up status, either by physically looking on the monitor of the mach
which it is running, or by using the NT TaskManager (or by using “ps” under
to check the process’s status.

17.1 IMPORTANCE GROWS

As the application’s size and featureset grows, so does its importance to the ent
Usually by the time issues of configuration, control, and monitoring begin to
corporate meetings, it’s too late to introduce them without requiring major re

511

or redesign. This in turn makes the developers balk at doing it, which makes adminis-
trators frustrated, which can in turn create further havoc later. All of this can be avoided
if developers acknowledge that administrators need to be able to monitor the applica-
tion, and code accordingly. If we can develop a generic system by which this monitor-

h zero

eed to
ractive

pop-up
cations
f head-
son for

answer
is most
system.
pplica-
nfortu-

ess list,
m to a
 simple
o see if
t and a
a waste

e way
Heart-
m into
 String

rtbeat-
or any
th one
remote
 make
at all is
waiting
 object

Neward17_06_12.fm Page 511 Tuesday, June 13, 2000 12:30 PM
IMPORTANCE GROWS

ing can take place, so much the better: zero development along wit
administration.

Applications need monitoring at several levels. To start, administrators n
know when an application fails. Remember, unlike most consumer or user-inte
software, most server applications run in the background with no immediate
access; in some cases, they run on machines without a monitor. Server appli
simply cannot fail silently without notification. Silent failure means hours o
aches trying to trace back to the location of the failure, not to mention the rea
the failure and how it can be prevented in the future.

17.1.1 Liveness

One of the first basic questions any system administrator needs to be able to
at any time is, “Are the servers still up and running?” An inability to answer th
basic query indicates the system administrators have no real control over the
In a well-run server environment, administrators should be able to call up an a
tion or tool and see some visible evidence the application is still running; u
nately, few custom-developed applications give administrators that ability.

To developers, this may seem unnecessary. After all, if we check the proc
and the process is still there, it’s still running, right? As reasonable as it may see
developer, this is usually not acceptable to the system administration group, for a
reason: to check the system, the administrator must regularly poll the system t
the process is still running. Just as polling in distributed objects is inefficien
waste of network bandwidth, so too is polling to query the system every hour
of the system administrators’ time and energy.

The HeartbeatService is a simple publish/subscribe service in much the sam
as AWT/Swing components accept EventListeners and make callbacks. The
beatService listens on a given socket port, accepting connections and storing the
a Vector. When the service is started, it creates its own PeriodicThread to send a
down each Socket connection when fired.

Note that this is only one implementation of this type service. The Hea
Service (listing 17.1) could be written to use RMI, CORBA, COM/DCOM,
other technology allowing for objects across processes to communicate wi
another. An RMI or CORBA (or COM/DCOM) HeartbeatService could accept
objects that implement an IHeartbeatServiceListener interface, and
periodic callbacks onto the Listener to reassure the object on the other side th
well. A JMS-based HeartbeatService could periodically send a message to a
Queue for consumption by anybody subscribed to the Queue. Or, a mobile

ORING

HeartbeatService could send a mobile object out with instructions to reach forth and
touch any servers/mobile object clients to offer the same reassurance.

Listing 17.1 Coding for HeartbeatService

Neward17_06_12.fm Page 512 Tuesday, June 13, 2000 12:30 PM
512 CHAPTER 17 MONIT

package com.javageeks.gjas.services;

import java.io.IOException;
import java.io.OutputStreamWriter;

import java.io.PrintWriter;
import java.net.Socket;

import java.util.Enumeration;
import java.util.Vector;

import com.javageeks.thread.PeriodicThread;
import com.javageeks.gjas.ConfigProperties;

import com.javageeks.gjas.ConfigProperty;
import com.javageeks.gjas.ServerManager;

/**

* HeartbeatService sends a message to any listening clients every
* n milliseconds. Put basically, this is the same publish-

* subscribe behavior found in a variety of other places, such as
* AWT/Swing's Event-EventListener system.

*
* This concept isn't necessarily limited solely to socket-based

* communication--this could easily be adapted to other forms of
* communicative technology, like RMI, CORBA, JMS, Mobile Objects,

* and so on.
*/

public class HeartbeatService
extends SocketServer

{
// Internal members

private Vector m_listeners = new Vector();
private PeriodicThread m_pingThread;

private ConfigProperty propInterval =
new ConfigProperty("interval", new Integer(5 * 1000),

"Milliseconds between heartbeats");
private ConfigProperty propMessage =

new ConfigProperty("message", new String("PING"),
"Message to send on heartbeat");

private ConfigProperties configInfo =
new ConfigProperties(super.getConfigInfo(),

new ConfigProperty[]

{
propInterval,

propMessage
});

/**
* Inner class to store the Socket and associated streams

*/

513

class Listener

{

public Listener(Socket socket)

throws IOException

{

Neward17_06_12.fm Page 513 Tuesday, June 13, 2000 12:30 PM
IMPORTANCE GROWS

m_socket = socket;

toSocket = new PrintWriter(

new OutputStreamWriter(m_socket.getOutputStream()));

}

public Socket m_socket;

public PrintWriter toSocket;

}

/**

* Inner class to do the actual work of sending out the

* "ping" messages

*/

class Heartbeat

implements Runnable

{

public void run()

{

// Synchronize on m_listeners to prevent anyone

// from modifying the Vector while we're iterating

// through it sending ping messages; it probably

// wouldn't cause a major problem if it *did* happen,

// since Vector protects against corruption within

// itself, but

synchronized (m_listeners)

{

for (Enumeration enum = m_listeners.elements();

enum.hasMoreElements();)

{

// Get next element

Listene r l = (Listener)enum.nextElement();

// Send the ping message

l.toSocket.println(

(String)propMessage.getValue());

l.toSocket.flush();

}

}

}

}

/**

*

*/

public HeartbeatService(int port, int interval, String pingMsg)

{

super(port);

ORING

propInterval.setValue(new Integer(interval));

propMessage.setValue(new String(pingMsg == null ? "PING" : pingMsg));

}

/**

*

Neward17_06_12.fm Page 514 Tuesday, June 13, 2000 12:30 PM
514 CHAPTER 17 MONIT

*/

public HeartbeatService()

{ }

/**

*

*/

public void start()

throws Exception

{

// Call up to our base to allow SocketServer to do all its

// work on our behalf

super.start();

// Start our ping thread

m_pingThread =

new PeriodicThread(new Heartbeat(),

((Integer)propInterval.getValue()).intValue());

m_pingThread.start();

}

/**

*

*/

public void stop()

throws Exception

{

m_pingThread.interrupt();

super.stop();

}

/**

*

*/

public ConfigProperties getConfigInfo()

{

return configInfo;

}

/**

*

*/

public void setConfigInfo(ConfigProperties props)

{

configInfo.set(props);

// Check and reset interval value if different

if (m_pingThread != null &&

m_pingThread.getInterval() !=

((Integer)propInterval.getValue()).intValue())

515

{

m_pingThread.setInterval(((

Integer)propInterval.getValue()).intValue());

}

}

evelop-
tServer,
riodic-

nds the
 Heart-
 know
at text

nnect-
al; each
age"
ke this
uld be
essages
 text of
d. This
 of the
n, send
 which
tely for

, which
ve()
stream.
r class,

Neward17_06_12.fm Page 515 Tuesday, June 13, 2000 12:30 PM
IMPORTANCE GROWS

/**

* Derived services must override this method. Once a client has

* connected to us, this method is called to "do the work" of

* handling the connection.

*/

public void serve(Socket socket)

throws Exception

{

// Add this Socket to the list of Sockets we must broadcast

// the "ping" message down

m_listeners.addElement(new Listener(socket));

}

}

Notice how using several of the components developed earlier makes the d
ment of this service almost trivial. To start, HeartbeatService extends Socke
which provides the basic GJAS socket capabilities. HeartbeatService uses a Pe
Thread to do the every-n-milliseconds broadcast of the ping message, and exte
SocketServer’s start and stop methods to manage the thread’s lifetime. The
beatService also establishes two new properties to the Service, "interval" , to
how often (in milliseconds) to send the message, and "message" , to know wh
to send down the socket.

In its current implementation, HeartbeatService assumes that any client co
ing up to its associated port will be interested in one and only one heartbeat sign
HeartbeatService will send one and only one signal at a time, given by the "mess
property (defaulting to "PING"). However, it wouldn’t be too difficult to ma
a multicast service. This would imply that multiple heartbeats (messages) wo
managed by this service. One option would be to simply broadcast multiple m
to all clients, in true multicast fashion; clients would then have to examine the
the message received to determine if it was the heartbeat in which it was intereste
has the advantage of being easier to code, but requires more work on the part
heartbeat client. A second approach would be to have the client, upon connectio
some kind of identifying message to the HeartbeatService, telling the server in
heartbeat(s) the client was interested, and have the server track listeners separa
each heartbeat signal. More work for the server, less for the client.

HeartbeatService stores its connections to clients in an inner class, Listener
contains both the Socket instance it received from the HeartbeatService’s ser
method, and the PrintWriter instance it constructs using the Socket’s output
These Listener instances are stored inside the Vector m_listeners. A second inne

ORING

Heartbeat, implements the Runnable interface needed by the PeriodicThread, and
does the actual work of broadcasting the message down the sockets. The run method
in Heartbeat is the only place where explicit synchronization is used throughout the
HeartbeatService. Remember, Vector provides its own synchronization, which guards

 at the
should
artbeat
dcast is
le a cli-
en fin-
 to the
io, and
ithout

onitor
started,
Server-
second
Server-
Thread
up, the
es or is
e com-
beating
itoring
e vital

 hasn’t
on the

 Heart-
conds.
un the
 is nec-
itional

anyone

 heart-
g for it
missed
 server;

Neward17_06_12.fm Page 516 Tuesday, June 13, 2000 12:30 PM
516 CHAPTER 17 MONIT

against data corruption should multiple threads attempt to access the Vector
same time. This in turn protects HeartbeatService against being corrupted
multiple threads connect to the port simultaneously. The only reason He
explicitly locks out others from modifying the m_listeners Vector during broa
to prevent some potentially awkward situations; for example, it’s entirely possib
ent connecting to the HeartbeatService could receive a ping message before it ev
ishes the connection steps on its end, if it happens to connect (and be added
m_listeners Vector) just as the broadcast is going out. It’s an unlikely scenar
performance-minded implementors could remove the synchronization block w
introducing corruption.

HeartbeatService can be used in one of two fashions—as a JVM-wide m
and as a Service-specific monitor. In the first case, the ServerManager, when
loads an instance of HeartbeatService and starts broadcasting. So long as the
Manager JVM remains alive, the HeartbeatService continues to beat. In the
case, a Service can create an instance of the HeartbeatService, and add it to the
Manager. Assuming that the Service provides the HeartbeatService with the
to use, which we presume in turn comes from the Service’s own ThreadGro
HeartbeatService will give a relatively good idea of when the Service itself di
hung. Granted, it’s not a perfect monitor, since one Thread in a JVM can b
pletely blocked without blocking others, so the HeartbeatService could keep
while the application blocked indefinitely. However, if more accurate mon
were desired, the Service could subclass HeartbeatService to check against som
statistic within the parent Service to ensure it was still running; if that statistic
changed, then it doesn’t send out the signal, thus generating some concern
recipients’ end.

To prove the mechanism, start up an instance of the ServerManager with a
beatService instance running within it on port 8090 with an interval of five se
Once the ServerManager finishes initialization, fire up a console window and r
standard Client, connecting to port 8090. From that point, no further typing
essary—every five seconds, a ping message shows up on the console. Create add
Clients on the same port, disconnect some, and the message still goes out to
listening, every five seconds.

Heartbeat listening

Broadcasting the Heartbeat is only half the solution, however. In order for the
beat to have any meaning, there has to be something at the other end, listenin
and detecting when it fails. The key problem here is the fact that a single
heartbeat ping can’t be immediately assumed to be a failure on the part of the

517

networks can commonly lose network packets and require a resend. The following
code demonstrates how to listen on a Socket for up to five seconds for a “ping” message,
and to give up listening after three missed ping messages:

public class HeartbeatClient

Neward17_06_12.fm Page 517 Tuesday, June 13, 2000 12:30 PM
IMPORTANCE GROWS

{

public static void main(String[] args)

throws Exception
{

if (args.length < 1)

{
System.out.println("Usage: java Client <hostname:port>");

return;

}

// Parse out hostname and port

String host;

Integer port;

host = args[0].substring(0, args[0].indexOf(":"));
port = new Integer(args[0].substring(args[0].indexOf(":")+1,

args[0].length()));

System.out.println("Connecting t o " + host + ":" + port);

Socket socket = new Socket(host, port.intValue());

BufferedReader fromSocket =

new BufferedReader(new InputStreamReader(socket.getInputStream()));

// We want to block for only 5 seconds waiting for input

// (this would be programmatically controlled in other

// more flexible systems)
socket.setSoTimeout(5000);

// Wait for up to three missed pings before giving up

int giveUpCount = 0;
while (giveUpCount < 3)

{

try

{
String line = fromSocket.readLine();

if (line == null)

giveUpCount++;
else if (line.equals("PING"))

giveUpCount = 0;

}
catch (java.io.InterruptedIOException ex)

{

giveUpCount++;
}

}

System.out.println("Giving up--the heartbeat's not there anymore");

}

}

ORING

The key to the client comes in two parts. The first is the Socket’s setSoTimeout
method, which dictates how long the InputStream attached to the Socket will block
waiting for input. Without this, the InputStream (and any Readers or InputStreams
wrapped around it) will block forever waiting for input from the server. While it

eve the
ut and
imeout
 testing
ocket’s

 single
ample.
d pings
 recipi-
ntranet
proach
 above

fter the
onent.
 either

ill want
for the
k. The
 object
Client

ctly for

nt is to
tify its
erested
 parties
s. The

Neward17_06_12.fm Page 518 Tuesday, June 13, 2000 12:30 PM
518 CHAPTER 17 MONIT

would be possible (through use of Threads and timeouts and the like) to achi
same behavior without using Socket timeouts, it’s far simpler to set the timeo
let Java throw an exception (java.io.InterruptedIOException) if a t
occurs. Note that we also have to test the returned line for a null value before
its contents. This is because if the server process (GJAS) terminates, the fromS
readLine call will generate an infinte number of null results.

The second part is the giveUpCount variable. For a variety of reasons, a
ping might be lost without cause for alarm—normal network packet loss, for ex
Because we don’t want to abandon hope right away, we wait up to three misse
before assuming the HeartbeatService died or is no longer in contact with the
ent. If we could be guaranteed that delivery of messages across the network (i
or Internet), then this would be unnecessary. The other alternative to this ap
would be to wait up to fifteen seconds (instead of the five hardcoded into the
client) for a signal before surrendering.

HeartbeatListenerClient and HeartbeatListener

Because coding something like the foregoing could get repetitious and awkward a
second or third time recoding it, let’s work to make it into a single reusable comp

The key to a successful reusable component will be its ability to operate in
an asynchronous or synchronous fashion. Under most circumstances, clients w
the HeartbeatListenerClient component to handle the details of listening
heartbeat signals without blocking, but occasionally a client will want to bloc
easiest way to accomplish this sort of dual-sided behavior is to have the client
implement the Runnable interface—that way, clients can either pass the
object into a Thread for asynchronous execution, or call its run method dire
synchronous behavior.

The second part to the asynchronous nature of the HeartbeatListenerClie
establish a method by which the HeartbeatListenerClient (listing 17.2) can no
owner/client of the pings. It does this by creating an “event” interface, which int
parties must implement in order to receive Heartbeat events, just as interested
must implement an AWT/Swing EventListener to receive Java’s GUI message
HeartbeatListener event interface is simple:

public interface HeartbeatListener

{

public void onHeartbeatPing(String msg);

public void onHeartbeatFail(String msg);

}

519

The first method, onPing , is called with the ping message each time a ping comes in
from the HeartbeatService; normally, clients solely watching for heartbeat failure will
simply ignore this call. Clients listening to more than one heartbeat will need to
examine the String parameter in onPing to determine which HeartbeatService sent

e it as

econds
eart-
 arrived
 imple-
 17.2).

Neward17_06_12.fm Page 519 Tuesday, June 13, 2000 12:30 PM
IMPORTANCE GROWS

it, while clients listening on multicast HeartbeatServices will need to examin
well to determine which heartbeat the ping is for.

In the event the Heartbeat is determined to have failed (that is, interval s
went by retryCount times without a signal from the source), the Listener’s onH
beatFail method is called. Note that the Heartbeat message that should have
is passed in as the msg parameter to onHeartbeatFail , again so as to give
mentations a chance to differentiate one heartbeat failure from another (listing

public class HeartbeatListenerClient

implements Runnable

{

// Internal members

//

private String m_host;

private int m_port;

private String m_pingMsg;

private int m_interval;

private int m_giveUpCount;

private Thread m_thread = null;

private Vector m_listeners = new Vector();

/**

* "Complete" constructor--initialize with all given values

*/

public HeartbeatListenerClient(String host, int port,

String msg, int interval,

int giveUpCount, Thread thread)

{

m_host = host;

m_port = port;

m_pingMsg = msg;

m_interval = interval;

m_giveUpCount = giveUpCount;

m_thread = thread;

}

/**

* Convenience constructor--assumes defaults of "PING", 15

* seconds, and 3 attempts

*/

public HeartbeatListenerClient(String host, int port)

{

this(host, port, "PING", 15 * 1000, 3, null);

}

Listing 17.2 Coding for HeartbeatListenerClient

ORING

/**

* Add a HeartbeatListener to the list of interested parties

*/

public void addListener(HeartbeatListener listener)

{

Neward17_06_12.fm Page 520 Tuesday, June 13, 2000 12:30 PM
520 CHAPTER 17 MONIT

m_listeners.addElement(listener);

}

/**

* Remove a HeartbeatListener from the list of notification

* targets on heartbeat pings or failures

*/

public void removeListener(HeartbeatListener listener)

{

m_listeners.remove(listener);

}

/**

* Start listening for heartbeat messages

*/

public void startListening()

{

if (m_thread == null)

{

m_thread = new Thread(this);

}

m_thread.start();

}

/**

* Cease listening for heartbeat messages

*/

public void stopListening()

{

m_thread.interrupt();

}

/**

*

*/

public void run()

{

Socket socket = null;

try

{

socket = new Socket(m_host, m_port);

BufferedReader fromSocket = new BufferedReader(

new InputStreamReader(socket.getInputStream()));

// We want to block for only 5 seconds waiting for input

// (this would be programmatically controlled in other

// more flexible systems)

socket.setSoTimeout(m_interval);

// Wait for up to three missed pings before giving up

521

int giveUpCount = 0;

while (giveUpCount < m_giveUpCount)

{

try

{

Neward17_06_12.fm Page 521 Tuesday, June 13, 2000 12:30 PM
IMPORTANCE GROWS

String line = fromSocket.readLine();

if (line == null)

giveUpCount++;

else if (line.equals(m_pingMsg))

{

// Reset giveUpCount; we got a message

giveUpCount = 0;

// Broadcast the message on to our listeners

for (Enumeration enum =

m_listeners.elements();

enum.hasMoreElements();)

{

HeartbeatListener l =

(HeartbeatListener)enum.nextElement();

l.onHeartbeatPing(line);

}

}

}

catch (java.io.InterruptedIOException ex)

{

giveUpCount++;

}

}

// If we got here, it's because we gave up

for (Enumeration enum = m_listeners.elements();

enum.hasMoreElements();)

{

HeartbeatListener l =

(HeartbeatListener)enum.nextElement();

l.onHeartbeatFail();

}

}

catch (Exception ex)

{

// Not a very reusable option, but the only way to know

// when an Exception is thrown, since we can't throw it

// out of run (Runnable.run has no "throws" clause)

ex.printStackTrace();

}

}

/**

* Test driver; for testing purposes only.

*/

public static void main(String[] args)

ORING

{

if (args.length < 1)
{

System.out.println("Usage: java HeartbeatListenerClient"
+ " <hostname:port>");

nable
ir own
call the
stances

g
stening
 Heart-
scussed
rt-stop

s, other
 Heart-
oblem.

Neward17_06_12.fm Page 522 Tuesday, June 13, 2000 12:30 PM
522 CHAPTER 17 MONIT

return;
}

// Parse out hostname and port
String host = args[0].substring(0, args[0].indexOf(":"));

Integer port =
new Integer(args[0].substring(args[0].indexOf(":")+1,

args[0].length()));

System.out.println("Connecting t o " + host + ":" + port);

HeartbeatListenerClient client =
new HeartbeatListenerClient(host, port.intValue(),

"PING", 15 * 1000, 3, null);

client.addListener(new HeartbeatListener()

{
public void onHeartbeatPing(String pingMsg)

{
System.out.println("PING! : " + pingMsg);

}
public void onHeartbeatFail()

{
System.out.println("Heartbeat's stopped!");

}
});

client.startListening();
}

}

There are a couple of items to note in this implementation.
First, HeartbeatListenerClient is Thread friendly. Because it implements Run

as an interface, users can place the HeartbeatListenerClient instance into the
Thread instance, let HeartbeatListenerClient create its own Thread to use, or
run method directly. This flexibility means that users can control the circum
in which the component does its work.

Secondly, HeartbeatListenerClient provides two methods, startListenin
and stopListening , to encapsulate the start and termination of the li
Thread. We use the Thread interrupt method to break the infinite loop in
beatListenerClient’s run method, instead of the deprecated stop method, as di
in chapter 4. Take care when using HeartbeatListenerClient for repeated sta
cycles; although the Win32 and Solaris implementations of the JVM permit thi
JVMs may not be so forgiving. Since an application usually wishes to listen for a
beat source for the duration of the client’s lifetime, this normally won’t be a pr

523

Thirdly, HeartbeatListenerClient is inherently unicast—a single Heartbeat-
ListenerClient can only listen for heartbeats from a single source. This could be modi-
fied, allowing HeartbeatListenerClient to listen for multiple heartbeats, by having
multiple Threads, each one listening to a single heartbeat. (One Thread couldn’t listen

Thread
stening
hile lis-
B once
roperly
s from
nt cre-

tening.
 heart-
e itself

istener-
gistered
odified

 via the
he nat-
t, asyn-
notify a
ed?
f ideas:

 Event-
d later

an pro-
e only
 in the
pers—

o faith-
her for

 failure
le, or a
ent log

Neward17_06_12.fm Page 523 Tuesday, June 13, 2000 12:30 PM
IMPORTANCE GROWS

to more than one heartbeat, since the interval times may be different, and the
will block the entire time listening for a message, thus serializing the heartbeat-li
process. This means that if Thread One is listening to Heartbeats A and B, w
tening for A, it can’t simultaneously be listening for B—it can only listen for
it has received the message from A, or A has timed out.) Implementing this p
would likely require the use of one of Lea’s ThreadFactory implementation
chapter 4, so as to give users better control over how the HeartbeatListenerClie
ates and manages the Threads.

Lastly, HeartbeatListenerClient, on a heartbeat failure, does not stop lis
Instead, it will continue to listen, for up to the full interval period, for further
beat messages. Should a HeartbeatListener wish to avoid this, it needs to remov
from the HeartbeatListenerClient’s listener list. Correspondingly, HeartbeatL
Client also continues to listen for heartbeat messages even if it has no listeners re
with it. This is a waste of CPU cycles and network bandwidth, but can be m
easily enough for those who wish to.

17.1.2 Notification

Now that it’s been established that we can monitor the liveness of an application
HeartbeatService, we have to decide what to do in the event the Heartbeat fails. T
ural answer is simple: Tell somebody. The problem is, how? What provides the bes
chronous way by which to notify a human or other process (which will in turn
human, presumably) that there is an issue that needs to be addressed and/or resolv

A variety of methods are available; the following list is just a partial collection o

• Event log
The heartbeat failure is simply logged to file (or perhaps, using JNI, NT’s
Log or the UNIX syslog daemon), and left there for an administrator to fin
when perusing the logs. While this is a good second-line option, since it c
vide as much detail as the log can handle, it’s not an ideal candidate as th
notification option, since it requires the administrator to proactively look
logs every x minutes/hours/days. System administrators are just like develo
usually too much to do with not enough time to do it in. Asking them t
fully check a logfile at a regular interval is usually a recipe for disaster, eit
the administrators, the developers, or, more often, both.

• File, database, etc.
This is a cheaper version of the Event log approach. Instead of writing the
to the system event log, the notification is written to a standard text fi
database row, or some other form of permanent storage. This, like the Ev

ORING

approach, results in a passive system—administrators must actively poll the
storage system (look at the file, query the database for new rows, etc.) for any
notifications posted. Where it has an advantage over the Event log approach is in
its ability to use the same storage system the software system is using for other

o store
n, both
e place.

ffective
ly sim-
e email
nd sys-
priority
uaran-
 to lost
admin-
ccount
ter and
o mar-
ork to

 pager,
 within
has the
arantee
What’s
eive, so
ail, this

phony
used to
 home
ing the
nce the
l know
e-mail
ne sys-
pad, to

Neward17_06_12.fm Page 524 Tuesday, June 13, 2000 12:30 PM
524 CHAPTER 17 MONIT

purposes. For example, an RDBMS-centralized application may want t
notifications to the RDBMS in order to keep all system-related informatio
data and these notification (and other administrative) messages, in a singl

• Email
Sending an email to a system administrator is probably one of the most e
ways of getting attention. The SMTP protocol for sending email is relative
ple to use, and Java’s recent JavaMail extension makes it even simpler. Th
can contain as much information as the notification client can handle, a
tem administrators can react immediately or not, depending on their
schedule at the time. The problem with email, however, is that it’s not a g
teed service—email is never guaranteed to arrive at its destination (owing
packets or down mail gateways in between), so it’s possible that a system
istrator would never receive a critical warning. Further, unless a generic a
is set up, the target email account must be kept updated as personnel en
leave the IT group, change responsibilities, or even change names due t
riage or legal proceedings. All of this means a bit more administrative w
keep everything running smoothly.

• Alphanumeric pager
With many pager systems having online access for sending messages to the
it becomes relatively feasible to access the online pager-send system from
Java code, building a short message, and firing it off to the pager. This
advantage of being somewhat more reliable, but it’s still not an absolute gu
that the message will be received by the individual wearing the pager.
more, most pagers are somewhat limited in the information they can rec
full details of the problem can’t be sent. Still, in conjunction with an em
can be a very effective, yet not-so-intrusive, solution.

• Phone call
With the advent of the Java Sound API, and the forthcoming Java Tele
API, this isn’t as farfetched as it might first sound. The JTAPI would be
open a phone circuit to the system administrator’s mobile, work, or
phone, and the Java Sound API could play a prerecorded message describ
problem. This has the advantage of being almost completely reliable, si
phone call is, for the most part, a guaranteed service, and the system wil
when the call has been successfully received, either by a human or phon
recording system. Depending on the sophistication of JTAPI and the pho
tem, it might actually demand a code response entered by touch-tone key
ensure a human received the message.

525

• Screen pop
The phone call option might be technically interesting, but of more practical use
is the screen pop technique. In a nutshell, when a heartbeat listener realizes the
heartbeat it’s been listening for has faltered, it can simply pop up a dialog box or

oblem.
 dialog
ed vol-
to take
 dialog
s more
hatever
an just

e from

t-based
e RMI,

le, and
 17.3).
is every
0 mes-

y hour)
y, how-
strators
conds)

Neward17_06_12.fm Page 525 Tuesday, June 13, 2000 12:30 PM
IMPORTANCE GROWS

other window, perhaps playing a sound at the same time, describing the pr
Novell’s Netware is by far the best example of this approach, slapping up a
box on every machine attached to the network in the event that an attach
ume runs low on disk space. The recipients of the message can choose
whatever action is feasible for them, from simply clicking OK to make the
go away, to acknowledging the dialog and then fixing the problem. It’
intrusive than the email approach (since the dialog pops up on top of w
applications are currently running, demanding a bit more attention th
email), but still less intrusive than a page or a phone call.

These certainly aren’t the sum total of ideas, but they give us a good plac
which to start working.

All of the following example demonstrated Services use the standard socke
HeartbeatService; it would therefore be relatively simple to adapt these to us
CORBA, or DCOM, as necessary.

LogListener

This is a simple HeartbeatListener that writes the failure messages to a text fi
optionally writes out the date/time of each heartbeat message received (listing
Most clients won’t want the heartbeat written to file; if the heartbeat interval
five seconds, over the period of a single day the log file will be filled with 17,28
sages! Having to wade through all of these every day (or, more likely, 720 ever
is error-prone as eyes glaze over seeing only what they expect to see. More likel
ever, the log file will never be looked at until a failure, at which point admini
can consult it to determine the time (approximate, to the nearest “interval” se
the heartbeat failed.

public class LogListener

implements HeartbeatListener

{

// Internal members

//

private PrintWriter m_writer;

private boolean m_verbose = false;

/**

* Constructor

*/

public LogListener(String filename, boolean verbose)

throws java.io.IOException

{

Listing 17.3 Code for LogListener

ORING

m_writer =

new PrintWriter(

new FileOutputStream(filename));

m_verbose = verbose;

}

n con-
d regis-
rovided

Neward17_06_12.fm Page 526 Tuesday, June 13, 2000 12:30 PM
526 CHAPTER 17 MONIT

/**

* Return the verbosity of the Listener; if set to true, the

* LogListener will write out onHeartbeatPing messages to the log

*/

public boolean getVerbose()

{

return m_verbose;

}

/**

* Set the verbosity of the Listener; if set to true, the

* LogListener will write out onHeartbeatPing messages to the log

*/

public void setVerbose(boolean verbose)

{

m_verbose = verbose;

}

/**

* HeartbeatListener method. Received each time a 'ping' is

* received from the HeartbeatService

*/

public void onHeartbeatPing(String msg)

{

if (m_verbose)

{

m_writer.println(new Date() + " : " + msg + " received.");

m_writer.flush();

}

}

/**

* HeartbeatListener method. Called when the

* HeartbeatListenerClient determines the heartbeat has failed

*/

public void onHeartbeatFail(String msg)

{

m_writer.println(new Date() + ": ***Heartbeat failure: " +

msg);

m_writer.flush();

}

}

As you can see, the implementation is fairly simple: open a FileOutputStream o
struction (creating the file if necessary), create the HeartbeatListenerClient, an
ter itself with the HeartbeatListenerClient. If the HeartbeatListenerClient is p

527

in the constructor, then it doesn’t create a HeartbeatListenerClient instance, but
instead uses the one passed in.

We can also create a LogListenerService (listing 17.4), which is a GJAS Service-
implementing class that simply creates a LogListener, using the properties given to the

, and

Neward17_06_12.fm Page 527 Tuesday, June 13, 2000 12:30 PM
IMPORTANCE GROWS

LogListenerService, creates a HeartbeatListenerClient private to itself on start
starts listening for messages.

public class LogListenerService

implements com.javageeks.gjas.Service

{

// Internal members

//

private HeartbeatListenerClient m_hcl;

private String m_state = STOPPED;

private ConfigProperty m_file =

new ConfigProperty("file", "",

"Filename to write messages to");

private ConfigProperty m_verbose =

new ConfigProperty("verbose", new Boolean(false),

"Write all messages, or just failures?");

private ConfigProperty m_host =

new ConfigProperty("host", "",

"Host to listen to");

private ConfigProperty m_port =

new ConfigProperty("port", new Integer(0),

"Port on host to connect to");

private ConfigProperties m_configInfo =

new ConfigProperties(new ConfigProperty[]

{

m_file, m_verbose, m_host, m_port

});

/**

* Start the Service.

*/

public void start()

throws Exception

{

m_state = STARTING;

if (m_hcl == null)

{

// Get ConfigProperty values

String file = (String)m_file.getValue();

boolean verbose =

((Boolean)m_verbose.getValue()).booleanValue();

String host = (String)m_host.getValue();

int port = ((Integer)m_port.getValue()).intValue();

m_hcl = new HeartbeatListenerClient(host, port);

Listing 17.4 Code for LogListenerService

ORING

m_hcl.addListener(new LogListener(file, verbose));

}

m_hcl.startListening();

m_state = RUNNING;

Neward17_06_12.fm Page 528 Tuesday, June 13, 2000 12:30 PM
528 CHAPTER 17 MONIT

}

/**

* Stop the Service.

*/

public void stop()

throws Exception

{

m_state = STOPPING;

m_hcl.stopListening();

m_hcl = null;

m_state = STOPPED;

}

/**

* Pause the Service.

*/

public void pause()

throws Exception

{ }

/**

* Resume the Service.

*/

public void resume()

throws Exception

{ }

/**

* Get the current state of the Service; must be one of the

* following types: STOPPED, STARTING, RUNNING, STOPPING,

* PAUSING, PAUSED, or RESUMING.

*/

public String getState()

{

return m_state;

}

/**

* Return a String uniquely identifying this instance of the

* Service; this String must be unique not just to the Service

* class, but to the Service instance itself. Suggested return

* format is something like:

*

* String instanceID = this.getClass().getName() + ":" +

* getClassVersion() + ":" + System.currentTimeMillis();

*

* Note that maintaining an "instance count" of the number of

* instances of this class will fail, since all instances will

* be maintained within their own ClassLoader, and static

529

* members are stored on a per-ClassLoader basis.

*/
public String getInstanceID()

throws Exception
{

Neward17_06_12.fm Page 529 Tuesday, June 13, 2000 12:30 PM
IMPORTANCE GROWS

return "LogListenerService:1.0.0:" +
System.currentTimeMillis();

}

/**

*
*/

public ConfigProperties getConfigInfo()
{

return m_configInfo;
}
/**

*
*/

public void setConfigInfo(ConfigProperties props)
{

// Read the settings if they've changed
if (!((String)m_configInfo.get("host").getValue()).equals(

((String)props.get("host").getValue())) ||
((Integer)m_configInfo.get("port").getValue()).intValue() !=

((Integer)props.get("port").getValue()).intValue() ||
!((String)m_configInfo.get("file").getValue()).equals(

((String)props.get("file").getValue())) ||
((Boolean)m_configInfo.get(

"verbose").getValue()).booleanValue() !=
((Boolean)props.get("verbose").getValue()).booleanValue())

{
try
{

// Stop the Service
ServerManager.log("Stopping Service: reconfigure");

stop();

// Read the new values

ServerManager.log("Re-reading config values");
m_configInfo.set(props);

// Restart the Service
ServerManager.log("Restarting Service");

start();
}
catch (Exception ex)
{

ServerManager.error(ex);
}

}
}

}

ORING

The Service itself is very simple: create a HeartbeatListenerClient, register a LogListener
with it, and start listening on start , stop listening on stop . It is not overly complex
as Services go, and it provides us with persistent storage of the heartbeat’s liveness.

 heart-
Stream
generic
ame to
t mes-

Neward17_06_12.fm Page 530 Tuesday, June 13, 2000 12:30 PM
530 CHAPTER 17 MONIT

OutputStreamListener

In truth, LogListener is really a specific form of listener—one that listens for
beats and writes the results to a file. Since a file is a specific form of Output
(remember, FileOutputStream extends OutputStream), we can create a more
form of LogListener by taking in an OutputStream instance instead of a filen
open. This then allows OutputStreamListener (listing 17.5) to write its outpu
sages to any output sink to which Java can write, including the console.

public class OutputStreamListener
implements HeartbeatListener

{
// Internal members

//
private PrintWriter m_writer;

private boolean m_verbose = false;

/**
* Constructor

*/
public OutputStreamListener(OutputStream out, boolean verbose)

throws java.io.IOException
{

m_writer = new PrintWriter(out);
m_verbose = verbose;

}
/**

* Constructor
*/

public OutputStreamListener(PrintStream outStream, boolean verbose)
throws java.io.IOException

{
m_writer = new PrintWriter(outStream);

m_verbose = verbose;
}

/**
* Constructor

*/
public OutputStreamListener(PrintWriter writer, boolean verbose)

throws java.io.IOException
{

m_writer = writer;
m_verbose = verbose;

}

Listing 17.5 Code for OutputStreamListener

531

/**

* Return the verbosity of the Listener; if set to true, the

* listener will write out onHeartbeatPing messages to the log

*/

public boolean getVerbose()

uput-
tWriter
ssed.
s, or at
and/or
 on its

Neward17_06_12.fm Page 531 Tuesday, June 13, 2000 12:30 PM
IMPORTANCE GROWS

{

return m_verbose;

}

/**

* Set the verbosity of the Listener; if set to true, the

* listener will write out onHeartbeatPing messages to the log

*/

public void setVerbose(boolean verbose)

{

m_verbose = verbose;

}

/**

* HeartbeatListener method. Received each time a 'ping' is

* received from the HeartbeatService

*/

public void onHeartbeatPing(String msg)

{

if (m_verbose)

{

m_writer.println(new Date() + " : " + msg + " received.");

m_writer.flush();

}

}

/**

* HeartbeatListener method. Called when the

* HeartbeatListenerClient determines the heartbeat has failed

*/

public void onHeartbeatFail(String msg)

{

m_writer.println(new Date() + ": ***Heartbeat failure: " +

msg);

m_writer.flush();

}

}

Note how OutputStreamListener takes three forms: one constructor taking an O
Stream instance, one taking a PrintStream instance, and one taking a Prin
instance. This is to permit the maximum flexibility in the OutputStream addre

We could probably drop LogListener in favor of this more generic clas
least make LogListener extend this one and provide file-specific behaviors
methods. This is an implementation detail, however, and has no real bearing
usage by clients.

ORING

The real advantage in this class is that because it deals with OutputStream
instances, we can do the standard Java Stream-chaining approach to provide additional
functionality—for example, we could use a TeeOutputStream (in com.javageeks.io)
to send the output to multiple sinks, or a FilterOutputStream to add additional output

ener to

n Out-
ration-

eart-
ode to
va lay-
shown
played
ebsite:

tor (or
ail via

t to an
l target
 to the
s hard-
ice, the

impler,
ented2

 emails
-grown

n HTML
Output-
 and you

Neward17_06_12.fm Page 532 Tuesday, June 13, 2000 12:30 PM
532 CHAPTER 17 MONIT

to the written message, and so on.1 For example, using the OutputStreamList
write to console would be as simple as:

HeartbeatListenerClient hcl = ...;

hcl.addListener(new OutputStreamListener(System.out, false));

hcl.startListening();

OutputStreamListenerService is given, since the complexities of constructing a
putStream to set into the OutputStreamListener are too complex for the configu
management system; any such construction has to come from within Java code.

NTEventLogListener

This is the native version of the Event log option from above. When the onH
beatPing and onHeartbeatFail messages are received, we use JNI c
write to the NT Event Log. The code is remarkably similar (at least at the Ja
ers) to the above LogListener or OutputStreamListener classes, so it’s not
here; in the same vein, the code for NTEventLogListenerService is also not dis
here. Both classes are given in the source code available on the publisher's w
www.manning.com/neward3.

MailNotificationService

Another approach is to send an SMTP mail message to a system administra
other designated support email account) when a Heartbeat fails. Sending an em
SMTP is actually a straightforward application of sending text over a socke
SMTP server, but, again, the JavaMail API, is by far the better way to go. Emai
address, subject line, and body of the message can all be specified as parameters
Service, or the Service might be developed with the appropriate propertie
coded. The first approach allows for greater reuse of the MailNotificationServ
second permits greater customization of the message.

Using JavaMail is beyond the scope of this book; using straight sockets is s
but numerous Java classes and components (including the undocum
sun.net.smtp.SmtpClient class) abound for simplifying this task. Unless the
being sent include MIME attachments, it’s about equal between using a home

1 For example, wrap an HTMLFilterOutputStream (one that translates each line of text into a
paragraph by placing <P> and </P> before and after each line/carriage-return) around a File
Stream, and point the FileOutputStream to write to a file in a Web-server’s HTML repository,
have a crude but effective form of Web-browser-based monitoring.

2 Elliott Rusty Harold covers its use in his book Java Secrets, from IDG Press.

533

SMTP client class, and using JavaMail. But if there’s a choice, go with JavaMail—it’s
the new Java standard for doing any form of electronic messaging from within Java,
and spending the time to learn it will pay off later.

n turn,
ich the
ially as

seful—
n C++.
can be
t same
ference
COM-
artbeat
nsport
ail
t could
ORBA.
unnec-

ut into

 would
0, and

tistical
 appli-
 see it

runs in

ion as
ing the
sms by

Neward17_06_12.fm Page 533 Tuesday, June 13, 2000 12:30 PM
SUMMARY

Concluding thoughts

All of the above listeners use a standard socket approach; each one could also, i
be written to use RMI, CORBA, or DCOM as the transport mechanism by wh
heartbeat message is broadcast to the listeners. There will be times, in fact, espec
regards CORBA or DCOM, when this sort of multiplicity of transport will be u
for example, we may want a notification client to be written in Visual Basic, or i

Writing a parallel group of Listeners and ListenerServices, however,
extremely tiring and error-prone. If a bug is found in one and fixed, then tha
fix needs to be applied to its peer using a different protocol. In fact, the only dif
between a LogListener and a LogRMIListener or LogCORBAListener or LogD
Listener is the actual transport mechanism used to receive the ping from the He
producer; alternatively, the listener itself could be distributed, meaning the tra
mechanism is what is used to make the onHeartbeatPing or onHeartbeatF
call. In fact, these two could be combined, so a given HeartbeatListenerClien
receive the pings via RMI and inform its registered HeartbeatListeners via C
Typically, variation in both the ping transport and the listener transport will be
essary, but not inconceivable.

Should this be the case, the actual protocols involved should be broken o
separate class hierarchies, with the actual protocol used passed in at run time:

HeartbeatListenerClient hcl =

new HeartbeatListenerClient(

new HeartbeatSocketTransport(“localhost”, 8080),

new HeartbeatListenerRMITransport());

In the above snippet, for example, we create a HeartbeatListenerClient that
attempt to receive pings from a socket-based server listening on port 808
would send notifications out to listeners via RMI.

17.2 SUMMARY

The need to monitor applications, both for their liveness and their current sta
numbers, is a necessary part of most server-side applications. With a client-side
cation, liveness is easy to detect—if the application is running, the client can
and interact with it. The server-side is a different story—the server typically
stand-alone fashion, with no human feedback to indicate failure or death.

Developing a system that provides this information in as generic a fash
possible serves two aims: zero administration and zero development. By reduc
amount of work required to administer the application by providing mechani

ORING

which administrators can check the liveness of the application, we make it easier to
check, as well as somewhat proactive in notifying necessary personnel in the event
of a failure.

By no means are the discussed techniques the only, or even the best, available for
are not
easure-
/servlet
Server-
cs, and
heet to
ocesses
ng will
 result,

Neward17_06_12.fm Page 534 Tuesday, June 13, 2000 12:30 PM
534 CHAPTER 17 MONIT

monitoring of your application. In some cases, simple “is it alive?” questions
sufficient—statistical numbers must be generated and tracked to allow for a m
ment of the application’s performance. This is where embedding an HTTP
engine into your application pays off. Your server application simply opens a
Socket, receives the HTTP requests from across the system, gathers the statisti
reports them. (Ideally, the report format would be in XML, with an XSL styles
transform the XML to HTML for human consumption, so that automated pr
could also gather the data.) Nevertheless, in many cases, a simple heartbeat pi
go a long way toward making your system administrators like you—and as a
is something that should rank high on your list of extras to deliver.

Whew! It’s been a long ride, one which I hope you enjoyed as much as I did in the
writer’s seat. Java as an enterprise development tool is an exciting concept, one which
offers us, as developers, incredible opportunities. Just take a look at the laundry list of
Java Enterprise APIs available at the end of 1999 (the items not explained here are

 on it,
ctor all
entiate
ponent
as sim-
ays of

y some

ORBA
d their
nfortu-
ith the
ugh to
 within
to both
uccess-
ample,
nges to
hanges

epilogue

neward_epilogue_06_12.fm Page 535 Tuesday, June 13, 2000 12:36 PM
535

covered thoroughly in this book):

• Enterprise Java Beans
The EJB specification is, if we measure by the amount of material written
the most interesting one within the J2EE system. Offering the ability to fa
of our business logic into a common area, EJB also was the first to differ
between the roles people play during the development of a project: com
designer, application assembler, and so on. In many ways, however, EJB w
ply an outgrowth of the Servlet specification, as people began to realize w
using servlets (and the accompanying load-balancing features offered b
servlet engines) to encapsulate business logic away from the client tier.

• Java Transaction API and Java Transaction Service
We’re not dealing with relational databases anymore. Object databases, C
object systems, RMI object systems, even the odd COM component all fin
way into the heterogeneous system found in many environments today. U
nately, the need for guaranteed transactions within the system has grown w
numbers of storage and logic systems within the enterprise. It’s not eno
guarantee that the transaction will either entirely succeed or entirely fail
just the RDBMS portion. Now, systems are requiring that the transactions
the CORBA and the RMI system, as well as the RDBMS, be either entirely s
ful or entirely rolled back. JTA and JTS work to provide that. JTA/JTS, for ex
would make it possible for the business objects layer to store/update cha
both the HashtableModel and RDBMSModel instances, or throw those c
away, without requiring extensive coding on the part of the developer.

LOGUE

• CORBA (through JavaIDL)

• RMI

• JDBC

er-side
ere all
ecame

lize the
lar. It is

 receiv-
pening
Client

around
eption
andled

than in
elopers
umen-

when a
, enter-
 doing

 single,
debate,
writing

andard

 before
s we’ve
entized

neward_epilogue_06_12.fm Page 536 Tuesday, June 13, 2000 12:36 PM
536 EPI

• Servlets and Java Server Pages (JSP)
In many ways, this is where people really began to consider Java as a serv
enterprise development tool. RMI, JDBC, and the other APIs from 1.1 w
slanted toward using applets as the working environment, until Servlets b
available as part of the Sun Jeeves web server. Once people began to rea
capability of the thin-client model, Servlets became more and more popu
safe to say that servlets reinvented the entire client/server model.

• JavaMail
JavaMail provides messaging access—email, basically, both sending and
ing—to Java. Now your enterprise systems can send and receive email, o
up entirely new options in the handling and routing of information.
application in the enterprise system crashes? Have a try /catch block
all the code in main , and mail the developers the stack trace from the Exc
object. Users (internal or external) want to be notified as their request is h
each step of the way? Fire an email. The options are endless.

• JavaHelp
Having a good help system is even more important in an enterprise system
a commercial off-the-shelf package. Because of the close proximity of dev
to the customers for whom this system is intended, training and user doc
tation tend to be shelved, in favor of contacting the developers directly
problem occurs. By providing a well-written, well-machined help system
prise developers can avoid phone calls from “stupid” users and get back to
what they do best—writing code.

• Java Activation Framework

• Java Naming and Directory Interface (JNDI)

• Java Messaging Service (JMS)

• Java2 Enterprise Edition (J2EE) specification
This is, of course, the document that tries to tie all of the above into a
unified whole. Whether or not it will succeed is still the subject of some
and will be for some time, but to ignore it entirely would be the same as
off the Internet as a passing fad.

And all this is on top of the list of functionality found within the Java2 St
Edition environment, such as CORBA, Reflection, Threads, and so on.

The point of all this is simple—even before the J2EE specification, even
the EJB specification, Java was a useful server-side application platform. A
proved ithin these pages, it’s possible to build fully functional, highly compon

537

applications without J2EE or EJB. Does that imply that all applications will not want
to use EJB? Absolutely not. EJB is a highly useful technology, and to dismiss it out-
of-hand would be as much of a crime as to blindly utilize it everywhere.

Remember, my four goals for readers of this book:

ovide a
ow the
ee now
ining a
r what-
system
 Class-
lass file

’t fit in
re like

ystems,
clients,
itional
se sys-
ncepts

e those

t it will
e same.
 some-
ious or

 Server
 don’t.
? Use a
ork for
 of the
re now
them.

t J2EE
g back

neward_epilogue_06_12.fm Page 537 Tuesday, June 13, 2000 12:36 PM
EPILOGUE

• Understand some of the basic concepts that go into an application server
By demonstrating how Threads and ClassLoaders can work together to pr
dynamic Service-loading/executing capability, you can now understand h
core parts of an EJB or J2EE Application Server works. It’s also easy to s
how Servlet Engines can do dynamic updating of servlets—by mainta
separate ClassLoader per servlet, per web application, per virtual host, o
ever. It’s also easy to see how you could roll that functionality into a
which doesn’t currently have it—by having the servlet in turn create a new
Loader to load the actual servlet class, and reload if the date/time of the .c
on disk is newer than what it was when you loaded it.

• Be able to incorporate some of those concepts into your own code
As an enterprise developer, I get called on to do all sorts of things that don
with the traditional client/server model. I’ve coded clients that acted mo
servers and servers that acted more like clients. I’ve coded peer-to-peer s
where everyone is both a client and a server. I’ve coded servers that had no
and clients that had no servers. All of these would break under the trad
J2EE model, but I’m not ready to give up the functionality offered by tho
tems, such as remote configuration and/or control. By building those co
into a lightweight application server framework (think GJAS), I can hav
features, and still be different.

• Use the code that comes with the book in your own systems
Much of this code grew out of my own experience, and I fully expect tha
continue to change and develop as time goes by. I encourage you to do th
Use it where appropriate, change it to fit your needs, and discard it when
thing else works more appropriately. It’s just code. There’s nothing myster
mystical about it.

• Prepare you for the coming changes in server development
You’re now in a position to solidly evaluate forthcoming J2EE Application
products, and better understand precisely what they offer, and what they
The application server you’re using doesn’t support JNI–dependent classes
socket to communicate to another Java process that performs the JNI w
you. Having problems accessing classes loaded from your database inside
application server? It’s probably a ClassLoader-parentage problem. You’
better equipped to understand what the forces are, and how to deal with

It may still come as a surprise, however, that this book wasn’t more abou
and/or more of the buzzword technologies such as EJB, or servlets or JSP. Lookin

LOGUE

at what was covered, let’s examine the relevance of each of the topics to the J2EE plat-
form and how it all relates:

• ClassLoaders
ClassLoaders still play a fundamental part of any application server, and J2EE will

oaders
 speci-
resents
to sup-
 single

 servlet
ow the
get into
d-party

 define
re now
n all of
r 3, it’s
tra tags

s some
vlets or
t’s also
tion of
rovide

th scal-
nd the
 time),
ol. The
 within
read it
 way. If
ded on
happen
amely,

re con-
t up to

neward_epilogue_06_12.fm Page 538 Tuesday, June 13, 2000 12:36 PM
538 EPI

be no different. As programmers, we need to know about separate ClassL
and the name spaces they define, so that we understand why the Servlet 2.2
fication prevents us from directly calling methods on another servlet. It rep
a security hole, because servlet engines would be extremely hard-pressed
port on-the-fly servlet upgrades if all servlets had to be loaded through a
ClassLoader (in order to support the calling of servlet methods across
instances). Furthermore, now that we have a thorough grounding in h
parent-child ClassLoader relationship works, it’s easy to see where we could
namespace troubles if our code is loaded from one ClassLoader, but thir
code used in our application is loaded by a different (peer) ClassLoader.

• Extensions
The Java2 Extension mechanism and the Java Archive (.jar) mechanism
the basis for Java componentry in the J2EE system—servlet applications a
called web applications, and are to be deployed in .war files that contai
the web application’s code and resources. Having examined this in chapte
fairly easy to see how this is (or could be) simply a .jar file with some ex
defining particular behavior.

• Threads
Again, knowledge of how the Java Threading mechanism works provide
useful insight into how application servers may help to prevent rogue ser
EJBs from taking over the CPU and hanging the system. Furthermore, i
somewhat easier to see why the EJB specification itself prohibits the crea
Threads from within an EJB Bean—if the EJB server/container wants to p
some kind of ThreadPool architecture, to best balance responsiveness wi
ability (too few threads, and we have bottlenecks; too many threads, a
overhead of switching between the threads will leave us with no real work
it needs to make sure that any Threads being created are under its contr
same can be said for servlet engines—if a servlet spins off its own Thread
its code, then when the servlet is unloaded, what do we do with the Th
created? This also impacts clustering and machine-independence in a big
the servlet is unloaded on one machine (in a cluster), and then later reloa
a different machine, will it start the Thread all over again? What should
to the old Thread on the original machine? By preventing client code (n
servlets and/or EJBs) from creating Threads, these issues never arise.

• Control
In the current specification, J2EE says very little about how applications a
trolled and/or configured by system administrators; this is more or less lef

539

the vendors or developers to provide. J2EE does provide for a deployment descrip-
tor, an XML file that describes the Enterprise ARchive (.ear) file’s type (ejb, java
or web), along with other deployment information, but this is primarily baseline-
level information necessary, and not in any way able to configure the server

ication
minis-

 and/or
 we roll

TCP/IP
DP/IP

 not all
otocol.
itten in
rtantly,
in Old
same.

pers to
ication,
address
but can
DBMS.

l map-
ntinue

 under-
system.
able to
ptimi-
capsu-

, a key
ne PCs
d, and
erse in

neward_epilogue_06_12.fm Page 539 Tuesday, June 13, 2000 12:36 PM
EPILOGUE

application’s context-specific configuration properties. For that, the appl
needs to either configure itself, or provide an interface allowing system ad
trators to configure it. By creating a single generic system for configuration
control, we can make the system adminstrator’s life much, much easier as
out application after application.

• Sockets
The fundamental backbone of J2EE, Java, even the Internet itself, is the
socket. Just about everything ultimately travels over either TCP/IP or U
sockets from client to server and back again. As we discussed in chapter 6,
protocols are so complex as to require RMI or CORBA as the underlying pr
In many cases, a simple text-based protocol can be used to allow clients wr
all sorts of languages to communicate with our Java server. More impo
many legacy systems don’t understand RMI or CORBA, but speak just Pla
Socket; to communicate with them, we need to have our system speak the

• Persistence
J2EE doesn’t address persistence, except to provide JDBC as an API for develo
use. As of late 1999 Sun was working to provide the Java Data Object specif
which will provide a default object-relational mapping, but JDO will only
storing objects to an RDBMS; not all persistence needs to be to an RDBMS,
instead be Serialized to disk, across a socket, or even to a column within the R

• Business Objects
As mentioned before, Sun is working to provide a default object-relationa
ping, but until it becomes available (and standardized), developers will co
to need to provide their own mapping between the object model and the
lying storage model, be it an RDBMS, object-database, or a shared-object
More importantly, by building the business object model, developers are
switch between underlying storage models when necessary, and perform o
zations within the storage layer that wouldn’t be possible if the layer of en
lation provided by the Business Object layer weren’t present.

• Middleware
Communicating across processes is, and will be for some time to come
component in enterprise systems. We’re no longer dealing with stand-alo
that can share data only via the floppy drive. Everything is interconnecte
the enterprise is all about getting data to the farthest corners of the univ
the shortest amount of time.

LOGUE

• JNI
As much as Sun might like to daydream, Java is not the answer to everything.
Believing that every software system should be rewritten in Java is as ludicrous as
believing that every building should be torn down just so we can rebuild it using

ce, run
erlying
m that
ystems

ication
ts indi-
. With-
k when

e J2EE
ms, or
e J2EE

ind the
ystems.
 home-
ons for

ld that
ow. Or
ve their
the fea-
jor risk
 versus
and so
y.

chnical
of high
ty con-
ll on a
re pas-

eloping
hatever

neward_epilogue_06_12.fm Page 540 Tuesday, June 13, 2000 12:36 PM
540 EPI

modern power tools. More importantly, Java’s emphasis on “Write on
anywhere” means that there will always be specific features of the und
operating system or environment that are unique to one particular platfor
Java won’t natively support. Providing that access—and access to legacy s
outside of Java—through JNI is a win-win situation for all.

As you can see, all of these concepts map directly back into the J2EE specif
and technology base in direct fashion. Granted, one can use J2EE (or any of i
vidual technologies) without having a clear understanding of its underpinnings
out that knowledge of the fundamentals developers will be, at best, left in the dar
trying to develop an application that doesn’t fit the J2EE model perfectly.

More importantly, there will be applications and systems that won’t fit th
model, either because they challenge the traditional notion of enterprise syste
because the developers will simply be unable to use the technologies offered by th
system. In those situations, a knowledge of what the J2EE system does beh
scenes, and why, will provide an invaluable aid in building these home-grown s

Sometimes, however, developers and corporations will choose to build a
grown system instead of making use of an existing application server. Reas
doing this include:

• Control
Vendors come, vendors go. It’s a fact of life in the enterprise computing fie
the vendor on which you standardize today may not be in business tomorr
that vendor will have been bought out by a competitor or partner and ha
technology deprecated in favor of the purchaser’s. Or will simply not have
tureset you require, when you require it, and so on. Vendor failure is a ma
in software development that must be assessed when determining the buy
build decision. If you build the system from scratch, you have control,
long as your business remains afloat, so does the software on which you rel

• Technical capability
If you use an OpenSource or home-grown system, you can tailor the te
capability of the system to your specific needs. For example, if security is
concern or priority, EJB will fall down completely; it still lacks good securi
trols. Or, if you need to develop active server implementations that po
database or perform scheduled tasks, EJB will fail you—all of its Beans a
sive, requiring activation by another process or client to function. By dev
a server-side framework and generic server, you retain the ability to add w
technical capability you require.

541

• Technical flexibility
Despite the rush to OpenSource solutions, most server-side systems are still
closed-source systems, meaning you don’t have the ability to access or modify the
source to suit your needs. Sometimes a full-fledged server system isn’t what you

pplica-
ers are
t GJAS
chine’s
 might
IT staff

king, is
still has
le, the

specifi-
cluding
ors will
ecifica-
cation,
1.0 left
ime on
d now

patibil-
ORBA
 of the
w years
istence
remely
al with
t? If a
st time
ing out
to fatal
’ needs.

JB and
e more

neward_epilogue_06_12.fm Page 541 Tuesday, June 13, 2000 12:36 PM
EPILOGUE

require, but a lighter version of one that can be embedded inside a larger a
tion or system. For example, in order to determine how well comput
working across the enterprise, the IT staff may want to place a lightweigh
instance on each machine, running a HeartbeatService to monitor the ma
up- and down-time. From there, a more sophisticated diagnostic service
be feasible, using JNI to call down to OS-specific routines and offer the
some proactive ability in dealing with help-desk requests.

• EJB immaturity
Let’s face it: EJB, despite its tremendous hype and enormous market bac
still an immature technology. This is not to say it’s not useful, but that it
a number of warts to work out before it begins to settle down. For examp
EJB 1.1 draft specification was released less than six months after the 1.0
cation was finalized, and the 1.1 draft already defers a number of points, in
JMS support, to the forthcoming 2.0 specification. This means that vend
be scrambling to catch up on the new features required by the new sp
tions. What’s more, EJB 1.1 made a significant change to the 1.0 specifi
requiring that Deployment Descriptors now be specified in XML, where
those details up to the vendor. This is a major change, requiring porting t
the part of any clients accustomed to using the vendors’ 1.0 approach, an
must adjust to using the 1.1 approach.

Certainly, most vendors will seek to provide necessary backward com
ity, but that delays the inevitable; it doesn’t solve the porting problem. C
addresses some of this immaturity problem, but it also suffers from some
same problems. For example, the CORBA Persistence Service, defined a fe
ago, has recently been completely tossed and started over on a 2.0 Pers
Service. The reason? “It was based on a two-level storage model and was ext
complex. In addition, it was not integrated with other services that de
persistence-related topics like transactions and concurrency.”1 The poin
group of the finest minds on object persistence can get it wrong the fir
around, then it can happen to anybody, any technology, at any time. Rush
to embrace a technology during its hype period can sometimes lead
results, as the technology moves and shifts to better accommodate its users

• Strategic Acceptance
Many companies, for some or all of the reasons cited above, are still leery of E
other new-fangled technologies; getting approval to use EJB or CORBA may b

1 Enterprise CORBA, p. 36

LOGUE

difficult than getting approval to build something from scratch. In turn, building the
system from scratch can incorporate ideas and concepts from EJB and/or CORBA,
which can in turn lead into use of EJB and/or CORBA technologies directly.

as been
writing
f func-

clude:

Service
 which
dless of
nstance
ly pass

MI this
vide a

 and an
s. This
t better

I stub
ode, in

ket ser-
et, and
s well.

reaking
ateless-
ld defi-
rything
ization

stance
entries

anager-

neward_epilogue_06_12.fm Page 542 Tuesday, June 13, 2000 12:36 PM
542 EPI

WHERE TO GO FROM HERE?

By no means have we exhausted every possible topic in this area; in fact, this h
merely an introduction to the wide possibilities available to Java developers when
server code. GJAS itself has a long way to go before it begins to offer the kind o
tionality that a viable commercial product would or should offer. Examples in

• Better location transparency
Right now, Services are buried underneath the IServer interface, and if a
provides specialized methods, they are inaccessible outside of the JVM in
they were instantiated. Ideally, we’d be able to access those methods, regar
the JVM we’re in. This is possible by dynamically generating the Server i
when the Service is loaded into the JVM, building shim methods that simp
the information on to the encapsulated Service target transparently. With R
would be a bit trickier, but not impossible. The RMI Server could pro
“generic_call ” method that takes a String for the name of the method,
array of Serializable objects that would represent the individual argument
would limit the Service to Serializable-only calls, but that would still make i
than what’s currently there.2 Alternatively, we could build the complete RM
and skeleton code on the fly, perhaps invoking rmic from within the GJAS c
something of the same manner as we did for the CompilerClassLoader.

• Better services
It would be relatively trivial to implement the more common TCP/IP soc
vices in GJAS using SocketServer or ConnectionManager—FTP, TFTP, Teln
so on. Once GJAS is Servlet-compliant, it can then run Java Server Pages, a

• EJB server/container support
We could build EJB support into GJAS by creating an EJBService, or even b
it out into an EJBEntityService, an EJBStatefulSessionService, and an EJBSt
SessionService. It would certainly be a project of some magnitude, but wou
nitely be easier to attempt within the GJAS framework than by building eve
from scratch. Doing so would offer the benefits provided by the standard
EJB promises, as well as the functionality discussed above that EJB lacks.

• JNDI integration
GJAS is a natural candidate as a JNDI service provider—each GJAS in
becomes a Context, and the individual Services running within it are

2 In fact, any argument passed into the RMIServerManager to be passed on to the RMIServerM
Server needs to be Serializable anyway, so no functionality from the current system is lost.

543

therein. Because JNDI is protocol-independent, we’d need to decide upon a par-
ticular protocol to use to communicate from the client to the GJAS server, but
that could easily be specified via a property in the JNDI InitialContext construc-
tor, much as JSDT uses its type field.

ithin a
n with
vice to

stering
ailable

Service
e level;
ts load
d pool
stance

ect and
rovide
hen a

he Ser-
Service
vation-
en Ser-
vice.

se JNI
l CPUs
e next

e GJAS
ns are

neward_epilogue_06_12.fm Page 543 Tuesday, June 13, 2000 12:36 PM
EPILOGUE

• CORBA integration
Although it’s possible to fire off CORBA server implementations from w
Service, it would be gratifying if GJAS had some slightly better integratio
CORBA, perhaps by using the CORBA Naming Service or Trading Ser
provide services to other CORBA applications, or use them in turn.

• Clustering support
GJAS, as with any application server, is a natural candidate for basic clu
support, even something as basic as designating a group of JVMs as av
nodes for work, and farming out GJAS Services to the JVMs as each new
comes in. Alternatively, we could also introduce a clustering at the Servic
a Service could spin off multiple instances of itself into other JVMs as i
increased; for example the HttpConnectionManager could, if its Threa
were exhausted, forward the request on to an HttpConnectionManager in
running on a separate machine, a la RedirectorConnection.

• Activation support
A number of these Services will simply sit idle, waiting for clients to conn
use them; for rarely used Services, such as the ControlServices, we could p
an ActivationService, which would listen on a number of ports, and w
request came in, create the Service instance to handle the request. Once t
vice is activated the ActivationService would then bow out, until the
determined that no further requests were coming in and notified the Acti
Service of its imminent shutdown. This permits optimal CPU usage wh
vices aren’t being used, while still providing complete availability of a Ser

• Load balancing support
Once the clustering support is present within GJAS, the system could u
methods to obtain real-time or near-real-time statistics on the individua
on each node, and make better decisions about where to farm out th
request, rather than doing so in a blind round-robin fashion.

• Better administrative front-ends
Right now, GJAS has only the single front-end to administer and run th
instance. Certainly, more sophisticated and feature-rich implementatio
imaginable and feasible.

This is just a partial list; more ideas are certainly possible.

LOGUE

PARTING ADVICE

Don Box, “COM Guy Extraordinaire” and one of the co-authors of Effective COM,
offers at the back of that book, some of the best parting advice I’ve ever heard. Para-
phrased to be more appropriate to our Java-centric word, they read like this:

chnical
 Don’t
or A’s

rketing
bench-
 simple
 test in
ther—

dmit it.
h what
nd I’m
I don’t

 you to
 both).
ill give

anding
nsights
ject.

 object
A pro-
similar
 C++)

vides a
ice, the
ithout

er con-
 devel-
e of the

neward_epilogue_06_12.fm Page 544 Tuesday, June 13, 2000 12:36 PM
544 EPI

Be a skeptic

Like it or not, our industry is filled with wild marketing hype, erroneous te
summaries, and thinly-veiled propaganda in the form of “factual reports.”
believe a thing you hear, see, or read, until you can prove it to yourself. Vend
AppServer is ten times faster than Vendor B’s, according to Vendor A’s ma
material? Ask for an eval CD of both and the code they ran to generate the
marks. Read an article that claims Enterprise JavaBeans can’t scale? Create a
test and run it for a week; compare the statistics against a similarly-structured
some other technology. Be skeptical even when reading this book, or any o
authors, like most people, are human, too, and we’ll generally be the first to a
We make mistakes. Technology changes. If something you read doesn’t jibe wit
you’ve seen or experienced firsthand, don’t simply assume you were wrong a
right, or vice versa—prove it to yourself. Then drop me an email and show me;
want to be wrong any more than you do.

Read all about COM, DCOM, and MTS

COM/DCOM is another object broker. Understanding COM/DCOM will help
better understand the Java object broker you end up using, EJB or CORBA (or
MTS is another scalable-application-server technology; understanding MTS w
you insights into EJB.

Read all about EJB

Enterprise Java Beans are the future direction of enterprise applications. Underst
EJB (and by that, I mean reading the EJB specification itself) will give you i
into when and where EJB technology will be applicable or relevant to your pro

Read all about CORBA

Java has been hailed as CORBA’s saving grace within the realm of distributed
development. Java needs CORBA almost as much as CORBA needs Java. CORB
vides Java with an easy gate to the software bus of CORBA objects, and Java’s
syntax to C++ means that CORBA (which drew much of its inspiration from
maps well into Java with only a few stumbles. More importantly, CORBA pro
number of defined services—such as the CosEvent service, the CosTrader serv
CosNaming service, and so on—that Java applications can now make use of, w
having to recode them. More importantly, CORBA developers have much rich
trols and understanding over distributed object concepts than most Java-RMI
opers. RMI tries to provide some of that with Activation, but falls short of som

545

functionality provided by CORBA ORBs; in fact, much of the EJB activation/passiva-
tion logic is already incorporated into the ORB 2.3 portable object adapter.

Participate

ot sure
st to a
 docu-

politics
art of a

oaders,
mental
 forth,

neward_epilogue_06_12.fm Page 545 Tuesday, June 13, 2000 12:36 PM
EPILOGUE

Join a mailing list. Post to the list, both questions and answers, even if you’re n
you’re correct. Nothing will drive a point home more forcefully than to po
mailing list with a possible answer, only to have somebody else correct you with
mented fact. Just as participating in a group discussion on a hot topic, such as
or economics, will expose you to new ideas and perspectives, so will being a p
mailing list.

SUMMARY

You came, you read, you conquered. You know how to integrate ClassL
Threads, Sockets, JNI, and middleware into a unified whole. You have a funda
grounding in the construction of business object models. You are ready to go
code like crazy and reap the rewards of a successful project.

And one more element from the parting advice.
Have fun.

neward_epilogue_06_12.fm Page 546 Tuesday, June 13, 2000 12:36 PM

index
Symbols

.class 37

.class, keyword 46

.INI files 225

.jar 110

.properties files 225

.Thread 240

.war 104
_JAVA_LAUNCHER_DEBUG

491, 501
_JAVAGEEKS_DEBUG 501

Numerics

16-bit Windows 147
4006245 139

A

AbstractEmployeeModel 375
Activation

RMI 412
activation support 543
ActiveX 31, 432
adapter methods 217
addService 178
administration 405
administrative 464
administrative front-ends 543
Adobe Photoshop 108
Aglets 338, 411, 439

Aglets Transport Protocol
(ATP) 440

annotated codebase 413, 417
annotated codebase URL 219
anonymous class xvi
AppClassLoader 144
applet 46, 99
AppletClassLoader 48, 57
Appleton, Brad 10
application ClassLoader 58, 65
application control 175
application home 492
application security 175
application server xvii, xxvii, 4, 8,

273
application shell 105
Assembler 19
assembly 344
assumptions 2
asynchronous notification 158
attributes 111
availability 324

B

back-end server 295
background tasks 127, 142
backplane 183, 208
backward compatibility 309,

363
bank teller 407
benchmark 18

better services 542
black-box reuse 133
bootstrap ClassLoader 28, 46, 57
Bridge pattern 476
build time 103
business layer 360
business logic 343, 375
business object model 346
business objects 341, 346, 539
business objects layer 348, 370,

400, 418
business rules 56, 391
business tier 344
BusinessLayerException

349–350, 361
busy-wait loop 160
buy-versus-build 4
buzzwords 341
bytecode 322, 330

C

C 428, 431, 463, 465
C++ 17, 19–20, 24, 108, 126,

219, 424, 428, 431, 463, 465
C++Builder 342
caching 370, 404
Café 342
CAFEBABE 39
callable instance 170
callback 155, 262
capitalism 5
547

censorship 281
centralization 324
centralization of data 317
chaining 289
change 309
ClassCastExceptions 29, 49

see also java.lang.ClassCast-
Exception

classic object design 406
ClassLoader xxi, 17, 28, 39, 44,

61, 102, 273, 317, 336, 338,
538
API 47
Java 2 44
JDK 1.1 43
namespaces 48
relationship to Class 48
synchronization in 46

ClassLoaderStrategy 220, 277
ClassLoading 219, 438
ClassNotFoundException 40

see also java.lang.ClassNot-
FoundException

CLASSPATH 27, 58, 103–104,
125, 223, 322, 330, 414, 492

Class-Path header 100
cleanup 262
client/server xvi, 410

JMS Hybrid model 450
clientToken 408
closed systems 463
CloseHandle 505
clustered 405, 433
clustering 226, 272, 279
clustering support 543
CODEBASE 57
CodeServlet 285–286
collection 22
Collections library xvii
colocation, appearance of 436
COM 19, 365, 432

see also Component Object
Model

COM/DCOM 420, 511
communication 272, 402

compatibility 425
compile-time 153
Component Object Model

432–433
see also COM

componentry 10, 132
components 104, 203
compression 280
concurrency 16, 126, 149

danger in 393
concurrent execution 149
concurrent library 168
ConfigProperties 232, 236
ConfigProperty 252
configuration 14, 510

Applet 231
HTML 231
settings 174

connection 255, 336, 409
ConnectionManager 255, 281

threading policy 261
consistent 218
ConsoleControlService 201
constant pool 39, 102
context ClassLoader 144
context switch 129
ContextInfo 226
control 174, 538, 540
Control Panel 233, 235
Coplien, James O. xxv
CORBA xvii, xxiii, 31, 215, 365,

402, 406, 410–411, 420, 433,
448, 477, 494, 511, 533, 536

CORBA 2.2 429
CORBA 2.3 428
CORBA Event Service 412
CORBA IDL 424
CORBA integration 543
CORBA Naming Service 423,

429
CORBA NamingService 189
CORBA ORB, MICO 432
CORBA ORB, omniORB 432
CORBA ORB, ORBacus 432
CORBA Trading Service 412

CORBA, Collections 431
CORBA, NamingContext 430
CORBA, Persistence 431
CORBA, Security 431
CORBA, Trading 431
CORBA, Transaction 431
CORBA/RMI/DCOM

Hybrid 448
corrections xxvi
CosNaming 423
CPU power 404
crash protection 481
Created-By 111
CreateProcess 137
CreateThread 126
creating objects 361
credibility 13
critical sections 484
cron 163
cross-linguistic 431
crown jewels 13
Crystal Reports 20, 380
custom Serialization 308

D

daemon 15
daemon servlets 295

see also servlets
data 330, 332
data access layer 345, 371
data consistency 390
data storage 341
data warehouse 346, 380
data-aware control 342
database denormalization

381–382
database tuning 346, 382, 385
date service 238
DBA 345
DBE 345
DCOM 411, 431, 448, 533
DDE 432, 496
debugging support 506
Decorator pattern 110
548 INDEX

decryption 280
dedicated 246
default parameters 21
defensive coding 234
defineClass 336
DelayedFire 163
delegating ClassLoader

model 41
Delphi 342
deployment 337
design 347
Design Patterns xxv
design patterns 474
design-by-interface 400
development 464
development speed 19, 344, 471
DevelopMentor xxviii
DGC 420
diagnostic controls 481
disconnected clients 434
disconnected operations 438
Distributed Component Object

Model 432
see also DCOM

Distributed Factory 323
distributed garbage

collection 420
distributed job system 405
distributed make 405
distributed object design 406
distributed object lifetimes 420
distributed object systems 402
distributed objects xxiii
distribution approach

drawbacks 412
mobile objects 411
ORB 411
raw access 410
RPC 410
sockets 412

DLL 97, 465
DllEntryPoint 108, 469, 492
DllMain 108, 492
download extensions 100, 103
downtime 406
drop-in JIT 488

DuplicateObjectException 377
duplication 382
dynamic class-loading 144
dynamic code download 420
Dynamic Data Exchange 432
dynamic linking 101

E

Echo 238, 243
EchoService 243
e-commerce 408
economics 402
efficient 246
EJB 4, 14, 34, 46, 104, 272, 365,

421, 431, 433
see also Enterprise Java Beans

EJB immaturity 541
Emacs 108
email 524
email conversation 433
embedded systems 4
employee system 448
encapsulation 105, 129, 133,

212, 214, 262, 318, 324, 340,
345, 361, 365, 374, 400, 419
counterproductive 374
drawbacks 400

encapsulation layer 370
encryption 280, 303
end-user 2
enhancement 363
enterprise development 1
Enterprise Java Beans xvii, 535

see also EJB
entity-relationship 346
error 183
Event log 523
event management 16
events 484
evolution (of Java) 20
examples 415–416, 418, 426

ConfigProperty 227
ConnectionAdapter 256
creating objects 375, 392
CreationExample 439

examples (continued)
CustomSerialization 307
DerivedClassLoader 45
download 99
DynamicArray

(synchronized) 151
DynamicArray

(unsynchronized) 150
DynamicCode 29–30
Echo2Service 254
EchoConnection 262
employee 451
employee system 346
Employee test driver 354
Employee.Hashtable-

Employee 374
Employee.HashtableManager

374
Employee.HashtableModel

375, 378–379
Employee.HashtablePerson

374
Employee.IAddress 352
Employee.IContactInfo 352
Employee.IDepartment 353
Employee.IEMail 352
Employee.IEmployee 349
Employee.IEmployee

Model 356
Employee.IManager 350
Employee.IPerson 348
Employee.IPhone 353
Employee.IPosition 351
Employee.JSDTModel 453
Employee.OrgTree 400
Employee.RDBMSModel

380, 382, 392, 394–397
Employee.RDBMSPerson

385
evolution 311–312
ExceptionListener 156
ExceptionRunnable 154
ExRunnable 157
FileSystemClassLoader 63
FileURLClient 50
finding objects 378, 394
IN DEX 549

examples (continued)
first 30
flaws 379, 397
FTPURLClient 53
FutureRunnable 165
FutureThread 165
HashtableClassLoader 66
HashtableModel 372
HeartbeatClient 517
HeartbeatListener 518
HeartbeatListenerClient 519
Hello 28
HelloDownload 99
HttpConnection 265
HttpConnectionConstant

264
HTTPURLClient 51
IIOPNameServer 421
JarLister 110
JDBCClassLoader 334
JNItest 485
JPrimes 466
JPrimes.cpp 469
LanguageInterpreter 106
LogListener 525
LogListenerService 527
NameServer 414
NameServerImpl2 416
NetworkClassLoader 42
OrgTree (Employee

system) 366
OutputStreamListener 530
PeriodicThread 135, 161
PluginApp 118
PluginClassLoader 112
PrimeCalculator 474
ReflectingDynamicCode 31
RemoteStorageService 318
removing objects 379, 395
replacement 316
RMI implementation 451
RunnableObject 132
ScheduledThread 163
schema 382
ScriptingEngine 106

examples (continued)
second 30
signal 479
signal handler 478
SocketClassLoader 274
SocketClassLoaderConnec-

tion 277
stateful vs. stateless 407
StoppableThreadObject

140–141
TestSuite 35
ThreadGroupEx 156
ThreadSubclass 132
TimeService 245
wait 142–143

exception handling 153, 481
exception propagation 361
ExceptionInInitializerError 40
exceptions 153, 253, 361, 481
ExecService 189
execution speed 344–345, 471
Executor 261
exit 138
extensions 330, 414, 538
extensions ClassLoader 58, 223
externalization 310, 317

F

Façade 130, 365
Factory 172
Factory Method 47
failover 437
fault-tolerance 272, 279
federated-system model 449
FileInputStream 110
FileOutputStream 232
filesystem 464
FileSystemClassLoader 189
filtering 289, 437
FilterInputStream 280
FilterOutputStream 280
FilterService 280
FilterSocket 285
findClass 336–337

finite state machines 130
firewall 2, 279, 294, 298, 318
five-nines 8
flexibility 105, 425
foreign keys 394, 397
fork 137
FTP 53
FTP servlet 292

see also servlets
future implementation 363
Future pattern 167
FutureReplies 164
FutureResult 170
Futures 164

G

garbage collection 17
GET 297
getConfigInfo 233
getInstanceID 179
getService 180–181
GJ 24
GJAS 45–46, 102–103, 159,

166, 175, 281, 318, 495, 515,
518

glue 261
Gosling, James 20
green threads 147
GZIPInputStream 303
GZIPOutputStream 303

H

handle 408
handleEvent 133
HashtableClassLoader 222
HashtableModel 451
heap-allocation 483
HeartbeatService 515
HelloAgainService 193
HelloService 186
HORB 411
Hotspot 18
HTML 57, 99, 263, 273, 334,

534
550 INDEX

HTML editor 342
HTTP xvii, 164, 263, 281, 323,

407, 494, 534
HTTP return codes 264
HTTP server 51, 219, 418
HttpConnection 273

I

IBM’s MQSeries 411
iBus 411
IDE 24
idioms 158
IDL 428
IDL compiler 429
IIOP 419, 421

see also Internet InterOpera-
bility Protocol

IllegalAccessException 40
IllegalSalaryException 350
IllegalStateException 143
implementation 413
implementation inheritance 132
implementation interface 418
implementation

optimization 363
implementing security 365
information channels 441
inheritance 347, 384, 397
inheritance for reuse 132
inheritance-as-reuse 10
InitialContext 423
initialization of

ConnectionManager 261
Inner class xvi
InputStream 242, 503
instance 176
InstantiationException 40
intelligent agent 435
interface 432
Interface Definition

Language 428
interface-based design 348
Internet 61, 237, 338, 370
Internet InterOperability

Protocol 419

internetwork
communication 281

interprocess
communication 281, 496

interrupt 140, 146, 154
InterruptedException 140, 154
Intuit xxviii
Invocation 490
Invocation API 472
IP shuffling 279
IPC 494
IServer 233
IServerManager 175
IT 345
iterative 3
IUnknown 432

J

J2EE xxvii, 4, 14, 272, 536
see also Java2 Enterprise

Edition
JAR xvi, 97
JarInputStream 110
java 484
Java Activation Framework 536
Java calling native code 472
Java cryptography

extensions 175
Java Message Service 434, 536

see also JMS
Java name-mangling 39
Java Naming and Directory

Interface 536
see also JNDI

Java Native Interface 464
see also JNI

Java Remote Method
Protocol 419

Java Server Pages 536
see also JSP

Java Shared Data Toolkit 281,
411, 442, 473

Java Sound API 524
Java Transaction API 535
Java Transaction Service 535

Java Virtual Machine Debugger
Interface 507

Java Virtual Machine Profiler
Interface 508

Java Virtual Machine
Specification 38

java.class.path 58
java.io.File 50
java.io.FileSystem 147
java.io.InterruptedIOException

518
java.lang.Class 29, 325
java.lang.ClassCastException

33, 65
java.lang.ClassLoader 37

see also ClassLoader
java.lang.ClassNotFoundExcep-

tion 65, 322
java.lang.Method 232
java.lang.reflect.Method 32, 35
java.lang.Runnable 131
java.lang.Thread 131
java.lang.ThreadGroup 144
java.lang.ThreadLocal 152
java.naming.factory.initial 423
java.naming.provider.url 423
java.net package 237
java.net.ConnectException 253
java.net.URLClassLoader 49,

110
java.rmi.Remote 413
java.rmi.RemoteException 215,

413
java.rmi.server.codebase 414
java.rmi.server.RMIClassLoader

57
java.rmi.server.UnicastRemote-

Object 415, 427
java.rmi.server.Unreferenced

452
java.security.SecureClassLoader

49
java.sql.Connection 383
java.util.jar 110
java.util.Properties 232
java.util.zip 110
IN DEX 551

Java/COM 432
Java2 xvii
Java2 Enterprise Edition xviii,

104, 536
see also J2EE

Java2 Enterprise Edition
specification xvi

Java2 Micro Edition xviii
Java2 Standard Edition xvii
JavaBeans xvi, 34, 225, 302
javac 103
javadoc 483
javageeks.com 52
JavaHelp 536
JavaIDL 428, 536
JavaMail 533, 536
JavaSpaces 281, 411, 473
JavaVMOption 493
JavaVMOptions 487
javax.rmi.PortableRemoteObject

427
JBuilder 342
JDBC xvi, 300, 324, 339, 380,

395, 421, 536
JDBC Connection-pool 409
JDBCClassLoader 222, 279,

331
JDK 104, 487

-jar 98
JDK 1.1 xvi, 302
JDK 1.2 xvii
JFC xvii, 343
Jikes 507
Jini 281, 411, 442, 473
JIT 18, 471, 507
JMS 215, 402, 411, 433–434,

449, 511, 536
see also Java Message Service

JNDI xvii, 214, 421, 429–430,
536
see also Java Naming and

Directory Interface
JNDI integration 542
JNI xvi, 15, 19, 24, 62, 98, 219,

233, 539

JNI costs 464
JNI drawbacks 487
JNI invocation 484
JNI Specification 465, 478
JNI_OnLoad 492
JNI_OnUnload 492
JNIEnv 480
join 156, 240
JPrimes 472
JRE 104
JRMP 419
JRMP incompatibility 419
JRun 273
JSDT 443, 460
JSDT Channels 446
JSDT Client 455
JSDT Registry 443
JSDT Session 447
JSDT SessionManager 455
JSDT Tokens 446
JSP 14, 536
JSWDK 273
JTA xvii
JTable 134
JTAPI 524
JTree 134, 369
JTS xvii
Jurassic Park 22
just-in-time compilers 18
JVMDI 507
JVMPI 508

K

killService 180
knowledge 6

L

languages.properties file 107
laptop 208
last error 154
layers 284
lazy 108
lazy evaluation 387, 395
LDAP xvii

Lea, Doug 158
lease 420
legacy code 471
legacy system 15
legitimacy 362
lifetime management 413
link table 382
liveness 523
LiveWire 290
load balancing 226, 272, 437,

543
LoadJavaVM 489
LocalServer 178, 183, 213, 233
LocalServerManager 175, 213
location transparency 218, 226,

542
log 183
LogCORBAListener 533
LogDCOMListener 533
logic 289
LogRMIListener 533
lookup 214, 413
loose coupling 41

M

MacOS’s AppleEvents 219
mail server servlet 292

see also servlets
mailslot 496
main 183, 488
Main-Class 104, 111, 491
maintenance 405
managing 510
Manifest 97–99, 110, 491

Class-Path 97–98
Created-By 98
Main-Class 98
Manifest-Version 98

MANIFEST.MF 98
many-to-many relationships 382
marker data 333
marketing 125
marshaling 211, 412
MAX_PRIORITY 131
552 INDEX

memory-mapped files 473, 496
message of the day 333
Message-Oriented

Middleware 411, 433
see also MOM

message-tracking 333
metadata 34
META-INF 98
metamodel 34
Method 33

see also java.lang.reflect.
Method

Meyers, Scott 345
Microsoft 19, 363
Microsoft Access 380
Microsoft named pipes 219
Microsoft RPC 478
Microsoft Visual C++ 5.0 470
Microsoft/DCE RPC 209
Microsoft’s MSMQ 411
Microsoft’s RPC 410
middleware 298, 402, 448, 539
middleware layer 294
middleware protocol 294
middleware system 295
MIME 533
MIN_PRIORITY 131
miniapplication servers 4
mobile agents, difference from

mobile objects 435
mobile object design 440–441
mobile objects 108, 435

simple 438
uses of 437

mobile transaction object 436
mobile-object model 449
Model 134, 343
modularization 203, 345
MOM 411, 434
monitoring 510
MQSeries 434
MSMQ 434
MTS 431
multiple JDK environments 104
multiple threads 516
multiprocessing 127

multi-thread exception
handling 153

mutexes 484

N

name space 65
Naming class 413
native 463
native calling Java code 472
native code 101
native library 464
native threads 147
needs 1, 6
NestedRuntimeException 217
Netscape 19
network bandwidth 338
network rerouting 279
New Atlanta 272
NORM_PRIORITY 131
NT service 495
n-tier 341–343, 365
NullObject 113

O

object linking and
embedding 432
see also OLE

Object Management Group 428
see also OMG

object model 340
object purists 212
Object Serialization

specification 306
object tree 301
ObjectOutputStream 301
object-relational mapping 381
objects

serialized 297
ObjectSpaces’s Subspace 442
OCI 403
ODBC 380, 403
ODMG 338
OK 264
OLE 108, 432
OMG 494

ONC RPC 209, 478
OneMoreHelloService 200
OODBMS 400
Open Source 5, 10
OPTIONS 297
ORB 432
ORB vs. mobile object 435
ORBacus 428
OSF/DCE RPC 410
OutputStream 242
OutputStreamListener 532
OutputStreamListenerService

532
overhead 344, 436
overloaded operators 22
overserver 175
ownership semantics 17

P

Pacific Bell xxviii
package 39

java.net 237
pager 524
parallel development 105
parseArg 177
parseInputStream 177
pass-by-reference 412
pass-by-value 412
PATH 471
patterns 10, 158, 384

Abstract Factory 365, 384
Active Object 160
Adapter 157
Bridge 365, 375, 474
Client-Dispatcher-

Server 158
Façade 434
Factory Method 41, 365, 384
Fire-and-forget 159
Model 365
Model-View-Controller 365
Polling 161
Singleton 176, 365, 384
SpinLoop 160
View 365
IN DEX 553

PDA 208
PDF 263
peek 172
peer 455
performance 127, 129, 324, 382,

402, 465, 494
performance monitoring 412
performance tuning 391
PeriodicThread 511
PerlInterpreter 109
perpetual employment, principle

of 133
persistence 300, 539
phone call 524
phone conversation 433
physical object model 346
ping 237
Pizza 24
platform 464
Plugin-Class 111
PluginClassLoader 111
plug-ins 105, 107
point-of-failure 4
policy decision 174
POP3 437
portability 465
POS 215
POSIX 147
POST 264, 297
PostScript 263
premature optimization 345
presentation 341
presentation layer 344
presentation logic 343
primary key 301, 386, 392
prime numbers 404
priority 131
procedural development 128
process independence 128–129
Process object 192
processes 464, 495
product ID 344
proof of concept 168
properties 107
property 225

property opacity 226
PropertyDescriptor 225
PropertyDialog 225
protocol-independent 218
prototype 372
proxy 412
Proxy pattern 209
ps 510
publish/subscribe 411
Python 431, 494

Q

query 301
quick releases 489

R

RAD 9, 342
Rapid Application Development

(RAD) tools 463
RDBMS

ODBC 332
vendor evolution 345

RDBMSModel 360, 451
Reader 244
readObject 306, 309–310
readResolve 310, 313
readResolve() 314
RedirectorService 279
RedirectorSocket 285
redundancy 373
reference-counting 432
referential integrity 395
Reflection xvi, 19, 28, 31, 105,

298, 313, 325, 493, 536
Registry 174, 225, 477, 488
relational databases 317
reliability 402
Remote 210
remote method invocation

412–417
remote-enabled 14
RemoteStorageClient 272
RemoteStorageServer 272
RemoteStorageServlet 297

RemoteStorageServletClient
297

RemoteUnicastObject 200
removeService 177
request 323
request-response 433, 436
request-response protocol 295
resource management 128
response 323
resume 141
reusability 7
ripple effect 233
RMI xvi, xxiii, 144, 208, 272,

302, 317, 323, 402, 406, 410,
412, 431, 448, 460, 477, 511,
533, 536
see also Remote Method

Invocation
RMI registry 189, 223, 414, 429
RMI Specification 419
RMI/IIOP 14, 272, 421, 452
RMI/JRMP 419
RMI/JRMP, isolation of 428
rmic 413, 416, 419, 424
RMIClassLoader 46, 57
RmiJdbc 2-tier

RDBMSModel 449
RMIServer 233
RMIServerManager 209, 218
RMIServerManagerServer 209
robustness 464
roles 347
RPC 412
RPC vs. mobile object 435
RTF 334
RTTI 483
run time 103, 153
Runnable 157, 165
Runtime.exec 189

S

scaffolding 281
scalability 127, 211, 245, 404,

420, 424, 452
554 INDEX

scalable 246
scheduler 129
SCM 495
screen pop 525
screen saver 405
script languages 124
ScriptingEngine 107–108
ScriptingServlet 290
SDO (Shared Data Objects) 442
security xxiv, 235, 303, 306, 324,

337, 418, 437, 460, 464
security hole 496
security model 383
security zone 279
SecurityException 41
SecurityManager 141
semaphores 484
Serializable 67, 212, 223, 232,

301, 310, 455
Serialization xvi, 272, 300, 317,

412, 438, 457–458
serialized objects 297
serializedPersistentFields 306
serialver 311
server 102
server application 293
Server.start 168
ServerManager 102, 175, 209,

253, 255, 516
servers

back-end 295
servers.loader 177
server-side Java xvii
ServerSocket 237, 244
Service 232
service 167, 232, 516
Service class 102, 104
Service Control Manager 495
Service instances 255
servlet API specification 4, 285
servlet chaining 287–288
servlet code 289
servlet interface 291
servlet specification xvii
ServletClassLoader 144
ServletDebugger 272

ServletExec 272
ServletRequest 297
servlets 124, 225, 272, 283, 285,

287, 292–299, 536
HTTP 235

session ID 410
setConfigInfo 233, 253
setDaemon 142–143
setDaemon(true) 166
setRunnable 200
setThread 200
shared object basics 441–442
shared object design 447–448
shared object model 449
shared objects 441
shared objects, vs. mobile

objects 441
ShellInterpreter 109
shopping cart 408
short cycle 2
shutdown 177
SIGINT 480
signal handler 478
silent failure 511
silver bullet 381
single-instance restrictions 383
Singleton 109, 152
skeletons 413
Smalltalk 424, 428
SMTP 532
sneakernet 403
SOAP 298
SocketClassConnection 273
SocketClassLoader 273, 330,

337
SocketClient 238
SocketControlService 208
socket-oriented server 291
sockets 159, 237, 285, 402,

410–411, 448, 464, 494, 539
stateful 412
stateless 412

SocketServer 247, 255, 281
software bus 406, 494
Solaris 522
spam 437

specification 306
SQL 280, 336
standard socket 496
standard template library xvii, 22
start 137, 167, 253
stateful 406–407, 451
stateful sockets 412
stateless 246, 263, 406, 408, 451
stateless protocols

benefits 409
drawbacks 409

stateless sockets 412
static initializer block 474
static linking 101
stop 140, 179
Strategic Acceptance 541
Strategy pattern 476
streams 302
StringBuffer 471
Stroustrup, Bjarne 20
structured exception

handling 479
stubs 298, 413
Sun 19
sun.applet.AppletClassLoader

57
sun.boot.class.path 58
sun.tools.javac.Main 103
supercomputer 405
superscripting 487
suspend 141
Swing xvii, 123, 134, 343

TreeModel 366
synchronization 150–153, 393,

441, 480–481
cross-JVM 393
debugging 151

synchronization monitors 484
synchronized 151
syslog 523
system administrators 3, 13
system architecture 403
system ClassLoader 44–45, 58
system data 333
system hook 496
system properties 423
IN DEX 555

T

TaskManager 510
TCP/IP 237
Tech Support 218
technical capability 540
technical flexibility 540
TeeOutputStream 532
templates 22, 30
testing 105
thin client 11, 52
third-party tools 380
Thread 242, 516, 522
Thread API 130
Thread constructor 131
Thread.stop 139
ThreadDeath 140, 154
ThreadedExecutor 172
ThreadedPipeStream 240
ThreadedServer 244, 248
ThreadFactory 172, 261
ThreadGroup 132, 154, 200,

516
ThreadGroup, activeCount 145
ThreadGroup, enumerate 145
thread-local storage 152
ThreadPool 261
threads 126, 536, 538
thread-safe 150
ThreadServer 196
three zeroes xxi, 1, 8
three-part chain 289
three-tier 340
tnameserv 423
TRACE 297
transaction 398
transactional semantics 384
transactioning 437
transient xvi, 232, 300
transition 428
translation 373

see also object-relational
mapping

trips 370

try block 483
two-tier 341–342
type-safety 16, 23, 323

U

UML 347
UNC 498
uncaughtException 154
uncompression 280
Undocumented Windows 363
unicast 523
Unicode 500
UNIX shared memory 219
UNIX signals 477
unmarshaling 211, 413
upgrades 101
URL 51, 53, 100, 214

custom 56
FTP 53

URLClassLoader 57–58, 112,
460

URLStreamHandler 56
URLStreamHandlerFactory 56
URLString 445
use-case knowledge 362
user reactive 3
user roles 54, 418

V

validation 343
vendor-independence 383
vendors 5
versioning 5
Visual Basic 34, 342, 431, 494
Visual J++ 342
Voyager 338, 411, 439–440, 442
vulnerability 438

W

wait 156
wasted clock cycles 405

Web 263
web page 289
web server 159, 263
web-server functionality 287
white papers xxvi
Win32 473, 522
Win32 IPC 477
wire protocol 422
WM_COPYDATA 496
WORA xviii
workflow 332
workflow applications 14
workflow state 332
Write Once, Run

Anywhere 148, 150
writeObject 306, 309–310
Writer 244
writeReplace 310, 313
writeReplace() 314

X

-X 508
XML 302, 494, 534
XSL 534

Y

Y2K 25

Z

zero administration xxi, 12–14,
56, 127, 208, 223, 235, 489,
492, 511, 534

zero deployment xxi, 11–12, 52,
56–58, 208, 219, 223,
413–414, 464, 489
lack of 425

zero development xxi, 9–11, 56,
126, 243, 424, 464, 471, 511,
534
556 INDEX

	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	goals of this book
	about the author
	about the cover illustration
	Enterprise Java
	1.1 Enterprise development
	1.1.1 What is enterprise development?
	1.1.2 Developing the enterprise application
	1.1.3 Reinventing the wheel

	1.2 Three zeroes
	1.2.1 Zero development
	1.2.2 Zero deployment
	1.2.3 Zero administration

	1.3 Java in the enterprise
	1.3.1 Sun’s view
	1.3.2 Alternate views

	1.4 Why Java?
	1.4.1 Criticisms of Java as a server-side language

	1.5 Summary
	1.6 Additional reading

	ClassLoaders
	2.1 Dynamic linking
	2.1.1 Run-time dynamic loading
	2.1.2 Reflection

	2.2 ClassLoaders: rules and expectations
	2.2.1 Java .class file format
	2.2.2 Using ClassLoader
	2.2.3 java.lang.ClassLoader
	2.2.4 Java name spaces

	2.3 Java’s built-in ClassLoaders
	2.3.1 java.security.SecureClassLoader
	2.3.2 java.net.URLClassLoader
	2.3.3 sun.applet.AppletClassLoader
	2.3.4 java.rmi.server.RMIClassLoader
	2.3.5 Bootstrap ClassLoader
	2.3.6 sun.misc.Launcher$ExtClassLoader

	2.4 Summary
	2.5 Additional reading

	Custom ClassLoaders
	3.1 Extending ClassLoader
	3.1.1 FileSystemClassLoader
	3.1.2 HashtableClassLoader
	3.1.3 CompilerClassLoader
	3.1.4 StrategyClassLoader and ClassLoaderStrategy
	3.1.5 CompositeClassLoader
	3.1.6 Other ClassLoader tricks
	3.1.7 Other ClassLoaders

	3.2 On-the-fly code upgrades
	3.3 GJAS: first steps
	3.3.1 Goals
	3.3.2 Service
	3.3.3 Server
	3.3.4 ServerManager

	3.4 Summary

	Extensions
	4.1 Types of extensions
	4.1.1 Installed extensions
	4.1.2 Building an installed extension
	4.1.3 Download extensions
	4.1.4 Building a download extension

	4.2 Implications of the extensions mechanism
	4.2.1 Distributed libraries through download extensions
	4.2.2 Java EXEs; relation to C++ static linking

	4.3 Packaging extensions
	4.3.1 The build-time vs. run-time dilemma

	4.4 The plug-in
	4.4.1 The plug-in concept
	4.4.2 Enter plug-ins
	4.4.3 Marking a .jar file as a plug-in
	4.4.4 PluginClassLoader
	4.4.5 Example: PluginApp
	4.4.6 Uses for plug-ins

	4.5 Summary

	Threads
	5.1 Why threads?
	5.1.1 Concurrent processing
	5.1.2 Scalability per machine
	5.1.3 Encapsulation
	5.1.4 Design and implementation

	5.2 Java threads
	5.2.1 java.lang.Thread and java.lang.Runnable
	5.2.2 Starting threads
	5.2.3 Stopping threads
	5.2.4 Daemon threads
	5.2.5 Threads and ClassLoaders
	5.2.6 java.lang.ThreadGroup

	5.3 Thread implementations in Java
	5.3.1 Green threads
	5.3.2 Native threads
	5.3.3 Hybrids
	5.3.4 Implications

	5.4 Summary
	5.5 Additional reading

	Threading issues
	6.1 Synchronization
	6.1.1 Thread-local storage

	6.2 Exception-handling with multiple threads
	6.3 Thread idioms and patterns
	6.3.1 Client-Dispatcher-Server
	6.3.2 Fire-and-forget
	6.3.3 ActiveObject
	6.3.4 SpinLoop
	6.3.5 Polling (PeriodicThread)
	6.3.6 DelayedFire (ScheduledThread)
	6.3.7 Futures

	6.4 GJAS
	6.4.1 Adding thread support to GJAS

	6.5 Summary
	6.6 Additional reading

	Control
	7.1 GJAS
	7.1.1 Local implementation
	7.1.2 Example: HelloService

	7.2 T�esting the LocalServer implementation
	7.3 ExecService
	7.4 HelloAgainService
	7.4.1 ThreadServer
	7.4.2 Example: ConsoleControlService

	Remote control
	8.1 RMI implementation
	8.1.1 Analysis

	8.2 Other implementations
	8.3 Necessary improvements
	8.4 Additional reading

	Configuration
	9.1 Java models
	9.1.1 Interface: ConfigProperty and ConfigProperties
	9.1.2 Usage
	9.1.3 Configuration front ends

	9.2 Summary

	Sockets
	10.1 Simple socket services
	10.1.1 SocketClient
	10.1.2 EchoService
	10.1.3 TimeService
	10.1.4 Analysis

	10.2 Encapsulation and refactoring
	10.2.1 SocketServer
	10.2.2 Example: Echo2Service

	10.3 Connection and ConnectionManager
	10.3.1 Example: EchoConnection
	10.3.2 Example: HTTPConnection
	10.3.3 Servlets

	10.4 Advanced Socket services
	10.4.1 SocketClassLoader and SocketClassService
	10.4.2 Concept: RedirectorService
	10.4.3 Concept: FilterService
	10.4.4 Other types

	10.5 Summary
	10.6 Additional reading

	Servlets
	11.1 Relationship to sockets
	11.1.1 CodeServlet: A filtering servlet
	11.1.2 HeaderFooter: a redirecting servlet
	11.1.3 Server-side scripting capabilities
	11.1.4 Servlets: Not just about HTML anymore

	11.2 Servlets and the n-tier application
	11.2.1 Separating logic from content

	11.3 Servlets as a poor man’s RMI
	11.3.1 Example: RemoteStorageServlet
	11.3.2 Concept: poor man’s RMI
	11.3.3 Concept: SOAP

	11.4 Summary
	11.5 Additional reading

	Persistence
	12.1 Java Serialization
	12.1.1 Serialization to other places
	12.1.2 Security and Serialization
	12.1.3 Customized Serialization
	12.1.4 Serialization and evolution
	12.1.5 Replacement

	12.2 Beyond the specification
	12.2.1 Remote storage of objects
	12.2.2 Example: RemoteStorageService and RemoteStorageClient
	12.2.3 Remote construction of objects
	12.2.4 Example: RemoteObjectFactory

	12.3 JDBC
	12.3.1 Transient data, state data, data that isn’t data
	12.3.2 Example: JDBCClassLoader

	12.4 Summary
	12.5 Additional reading

	Business objects
	13.1 Modeling data
	13.1.1 Two-tier systems vs. n-tier systems
	13.1.2 One-tier systems
	13.1.3 Two-tier systems
	13.1.4 n-tier systems
	13.1.5 Benefits of an n-tier model
	13.1.6 Business objects, entity relationships
	13.1.7 Example: employee directory
	13.1.8 Business objects layer interface layer

	13.2 Using the Business Object layer
	13.2.1 Classic presentation code: GUIs
	13.2.2 Example: OrgTree
	13.2.3 Feeling cheated?

	13.3 Summary
	13.4 Additional reading

	Business object models
	14.1 Example: HashtableModel
	14.1.1 Overview
	14.1.2 HashtablePerson, HashtableEmployee, HashtableManager
	14.1.3 HashtableModel: Creating objects
	14.1.4 HashtableModel: Finding objects
	14.1.5 HashtableModel: Removing objects
	14.1.6 Conclusion

	14.2 Example: RDBMSModel
	14.2.1 RDBMSModel: Storing Business Objects in an RDBMS
	14.2.2 Overview
	14.2.3 RDBMSPerson, RDBMSEmployee, RDBMSManager
	14.2.4 RDBMSModel: Creating objects
	14.2.5 RDBMSModel: Finding objects
	14.2.6 RDBMSModel: Removing objects
	14.2.7 Conclusion

	14.3 Summary
	14.4 Additional reading

	Middleware
	15.1 Why distribute?
	15.1.1 Communication
	15.1.2 Performance
	15.1.3 Economics (clustering/fault-tolerance)
	15.1.4 Reliability (clustering/load-balancing)

	15.2 Distributed object design vs. classic object design
	15.2.1 Stateful vs. stateless

	15.3 Technologies
	15.3.1 Raw access: Sockets
	15.3.2 Java RPC: remote method invocation
	15.3.3 Analysis
	15.3.4 RMI/JRMP
	15.3.5 Object Request Brokers: CORBA
	15.3.6 Object Request Brokers: Distributed Component Object Model
	15.3.7 Message-Oriented Middleware: JMS
	15.3.8 Objects across the wire: Mobile objects
	15.3.9 Objects across the wire: shared objects

	15.4 Employee middleware models
	15.4.1 RMI implementation
	15.4.2 JSDTModel: Shared-object implementation
	15.4.3 Analysis

	15.5 Additional reading

	Java Native Interface
	16.1 Java Native Interface
	16.1.1 Native code on the server

	16.2 JNI essentials
	16.2.1 Java calling native
	16.2.2 Native calling Java
	16.2.3 JNI invocation
	16.2.4 JNI changes in JDK 1.2

	16.3 Other methods of Java-to-native interaction
	16.3.1 Sockets
	16.3.2 CORBA

	16.4 Integrating the server: GJAS goes native
	16.4.1 Making GJAS an NT service
	16.4.2 Using NT IPC mechanisms: Named pipe

	16.5 Other JNI uses
	16.5.1 Debugging support
	16.5.2 JVMDI
	16.5.3 JVMPI

	16.6 Summary
	16.7 Additional reading

	Monitoring
	17.1 Importance grows
	17.1.1 Liveness
	17.1.2 Notification

	17.2 Summary

	epilogue
	Where to go from here?
	Parting advice
	Read all about COM, DCOM, and MTS
	Read all about EJB
	Read all about CORBA
	Participate

	Summary

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

