Server-Based Java Programming

Server-Based Java
Programming

TED NEWARD

MANNING
Greenwich

For online information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department

Manning Publications Co.

32 Lafayette Place Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2000 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by means electronic, mechanical, photocopying, or
otherwise, without prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in the book,
and Manning Publications was aware of a trademark claim, the designations have
been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy
to have the books we publish printed on acid-free paper, and we exert our best efforts to
that end.

Manning Publications Co. Copyeditor: Elizabeth R. Martin
/l/l 32 Lafayette Place Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

Printed in the United States of America
12345678910 —-CM - 0302 01 00

“To you, the reader—yes, you. A book without a reader is a pretty
pointless exercise. Thank you.”

brief contents

0 Enterprise Java 1

0 ClassLoaders 27

0 Custom ClassLoaders 61
0 Extensions 93
Threads 126

0 Threading issues 149
0 Control 174

0 Remote control 208

o © N & i AR W~
o

7 Configuration 225

10 © Sockets 237

11 o Servlets 283

12 0 Persistence 300

13 0 Business objects 340

14 © Business object models 372
15 o Middleware 402

16 © Java Native Interface 463

~
N
O

Monitoring 510

vii

contents

foreword xv

preface xvii
acknowledgments xxi
about this book xxiii
goals of this book xxix
about the author xxxi

about the cover illustration xxxiii

1 Enterprise Java 1

1.1 Enterprise development 1
What is enterprise development? 1 < Developing the enterprise
application 4 < Reinventing the wheel 7

1.2 Three zeroes 8
Zero development 9 < Zero deployment 11 < Zero administration 12

1.3 Javain the enterprise 14
Sun’s view 14 < Alternate views 14

1.4 Why Java? 15

Criticisms of Java as a server-side language 17
1.5 Summary 25
1.6 Additional reading 26

2 ClassLoaders 27
2.1 Dynamic linking 28
Run-time dynamic loading 28 < Reflection 31

2.2 ClassLoaders: rules and expectations 37
Java .class file format 37 < Using ClassLoader 39
java.lang.ClassLoader 41 < Java name spaces 48

x

2.3 Java’s built-in ClassLoaders 49
java.security.SecureClassLoader 49 < java.net. URLClassLoader 49
sun.applet.AppletClassLoader 57 < java.rmi.server. RMIClassLoader 57
Bootstrap ClassLoader 57 < sun.misc.Launcher$ExtClassLoader 58

2.4 Summary 58
2.5 Additional reading 59

Custom ClassLoaders 61

3.1 Extending ClassLoader 61
FileSystemClassLoader 62 < HashtableClassLoader 66
CompilerClassLoader 67 < StrategyClassLoader and
ClassLoaderStrategy 71 ¢ CompositeClassLoader 75
Other ClassLoader tricks 79 < Other ClassLoaders 80

3.2 On-the-fly code upgrades 80

3.3 GJAS: first steps 85
Goals 85 < Service 86 ¢ Server 88 ¢ ServerManager 90

3.4 Summary 92

Extensions 93

4.1 Types of extensions 94
Installed extensions 94 < Building an installed extension 95
Download extensions 96 < Building a download extension 98

4.2 Implications of the extensions mechanism 100
Distributed libraries through download extensions 100
Java EXEs; relation to C++ static linking 101

4.3 Packaging extensions 102
The build-time vs. run-time dilemma 103
44 The plug-in 104
The plug-in concept 105 < Enter plug-ins 107 < Marking a .jar file as

aplug-in 110 < PluginClassLoader 111 < Example:
PluginApp 118 < Uses for plug-ins 124

4.5 Summary 125

Threads 126

5.1 Why threads? 127
Concurrent processing 127 < Scalability per machine 128
Encapsulation 129 4 Design and implementation 130

5.2 Java threads 130
java.lang.Thread and java.lang.Runnable 131 < Starting threads 137
Stopping threads 139 < Daemon threads 142 < Threads and
ClassLoaders 143 < java.lang. ThreadGroup 144

CONTENTS

5.3 Thread implementations in Java 146
Green threads 147 < Native threads 147 < Hybrids 147
Implications 148

5.4 Summary 148
5.5 Additional reading 148

6 Threading issues 149

6.1 Synchronization 150
Thread-local storage 152

6.2 Exception-handling with multiple threads 153

6.3 Thread idioms and patterns 158
Client-Dispatcher-Server 158 < Fire-and-forget 159
Active Object 160 < SpinLoop 160
Polling (PeriodicThread) 161 < DelayedFire
(ScheduledThread) 163 < Futures 164

6.4 GJAS 166
Adding thread support to GJAS 167

6.5 Summary 173
6.6 Additional reading 173

7 Control 174

7.1 GJAS 175
Local implementation 175 < Example: HelloService 186

7.2 Testing the LocalServer implementation 187
7.3 ExecService 189

7.4 HelloAgainService 193
ThreadServer 196 < Example: ConsoleControlService 201

8 Remote control 208

8.1 RMI implementation 209
Analysis 217

8.2 Other implementations 218

8.3 Necessary improvements 219
8.4 Additional reading 224

9 Configuration 225

9.1 Java models 225
Interface: ConfigProperty and ConfigProperties 226 < Usage 233
Configuration front ends 235

9.2 Summary 236

CONTENTS

xi

xii

10 Sockets 237

11

12

10.1

10.2

10.3

10.4

10.5
10.6

Simple socket services 237
SocketClient 238 < EchoService 243 < TimeService 245
Analysis 246

Encapsulation and refactoring 247
SocketServer 247 < Example: Echo2Service 254

Connection and ConnectionManager 255
Example: EchoConnection 262 4 Example: HTTPConnection 263
Servlets 272

Advanced Socket services 273

SocketClassLoader and SocketClassService 273

Concept: RedirectorService 279 < Concept: FilterService 280
Other types 281

Summary 281
Additional reading 282

Servilets 283

11.1

11.3

11.4
11.5

Relationship to sockets 283

CodeServlet: A filtering servlet 285 < HeaderFooter: a redirecting
servlet 287 <4 Server-side scripting capabilities 289 < Servlets: Not just
about HTML anymore 290

Servlets and the #-tier application 292
Separating logic from content 293

Servlets as a poor man’s RMI 293
Example: RemoteStorageServlet 295 < Concept: poor man’s RMI 297
Concept: SOAP 298

Summary 298
Additional reading 298

Persistence 300

12.1

12.2

Java Serialization 301

Serialization to other places 302 < Security and Serialization 303
Customized Serialization 306 < Serialization and evolution 309
Replacement 313

Beyond the specification 317

Remote storage of objects 317 < Example: RemoteStorageService and
RemoteStorageClient 318 < Remote construction of objects 323
Example: RemoteObjectFactory 325

CONTENTS

12.3 JDBC 330
Transient data, state data, data that Isn’t data 332
Example: JDBCClassLoader 334

12.4 Summary 338

12.5 Additional reading 339

13 Business objects 340
13.1 Modeling data 340

Two-tier Systems vs. n-tier Systems 341 < One-tier systems 341

Two-tier systems 342 < n-tier systems 342 < Benefits of an n-tier
model 343 < Business objects, entity relationships 346 < Example:
employee directory 346 < Business objects layer interface layer 348

13.2 Using the Business Object layer 366
Classic Presentation Code: GUIs 366 < Example: OrgTree 366
Feeling cheated? 370

13.3 Summary 370

13.4 Additional reading 371

14 Business object models 372

14.1 Example: HashtableModel 372
Overview 373 < HashtablePerson, HashtableEmployee,
HashtableManager 374 < HashtableModel: Creating objects 375
HashtableModel: Finding objects 378 < HashtableModel: Removing
objects 379 < Conclusion 379

14.2 Example: RDBMSModel 380
RDBMSModel: Storing Business Objects in an RDBMS 381
Overview 382 < RDBMSPerson, RDBMSEmployee,
RDBMSManager 384 < RDBMSModel: Creating objects 391
RDBMSModel: Finding objects 394 < RDBMSModel: Removing
objects 395 < Conclusion 397

14.3 Summary 400

14.4 Additional reading 401

15 Middleware 402
15.1 Why distribute? 402

Communication 403 < Performance 404 < Economics (clustering/
fault-tolerance) 405 < Reliability (clustering/load-balancing) 406

15.2 Distributed object design vs. classic object design 406
Stateful vs. stateless 406

CONTENTS Xiii

15.3 Technologies 410
Raw access: Sockets 411 4 Java RPC: remote method invocation 412
Analysis 417 < RMI/JRMP 419 < Object Request Brokers:
CORBA 428 ¢ Object Request Brokers: Distributed Component Object
Model 432 < Message-Oriented Middleware: JMS 433
Objects across the wire: Mobile objects 435 < Objects across
the wire: shared objects 441

15.4 Employee middleware models 448
RMI implementation 451 < JSDTModel: Shared-object
implementation 452 < Analysis 460

15.5 Additional reading 461

16 Java Native Interface 463
16.1 Java Native Interface 464

Native code on the server 465

16.2 JNI essentials 472
Java calling native 472 ¢ Native calling Java 478
JNI invocation 484 < JNI changesin JDK 1.2 492

16.3 Other methods of Java-to-native interaction 494
Sockets 494 < CORBA 494

16.4 Integrating the server: GJAS goes native 495
Making GJAS an NT service 495 ¢ Using NT IPC mechanisms:
Named pipe 496

16.5 Other JNI uses 506
Debugging support 506 < JVMDI 507 < JVMPI 508

16.6 Summary 508
16.7 Additional reading 508

17 Monitoring 510

17.1 Importance grows 510
Liveness 511 < Notification 523

17.2 Summary 533
epilogue 535
index 547

CONTENTS

foreword

As you probably have noticed, Java has arrived. My bookstore’s shelves sag under the weight of
hundreds of books about the wonders of Java. Even given my full-time commitment to educat-
ing people about server-side Java development, there’s no way I can read everything published on
the subject.

You may feel the time pressure too, but you will be glad you made time for Ted Neward’s
Server-Based Java Programming and its fresh approach. Instead of presenting Java as a language,
he begins at the true beginning: with Java as a platform. This is not a book about the new J2EE
APIs; it 75 a book on the correct use of the platform features that make these APIs possible and
valuable. Whether you plan to pay top dollar for a Java server product or dream of rolling your
own, this is a good place to learn the right questions to ask.

The underlying theme of the book is the three zeroes goal for server-development—zero
development, zero administration, and zero deployment. This is laudable, because very few soft-
ware developers (and fewer authors) like to talk about administration or deployment. As a result,
these aspects of products are frequently built last, and designed never. Ted also starts you on the
right path for writing those first lines of code, by demonstrating how to use oft-misunderstood
platform features such as ClassLoaders, Serialization, threads, and JNI.

I can’t tell you this is the only book you’ll ever need to develop server-side code in Java. I
can tell you that very few software books surprise me, very few bring a new perspective, and very
few feel different from the others. This one did.

Stuart Halloway
DevelopMentor

XU

preface

In September1999, Sun Microsystems Inc. released the first draft of the Java2 Enterprise Edition
specification, and Java changed forever.

Since 1997, developers and vendors have increasingly pushed Java toward the server side of
the client/server architecture map. Where its original focus was in applets and web pages, Java is
now more at home on the web server or database server. Chances are, if you’re a professional Java
programmer, and your work environment is doing anything with Java, you’re in a position to con-
sider, if not write, Java-on-the-server.

By this point, the ubiquitous story about James Gosling and an oak tree, cable set-top boxes,
and the HotJava web browser are pretty much standard fare for Java programmers. For our pur-
poses, Java’s life on the server is what's important, not what came before that.

Java’s emphasis toward the server began in 1997 with the release of the 1.1 version of the Java
Developer’s Kit (hereafter referred to as the JDK). In JDK 1.1, Sun introduced us to JDBC, JNI,
and RMI. Many vendors, such as NetDynamics, had already begun pushing Java on the server
side, using home-grown proprietary connections to RDBMSs, and so forth, but the 1.1 release
finally solidified access to these critical server-side resources. RMI gave us the ability to look to
other JVMs, JDBC let us peek inside the RDBMS, and JNI gave us the ability to call into native
code for anything that wasn’t covered in the first two.

A few other technologies, of lesser hype but equal importance, also made their debut in 1.1.
(It must’'ve been a busy couple of months at Sun!) The Object Serialization specification was
released as part of 1.1, but was buried along with Reflection in the JavaBeans specification and APIL.
Granted, Serialization was also a key part of RMI, but most Java enthusiasts saw Serialization as a
part of the JavaBeans specification, and not much more. Java archives, or JAR files, also came along
with the 1.1 release. Unfortunately, 1.1 JARs were nothing more than a convenience for shipping
plural files around—no compression support was available until the Java 2/JDK 1.2 release.

Some linguistic changes came with 1.1, as well. Inner classes, anonymous classes, and a def-
inition for the reserved word “transient” finally came into being, partly in response to the change
in the AWT event-handling mechanism. Adapter classes (whose only role is to provide an acces-
sibility layer from one interface to another) became trivial to code using anonymous nested classes,
where before, it was monotonous and error-prone.

xvii

In short, the 1.1 release did far more to establish Java on the server than any subsequent
release to date. So why is all the current excitement about server-side Java centered on the Java 2/
JDK 1.2 platform?

JavaZ2 (a.k.a. JDK 1.2 and beyond)

When JDK 1.2 was released in early 1999, Sun renamed it Java2 release. Initially, it didnt sport
too much in the way of new features—instead, it offered enhancements to the existing featureset,
and sneaked in a few new tidbits of technology when people weren't looking. Predominant in
this release was the bundling of Swing, a.k.a. Java Foundation Class (JFC), into the core Java run-
time libraries. Beyond that, however, and the introduction of a standard Collections library sim-
ilar in concept to the C++ Standard Template library, most of JDK 1.2 was one enhancement
after another regarding the technologies introduced in the prior version.

Realistically, JDK 1.2 was something of an iterative release of JDK 1.1. Instead of introducing
radical new technology, as 1.1 did, the 1.2 release focuses on enhancing the existing APIs to make
them more reliable, robust, and secure. In a sense, the Java teams simply took another iteration
on the features that came with 1.2, making them more useful, ironing out the bugs, and adding
the necessary parts that were missing from 1.1.

A few other technologies that began to redefine the Java2 platform came out during the year.
First and foremost was the Enterprise Java Beans specification, providing a black-box component
model for the Java platform. EJB introduced an entirely new set of terminology into the market-
place, all of which centered around the somewhat radical idea that a vendor could create a software
framework,! into which I could plug my server-side application’s logic and components, and it
would all run seamlessly. This holds two interesting premises: one, that I don’t have to code some
of the more generic functionality common to all servers, and two, that these “application servers”
can provide additional value-added behavior that I may not otherwise code into my application,
such as load-balancing, clustering, or fault-tolerance.

Other technologies came along, as well. The Servlet specification, released in 1998, describes
a standard API for writing Java code that is executed upon HTTP request. The Java Naming and
Directory Interface, JNDI), provides a single API layer on top of different directory and/or nam-
ing services, such as LDAP, CORBA Naming Services, the RMI Registry, even the file system on
your hard drive. The Java Transaction Service and Java Transaction API provide support similar
to that found within conventional RDBMS systems.

What wasn’t apparent initially was Sun’s intention, over the course of 1999, to release three
separate versions of Java:

* Java2 Standard Edition
This is the JDK we all know and love—all the java.* packages, the Swing and AWT APIs for
GUI interaction, and so on. If youre a Java programmer, this is the version with which
you're familiar and comfortable.

! In the sense of a series of services available at run time from an opaque system.

Xviii PREFACE

* Java2 Micro Edition
This is Java-for-the-embedded-device. PDAs, cellular phones, control systems mounted on
heavy machinery, even the ubiquitous Java Ring from JavaOne a few years back, all would
now fall under the J2ME specification. In many ways, this is where Java was originally
intended to live—on embedded CPUs and hardware, using the JVM as an insulation layer to
permit portability between embedded systems. This book will cover nothing of the J2ME
specification or details.

* Java2 Enterprise Edition
This is, from the server-developer’s point of view, the most exciting thing to take place since
the “invention” of the Internet. At the time of this writing, J2EE was still in beta, undergo-
ing specification review and editing, but if J2EE’s promise holds true, server-side develop-
ment may take on a whole new dimension.

These three editions of Java pretty much run the gamut—from microdevices through high-
end server systems. Sun’s promise of “Write Once, Run Anywhere” seems ripe for the harvest.

Unfortunately, the promise is something of a misleading marketing ploy. There are aspects
of the Java environment in which your code runs that will have an effect on how well your code
executes, or whether it even executes. Issues such as the JVM’s actual threading model, the Class-
Loader partitioning used within the application server, or the JNI support within the system will
all trip you up if you're not aware of them and aware of what they mean.

That’s where this book comes in.

PREFACE Xix

acknowledgments

Many authors will tell you that they couldn’t have written their book by themselves, and that
there are far too many people to thank to list on an acknowledgments page. No truer words have
ever been penned. A work such as this cannot be accomplished by one person working alone; to
even attempt such a task would be the utmost folly.

A variety of people contributed to the creation and polishing of this manuscript, and to try
to thank them all would take half of my allotted pages. This isn’t to say I shouldn’t try, only that
it’s nearly impossible to accomplish the goal.

To begin, I again wish to thank the folks at Manning Publications Co. for their patience and
faith in me as an author. I’s flattering to have a publisher approach you to do a book—it’s doubly
so to have them do it again. Marjan Bace, Denis Dalinnik, Syd Brown, Mary Piergies, and Eliz-
abeth Martin are some of the best folks in the industry with which to work. Thanks too to Ted
Kennedy for coordinating the technical reviews of this book. The entire staff demonstrated a
wonderful willingness to bend over backward to deal with an exacting author and meet the often-
conflicting goals of producing the book, and getting it right.

Of course, no author in his right mind ever attempts a book alone, and the reviewers for this
book were invaluable in their comments and criticisms: Adam Smith, Bruce Arbuckle, Chandra
Sekhar, Chris Pratt, Curt Powell, David Williams, Jim Graham, Kito D. Mann, Robert Lynch,
Shawn Echols, Stephane Trouche, Thomas Kuehne, and Tim Leist.

In addition, I need to thank my fellow DM instructors, for their awesome contributions,
simply by standing still long enough for all of us to “talk Java”: Stu Halloway, Brian Maso, Brad
Needham, Kevin Jones, Owen Tallman, Tim Ewald, Keith Brown and, of course, the often-
imitated, never-duplicated Don Box. My appreciation of Java (and COM, XML, and just about
anything else in the industry) is so much deeper, thanks to their insights.

I also wish to thank the people with whom I've worked during the development of this book,
most notably the folks at Dorado Software, in El Dorado Hills, California. Many of my ideas,
originally bounced off them, grew into whole segments in this book. The same goes to the folks
at EdFund, in Rancho Cordova, California, where many of the principles of this book were put
into place, with their blessing and encouragement.

Every author who’s ever written an acknowledgments section has also thanked his parents,
and I'm no exception. A more loving, supportive, wonderful couple simply doesn’t exist on this
planet. Mom, Dad, all that I am, I am because you taught me to be this way.

XX1

I must thank my own family: Michael, who surrendered too many nights of Nintendo with
Dad, so that I could work; Matthew, whose birth firmly reminded me of what’s really important;
and most of all, Charlotte, who understood what writing another book meant, and gave me her
blessing, despite expecting our second child just a month before the book’s manuscript was due.
Other authors may claim it, but 72y wife is the most supportive, loving, wonderful woman in the
world. Without her, I would be lost.

Now, if you’ll excuse me, I have some Nintendo to catch up on.

xx1i ACKNOWLEDGMENTS

about this book

With a book like this, there are bound to be a few questions the reader has before beginning.
This segment will explain what each chapter covers and attempt to answer questions that I think

the hypothetical reader might ask.

The ideal“three zeroes”?

There is an ancient (perhaps misattributed) Indian proverb that states, “If you aim your arrow at
the sun, you will not reach it. But your arrow will climb higher and go farther than the arrow
aimed at the ground.” In this book, I aim for three potentially unreachable goals:

* Zero Development—the idea that we can develop new features or additions without requir-
ing any additional programming,

* Zero Deployment—the idea that we can make those changes available to clients in an
entirely invisible fashion, and

* Zero Administration—the idea that systems can run automatically without human intervention.

These are obviously lofty goals, perhaps worthy of ridicule. But examine any network admin-
istration system, ask any system administrator, talk to any application developer, and you’ll find
that these are the very goals we work toward in our software. Object-oriented programming (and
before it, modular decomposition) posited the idea of “Tinkertoy software,” and still does. Web
applications aim squarely at the zero deployment arena—the only client-side piece the client
needs is a web browser. And SNMP, DMTF, and a host of other acronyms are all about making
the network easier to administer. So why not try to fold these concepts in at the beginning of the
project, instead of shoehorning them in at the end?

What does this book cover?

Chapter 1 focuses on enterprise Java, using Java to develop applications for the corporate enter-
prise—that is, software that’s not intended to be sold as shrink-wrapped off-the-shelf software,
but custom-developed for in-house use. To understand Java’s applicability in enterprise develop-
ment, I first have to explain what I mean by that term; then I can talk about zero development,
zero deployment, and zero administration.

Xx111

ClassLoaders, which play a significant role toward meeting zero deployment, are covered in
chapter 2. We examine the basic nature of ClassLoaders, and how they can be used to update code
on the fly within a running server.

With the background and understanding of ClassLoaders, in chapter 3 we investigate how
far we can go with them. We go so far as to introduce ClassLoaders that can build code at run
time for execution within the same JVM.

The Java 2 extension mechanism provides golden opportunities for the three zeroes. Exten-
sions, covered in chapter 4, can be written to pull code from other locations when requested (zero
deployment). Extensions are also the fundamental reusable code-library component (zero devel-
opment), and are trivial to install within a user’s Java run-time environment (zero administration).

Chapter 5 covers threads, which provide an important part of the server architecture, because
of their concurrency capabilities as well as performance benefits. While they may not inherently
contribute to the three zeroes, many of the techniques described in this book would be nearly
impossible without threads.

Chapter 6 helps the reader through the pitfalls of using threads. The Java developer who
doesn’t understand those issues runs serious risks of thread starvation, deadlock, or worse.

Creation of a generic server framework requires a consistent generic server control mecha-
nism. A generic control mechanism, explained in chapter 7, provides both zero development and
zero administrative benefits.

Control of an application (or application server) isn’t always about being able to administer
the application directly from the machine on which it sits. Too often, developers and adminis-
trators make mistakes that cost the corporate data center valuable up time, when those mistakes
could be prevented by accessing and controlling the application remotely, the subject of chapter 8.

Chapter 9 shows you how to configure an application on the fly without bringing it down,
and how to deal with setting or tuning parameters during the lifetime of the application.

In chapter 10, we discuss the ubiquitous TCP/IP socket framework, and Java’s excellent sup-
port for it. We start by implementing simple services, then pursue zero development by factoring
out common code and building a generic multithreaded ConnectionService to handle any and
all socket communication. As proof, we build an HTTPConnection service. In pursuit of zero
deployment, we build a SocketClassService and corresponding SocketClassLoader, to serve as
server and client (respectively) for loading classes over a network.

Chapter 11 focuses on servlets, which represent an easy replacement for CGI scripts and serve
as the fundamental heart of the JSP technology.

Chapter 12 covers Serialization and JDBC. Serialization can play an important role on the
server, not only as a means by which objects can be stored, but as a means by which objects can
be exchanged between processes. In addition, we look at how we can use Serialization to provide
both remote storage and remote object construction facilities. JDBC plays a key role in the devel-
opment of server applications, since most corporations and companies currently store their data
inside of an RDBMS. Here, we discuss how to use the RDBMS to pursue zero deployment, as well
as some of the new features of JDBC 2.0.

In chapter 13, we pursue zero development by creating a well-encapsulated, cleanly defined
object model on top of enterprise systems. We set up a running example for the next several chapters

XXIV ABOUT THIS BOOK

by implementing a Business Object Interface layer representing a corporate employee-tracking sys-
tem. Because the actual implementation is hidden from clients, applications can be written without
needing to know the details of where or how data are stored, making it easier for developers to mod-
ify, enhance, or even completely replace the underlying data-storage layer(s). Two such applications
are demonstrated.

Once we've built the Business Object layer, we need implementation to back it. In chapter 14,
I present two such possibilities—one using an in-memory collection of Hashtables to store the
objects, the other using the ubiquitous RDBMS. We discuss the particular “quirks” of each, and
demonstrate how those quirks can be resolved without invalidating the 7-tier approach in general.

Building object models that live entirely on one machine is not enough. Objects need to be
accessible from other workstations and systems across the network. In chapter 15, we examine the
various ways of making our EmployeeModel business object system distributed, using plain sock-
ets, RMI (both RMI/JRMP and RMI/IIOP), CORBA, JMS, JSDT, and even mobile objects and
Microsoft’s DCOM. We discuss the advantages and drawbacks of each, and build two implemen-
tations as examples.

Chapter 16 looks at Java’s unique properties allowing it to call—and be called by—native
C/C++ code. This in turn offers opportunities for not only code, but entire system reuse. Why
tear down an existing system and rebuild it from scratch, when Java classes can directly access and
call the system in its native form?

Server applications don’t exist within a vacuum; people are interested in the details of their
execution, ranging from the most basic of “Is it still running?” to more complex “How well is it
working?” statistics. In chapter 17, we build a generic HeartbeatService to allow interested parties
to know when the associated Service goes down.

Aren’t some topics ignored?

Yes, specifically, EJB and Java’s Security model. We talk briefly about CORBA and RMI in the
chapter on middleware, but it is not intended as a tutorial. I don’t cover servlets except in con-
ceptual discussions. (For a thorough discussion of servlets, I recommend Alan Williamson’s Java

Servlets By Example from Manning Publications Co., or Jason Hunter’s Java Serviet Programming
from O’Reilly.)

Why isn’t this a book on EJB?

Because we, as an industry, don't know enough about EJB’s usefulness to write about it.

EJB, as a technology, has only been available as a standard since the middle of 1998; most
vendor implementations have been out for a year or so, at the time of this writing. So what is there
to write about other than the specification itself? Remember, it took us no less than three years
of using Java to determine that its greatest application was not applets.

Why isn’t this a book on CORBA or RMI?

Because there’s more to server-side development than just distributed systems.
Not all systems require distributed objects. In fact, I've seen a couple of systems that might
have performed better had they 7or been designed with distribution as a core concept. Any time

ABOUT THIS BOOK XXv

a system starts strewing objects across the network, performance takes a hit—why introduce that
latency if it’s not necessary?

Don’t misunderstand—I love distributed objects. But it’s also true that a number of server-
side applications never have to leave the server for any reason. In many cases, it is certainly possible
to design a distributed object system to do the same thing, but would anything concrete be gained
by it? Naturally, it depends on the actual application and its need to interact with the “outside
world” (that is, anything not on the box in which it lives). But it’s also possible to build distributed
object systems that have nothing to do with RMI or CORBA; these technologies (along with
DCOM, for that matter) simply make it easier to do distributed objects.

Why isn’t this a book on security?

There simply isn't room in one book to talk about the wide and deep implications opened up by
security. Security in an enterprise application can range from the ubiquitous Username/Password
dialog at the start of every application, through SSL sockets to send digitally encrypted informa-
tion from client to server, to a full-blown government-secure system with widely varying user
roles, authentication tokens, and access control lists. What's more, I don't consider myself any
kind of security expert. We will discuss security in the context of enterprise applications. For a
detailed discussion of the Java 2 security model, or Java cryptography extensions, or even digital
signatures in applets, I recommend Li Gong’s Inside Java2 Platform Security from Addison-Wesley.

What do | need to know to read this?

You need to know Java, obviously.

Specifically, you need to be comfortable with the technologies found in the Java2 Standard
Edition. This is not an entry-level text. I presume that you, the reader, are familiar with Java and
its corresponding introductory topics. This book is about using Java to write server-oriented
applications—I have to assume you “know” Java.

This also assumes that you have a rudimentary understanding of some of the basic concepts
of the technologies Java encompasses—sockets, SQL, RMI/CORBA/some-other-connectivity-
tool, and so on. You should have an understanding of how sockets work in Java, how SQL is writ-
ten, as well as the basic concept of RMI programming. If those concepts are a mystery to you, the
chapters on those topics won’t help you much. I am not suggesting that you put the book back
or take it back for a refund—it just means the concepts may not sink in as quickly.

Why is this book on ClassLoaders, Threads, Sockets?

Another way to phrase this is, “Why do I need to learn about ClassLoaders, Threads, or Sockets
instead of EJB?” The answer is in the form of an analogy: not all server applications will require
an EJB server; not all server applications will require servlets, or RMI, or even a relational data-
base. To use such technologies would be overkill, and would require far more work than actually
necessary—think of how comfortable youd feel if the carpenter you've hired to build an add-on
to the garage showed up with dynamite and a blueprint for rebuilding your entire street.

By focusing on ClassLoaders, Threads, Sockets, and so on—as well as other technologies,
such as RMI or CORBA, I'm trying to show how Java works to solve server-side problems at all

xxvi ABOUT THIS BOOK

levels: from the small-scale simple distributed application (did you know you can do dynamic
code download without RMI?) to the enterprise-wide #n-tier system based on CORBA or EJB.

Why is all the code written for Java 2 (JDK 1.2)?

Around early 1999, Sun released JDK 1.2, which the company referred to as the Java 2 platform.
Despite Sun’s best efforts, there are some marked differences between JDK 1.1 and JDK 1.2, which
I felt necessitated a conscious decision to target this book at one or the other. Granted, 99 percent
of the book is applicable to both platforms. However, understanding the differences between
them, the problems that will arise when porting code from JDK 1.1 to JDK 1.2, will be an issue
for many Java developers over the next year.

The code for all samples and applications was developed using the Windows release of JDK 1.2
(and later minor-version upgrades) from Sun, using nothing more sophisticated as an IDE than a
text editor and a makefile. None of the code, except where specifically mentioned, was tested for
JDK 1.1 or 1.0.

It’s my belief that, in time, more and more JDK 1.1 code will be brought over to Java 2. As
a result, this book spends little time as possible on JDK 1.1-specific code, concepts, or discussion.”

Why the constant reference to “patterns”?

I believe that design patterns (the concept) are becoming critical to design discussions and litera-
ture. In a study of heavy patterns usage by four corporations, James O. Coplien of AT&T found
that one of the major benefits of the patterns groups is a common vocabulary for design discus-
sions and architectural sessions.

I use the patterns from Design Patterns in much the same way—within the text, I will point
out how “Xis a classic Singleton pattern,” or that “this design is a slight variation on the Decorator
pattern,” and so on. In this manner, I'm using the shared vocabulary of the design pattern to com-
municate not just the static class hierarchy one can expect, but also the run-time behavior and
consequences and implications of this design. I can communicate an entire aspect about a design
by saying, “Z behaves as an Abstract Factory” that would otherwise take up entire pages.

If you’re not familiar with patterns, a good place to start is the “Gang Of Four” book (Design
Patterns, by Gamma et al, from Addison-Wesley), or visit Brad Appleton’s introduction to pat-
terns, available at http://www.enteract.com/~bradapp/docs/patterns-intro.html. Ideally, both
should be read, but either one gives a good background on the patterns concept, and provides
working knowledge of the patterns described within this book.

What code conventions are used in this book?

This book uses some conventions to bring important messages to the reader’s attention or ham-
mer home a certain point.

Command line examples, sample output, and code listings are set in a fixed-pitch font. File-
names, new words, and emphasized words are italicized.

2 With the release of the JDK 1.3 in May, this will only heighten the move over to the Java 2 platform.

ABOUT THIS BOOK Xxvii

In the code comments, the “/**” and “*/” pairs are javadoc comments; “//” comments are
“implementation” comments.

While not exactly a convention, much of the code in this book is presented incrementally
and in accordance with changing needs and/or requirements. In other words, the code is pre-
sented initially and a section or a chapter later, it may be changed to demonstrate how most
server development takes place. This ripple effect will show how this modification affects the rest
of the system.

Source code downloads, extensions, and errata

The source code for all of the examples presented in this book is available from both the pub-
lisher’s website (www.manning.com/neward3) and my own website (www.javageeks.com). I
encourage you to send me your comments, opinions and (sigh) bug reports by email to
tneward@manning.com or tneward@javageeks.com. I will certainly do my best to respond to as
many comments as reasonable and possible. What's more, I'd like for the book to continue its
development as the Java platform continues to change and mature, initially by posting white
papers and/or corrections/errata on both the publisher’s website (www.manning.com/
Neward3), as well as my own (www.javageeks.com/SBJP).

Xxviii ABOUT THIS BOOK

goals of this book

By the end of this book, you should be able to write an application server, complete with every
feature you could possibly want out of a commercial application server system.
I have four goals for you:

* Understand some of the basic concepts that go into an application server.
Application servers aren’t just about new technologies. Java is built on solid foundations,
and understanding those foundations and how they’re used inside an application server will
give you a solid background for understanding what an application server can—and can’t—
do for you.

* Be able to incorporate some of those concepts into your own code.
Not everyone is going to use an application server for the code. In some cases, corporations
won't want to pay what application server vendors are asking. In other cases, the project may
be simply a proof of concept, with an emphasis on keeping costs low in case the proof fails.
In still other cases, the application system simply may want to incorporate only a few of the
features of a commercial application server.

* Use the code that comes with the book in your own systems.
The code in this book is a simple example of how these concepts can fit within your own
systems. Most of the code is good enough to act as a starting point for developing code that
best fits your own needs. Many of the examples and code samples are contrived to better
highlight my point. Feel free to rip out the parts of the sample code you don't need, or add
the parts you do.

* Prepare you for the coming changes in server development.
The release of the J2EE specification changes some of the rules. Understanding the new
rules, the reasons for them, and what it all means is important if you want to remain sharp
as a Java developer.

This book isn’t the answer to all of your questions, but by the end of it, you should at least
have a good idea of what questions to ask, if not how to answer them.

XXX

about the author

I've been a software developer, in the loosest sense of the term, since our family purchased its first
computer, an Apple I+, with a whopping 48K of RAM (which we soon upgraded to the flat-out
maximum of 64K) back in 1978. I've written code in Applesoft BASIC, Apple 65C02 Assembler,
and even a few Logo programs, just for kicks. I think my parents still have that old machine,
gathering dust somewhere in the basement but just too full of memories to simply throw away.

More recently, however, I've been a software architect, first in C++, then in Java, working
in the Sacramento area for the past five years or so. I've worked for firms such as Intuit, makers
of the Quicken personal finance software package, and large corporations like Pacific Bell. I've
seen development teams of all sizes, shapes, and methodologies (or lack thereof), using both Java
and C++, building software ranging from consumer applications such as Quicken to development
systems built in 100 percent pure Java to enterprise systems rolled out across the state.

I am an independent software consultant/contractor in the Sacramento, California, area. I am
also an instructor with DevelopMentor, teaching Java and RMI to anyone who'll listen. When not
teaching classes, or writing books, I enjoy spending time with my wife, Charlotte, and our two sons,
Michael (age 6) and Matthew (age 8 months).

Readers often express an interest in the actual environment and hardware/software in use by
an author when developing the text, code, or both, of a book. This text was written on a Compaq
Presario 1810 laptop using Microsoft Word 97 as the word-processing program, and Adobe’s
Acrobat PDFWriter print driver to prepare drafts for reviewer perusal. Code was developed using
a text editor, the command-line, and Sun’s Java Development Kit 1.2 (and later, 1.2.1 and 1.2.2)
on both the aforementioned laptop running Microsoft Windows98 as well as on a home-built
PentiumlI-350 workstation running Microsoft WindowsNT4.0 Service Pack 5. Portions of the
code were also tested on a Pentium-90 RedHat 5.2 Linux server, running the Blackdown.org
Linux port of Java 1.2 (prerelease 2).

XXX1

about the cover illustration

The cover illustration of this book is from the 1805 edition of Sylvain Maréchal’s four-volume
compendium of regional dress customs. This book was first published in Paris in 1788, one year
before the French Revolution. Its title alone required no fewer than 30 words.

Costumes Civils actuels de tous les peuples connus dessinés d'apres nature gravés et
coloriés, accompagnés d’une notice historique sur leurs coutumes, moeurs, reli-

gions, etc., etc., redigés par M. Sylvain Maréchal

The four volumes include an annotation on the illustrations: “gravé a4 maniére noire par
Mixelle d’apres Desrais et colorié.” Clearly, the engraver and illustrator deserved no more than
to be listed by their last names—after all they were mere technicians. The workers who colored
each illustration by hand remain nameless.

The colorful variety of this collection reminds us vividly of how culturally apart the world’s
towns and regions were just 200 years ago. Dress codes have changed everywhere and the diversity
by region, so rich at the time, has faded away. It is now hard to tell the inhabitant of one continent
from another. Perhaps we have traded cultural diversity for a more varied personal life—certainly
a more varied and exciting technological environment. At a time when it is hard to tell one com-
puter book from another, Manning celebrates the inventiveness and initiative of the computer
business with book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by Maréchal’s pictures. Just think, Maréchal’s was a world so different from ours peo-
ple would take the time to read a book title 30 words long.

XxXX111

1.1

1.1.1

1

Enterprise Java

1.1 Enterprise development 1 1.4 Why Java? 15
1.2 Three zeroes 8 1.5 Summary 25
1.3 Javain the enterprise 14 1.6 Additional reading 26

Java is ready for prime-time in the enterprise development arena. Before we can dive
into reams and reams of code, concepts, ideas, and explanations, we need to establish
a common lexicon, defining what I mean by enterprise development and the three
zeroes. Next, we'll briefly cover Sun’s perspective on what Java as an enterprise devel-
opment language (and platform) means, and what alternatives exist. Last, I'll jump on
the soapbox and talk about the features of Java that make it ideal for the enterprise.

ENTERPRISE DEVELOPMENT

When an organization, from the largest corporation to the smallest church or school,
decides to acquire a software system to do X, it makes that decision because it has a
need. That need might be to make products available to customers who might not
otherwise know about them, to make data available to its internal employees in a log-
ical, consistent manner, or to be able to perform analysis on the organization’s past
history and attempt to predict the future by that analysis. The need itself is unimpor-
tant—but the fact that the organization has decided it wants to use some combina-
tion of computer hardware and software is pertinent.

What is enterprise development?

Enterprise development (ED) is any application, set of applications, utility, set of
utilities, or systems and/or infrastructure developed for use by a particular company,

corporation, or collection of users. Enterprise applications can take many shapes and
forms, and can span different, and sometimes divergent, technologies. Relational
databases, legacy systems, the internal web server, even individual Microsoft Access
databases sitting on users desktops, are all part of the back-end of the enterprise
development arena.

ED is different from other forms of development (such as commercial product
development), in that:

* ED applications are able to make better assumptions.
If the application is for internal use, then we have a better idea of not only the end
user’s desktop computers and attached equipment, but also the average technical
level of the end users themselves. Because of this, we can tailor the application to
better adjust for our users” particular needs. If the application is for traveling sales-
men using the Internet to access our inventory warehouse then we write the appli-
cation knowing that bandwidth is a critical concern. If the application is for users
sitting in four separate locations in three different time zones, then we know
already that time synchronization (“If we use a time stamp, whose time zone do
we use?”) will be an issue. If the application is a help-desk-ticket-management
type, then we can assume the users have a certain level of technical sophistication.

* ED applications are typically internal.

Most often, enterprise applications are executed on the inside of a corporate fire-
wall; issues common to Internet applications, such as line-security (necessitating
the need for secured sockets and signed certificates), are less of a concern here,
because it can be assumed that the users are known to the company and are
authorized to use the application. This doesn’t remove a need for a certain mea-
sure of security within the application, but at least we no longer have to worry
about hackers sniffing the packets between the servers and the clients. This has a
number of related sub points.

* ED users are typically close by.

When the target users for the application are internal to the corporation, often
the actual users are within close physical proximity. Even if the application is
destined for a user group two continents and an ocean away, because the cor-
poration typically doesn’t restrict communications between its departments,
the end user of the application is just a phone call, email, or fax away. This
means users can be pinged directly for feedback on the application, to ensure
that the application is, in fact, what they need to solve their problem. Unfor-
tunately, this is a two-edged sword—closer proximity can often mean more
interference if this is not managed properly. It can also mean greater changes
in the application’s functionality and user interface.

* ED applications are typically shorter-cycled.
Because of the closer proximity of the users, which fuels greater feedback than
commercial developers see, ED applications will typically undergo several

CHAPTER 1 ENTERPRISE JAVA

revisions in the same period that a commercial application undergoes a single
release. This is often referred to as taking an iterative approach during the
project’s development.

* ED applications often get less QA time.
When applications are written for internal use only, there seems to be a greater
willingness to release without doing a full test cycle. This means developers
need to be more cognizant of the fact that they’re flying without a parachute,
and need to code accordingly.

* ED applications cannot assume end-user responsibility.
Within the average corporation, the end users are not responsible for the
installation and maintenance of their desktop computers; instead, that respon-
sibility falls upon the information technology group, typically the system
administrator or help desk section. In some cases, this means that every new
release of an enterprise application requires an IT technician to physically walk
around to each and every user’s machine, install the application (either via the
internal network or SneakerNet), and verify the installation was successful.

* ED applications must be more user reactive.
If the end user has a problem, the call goes to the internal help desk, or some-
times to the developers directly. Under no circumstances can the corporation’s
developers get away with taking the user’s name and number, and offering to
call back later. Such behavior will typically get escalated to whatever corporate
officer needs to hear it to get the problem fixed. Instead, developers must
jump onto every bug and determine what the problem is. Commercial ven-
dors have more of an insulating layer between them and the users, thus offer-
ing a bit more of a cushion regarding immediate bug fixes.!

* ED applications typically require some degree of expert administration.
Enterprise applications, unlike commercial applications, dont stand by them-
selves. Typically, the enterprise application has a degree of administration that
accompanies it, even if that administration is limited to user-security manage-
ment (adding users, removing users, and so forth). Who does that administra-
tion, is, for purposes of this discussion, irrelevant.

* ED applications must work within the existing architecture.
After the corporation has sunk major money into an infrastructure is 7oz the time
for developers to be approaching the boss with suggestions about doing the next
application in “<insert-the-latest-technology-here>.” The same is true of intro-
ducing new tools into the administrative arena—systems administrators (also
referred to as system administrators) will not be happy if developers continue to
throw new tools and/or servers at them with each new enterprise application.

! This is not to say that commercial software developers aren’t, or shouldn’t be, responsive to users. An ac-
ceptable 1-day turnaround for commercial help-desk responses is never acceptable inside the corporation.

ENTERPRISE DEVELOPMENT 3

1.1.2

Each new tool or system represents not only another step on the learning curve,
but an additional point-of-failure within the corporation’s infrastructure.

All of these items are pros and cons. Each provides its own unique challenges that
must be met and mastered by the corporation’s developers, or disaster awaits. Fortunately,
Java’s strengths can be leveraged, through the use of commercial application servers as
well as through the techniques described in this book, to solve many of these problems.

Developing the enterprise application

Once the decision is made to develop the application, the organization next has
another choice: whether to construct the software from scratch using in-house or
contracted software development professionals, or to purchase an off-the-shelf system
or suite of tools to solve the need. This is commonly referred to as the buy-versus-
build decision, and can, depending on the size of the proposed project, be made in
fleeting seconds or over a course of months.

I bring this decision to the forefront of the reader’s awareness because this book,
by its very nature, partly assumes that the decision being made is to build, as opposed
to buy. I say partly, because learning this information serves two distinct purposes:

* Not all applications require a full-fledged application server.

Some may be small-scale systems that are intended for low-end systems—run-
ning a full application server would be overkill and consume far too much in the
way of resources. Some may be systems targeted for embedded systems,? and try-
ing to run a full application server would simply tax the embedded device’s JVM
to the limits. By learning the techniques and technologies described herein, you
can build your own miniapplication servers that provide much of the same func-
tionality at half the cost.

* Understand the application server’s environment.

Even if your application does make full use of the J2EE model, understanding
what’s happening under the hood can be critical to understanding why your
application behaves as it does. Without that knowledge, many of the restrictions
and requirements of the J2EE model (such as the restrictions within the EJB or
Servlet APT specifications) will simply make no sense. Restrictions that make no
sense in turn cause developers to start looking for ways to code around the
restriction. This in turn can cause huge problems down the road as the applica-
tion is deployed, and performs poorly—or worse, simply fails entirely. Under-
standing what’s happening in the scaffolding around your application is a huge
bonus for J2EE application developers.

2 Sun has also released the “Java2 Micro Edition,” targeting small systems like hand-held PDAs and cellular
phones; there is no reason to believe that J2ME won’t migrate over to embedded systems on larger machinery.

CHAPTER 1 ENTERPRISE JAVA

Building enterprise software offers the advantages of control, knowledge, and
domain familiarity.

Control

No off-the-shelf product will ever do everything an organization wants because ven-
dors want to remain as generic as possible, in order to remain appealing to a broader
range of potential customers, and organizations are demanding more and more
domain-specific tasks of software and software systems.

The response time of the average vendor-to-customer demands drives a large por-
tion of this. If a customer finds a bug within a system, and reports it, it can be up to
six months before a new version is released correcting the bug. In some cases, a vendor
will make a patch available to the customer to correct the immediate flaw, but that in
turn offers up versioning issues for the vendor. When the customer calls the next time,
with another problem, how can the vendor’s technical support staff know what version
the customer is using? Is this bug due to the patch, or is it something else? This leads
to heartache on both sides of the relationship; the customer becomes angry at the ven-
dor’s lack of concern for the customer’s needs, and the vendor grows frustrated with
the incessant demands from its customer base.

As if that weren’t enough, customers’ needs change as time and the business cycle
move forward. Vendors are flooded with feature requests and enhancement proposals.
Good capitalism demands that the vendor move immediately on those features or
enhancements that are demanded by many customers. However, no vendor will be
able to respond to a// feature or enhancement requests, if only because it makes no
business sense to spend $100,000 to develop a feature for a customer paying $495 (or
$5,000) for the next product version. This is scant comfort to the business that needs
that feature in order to move forward with its plan to capture the entire market.

By building the software within the corporate boundaries, bugs can be fixed
immediately and new features or enhancement requests can be implemented at the
desire of the organization’s I'T management staff. As with most software development
vendors, no IT staff is so large or well-staffed as to be able to handle all feature
requests; however, this time, it is the organization’s management that is making the
need-versus-want decisions, and not an outside party with a different agenda.

The Open Source movement makes tremendous strides along these lines—in the-
ory. Since you have full access to the source, you can simply jump into the code, make
the change, and move forward. If your organization is a real supporter of the Open
Source movement, you'll even make your change(s) available back to the community.
Unfortunately, this model fails on a few points:

* You must understand the source.
Few corporate enterprise developers have the time to fully comprehend the soft-
ware they’re maintaining, much less an entirely new system that’s outside the
corporate domain. To tell your boss that you need six months to dive into the

ENTERPRISE DEVELOPMENT 5

Open Source project’s source base just to understand where to make your feature
enhancement is not going to make you popular.

* You must have a certain level of skill to understand the source.
Unfortunately, not everyone on the corporate development team is of a skill level
to even be able to dive into the Open Source project’s source base. Certainly,
with enough time, the most energetic newbie could do it—but does the corpora-
tion have the time to spare?

* Open Source projects are noncorporate entities.
Bluntly put, you can’t throw corporate weight around when dealing with an
Open Source project group. Because there’s no contract, no monetary exchange,
there’s no leverage for the corporation to use when the Open Source project fails
in some manner. With a corporate product, the corporation can take the vendor
to court, if necessary, to obtain the support it needs. No such mechanism exists
for corporations to use against Open Source projects.

* Open Source projects aren't customer-centric; theyre developer-centric.

Eric Raymond, in his online work “From a Cathedral to a Bazaar,” states it best—
Open Source projects are created because “the developer has an itch.” Open Source
projects aren’t done for the benefit of the customer, they're created for the benefit
of the programmers. In each and every case, a developer saw a need and began
work on it. If a feature request came in from outside the project, it gets imple-
mented only if a developer on the project feels like doing it; otherwise, it’s left for
someone else to pick up. Unfortunately, that goes for documentation, as well.

Open Source projects are most definitely a useful resource from which we as
developers can draw.

Knowledge

Software development is possibly the most complex act of creation mankind has yet
attempted. Building bridges and vehicles is a relatively straightforward science: the
laws of physics are immutable. Even the most sophisticated combat aircraft has only
70,000 or so moving parts. A software project, on the other hand, can contain up to
several million executable lines of code, all of which can affect one another. As devel-
opers build the software, they learn lessons about the nature of software development,
which in turn makes them more efficient and effective for the next project. Experi-
ence remains the best teacher.

Domain familiarity

No one better understands the organization’s needs than the organization. No one
better understands the organization’s process and practices than the organization.
While software technologists may be able to describe how their software technology
can solve some of the organization’s needs or problems, only the organization’s mem-
bers can know the unique business rules and logic the organization applies to its
data. The organization’s IT staff may be able to adapt the vendor-built systems to

CHAPTER 1 ENTERPRISE JAVA

the organization’s needs, but it will always remain that—a system adapted to the
organization’s needs, and not one grown from within the organization, with the
organization’s processes and business logic understood from the beginning.

Disadvantages

Unfortunately, building software within the organization carries with it three major
disadvantages, which are typically the points on which a vendor will focus when
marketing a product:

* Time
To develop software takes time, no matter how many people or resources are
thrown at the project. Analysis must be performed, design must be created, code
must be written, the system must be tested, and the administrators must install it
when finished. For an organization that wishes to implement its project immedi-
ately, this sort of delay can be unacceptable.

* Money
To develop software also takes money, either through contracting the project out
to a third-party development house, or through hiring to build the project on-
site. Either way, for nontrivial projects, this can represent thousands, if not mil-
lions, of dollars the organization may not be able to afford. This also doesnt
include the costs of the resources the developers will need, such as computer sys-
tems, software tools, office space, and so on.

» Expertise
Building software itself is hard, but building software with advanced features
such as scalability, fault-tolerance, or automated failover support can be like
attempting to scale Mount Everest wearing only shorts, sandals, and sunscreen.
Vendors have had years to perfect their performance-tuned software; in-house
developers will often be lucky if they get a full month to test the software before
it ships to the rest of the organization.

Therefore, the goal of the organization driven to build enterprise software is to
minimize these three costs of custom software development.

1.1.3 Reinventing the wheel

I am not advocating that developers reinvent the wheel for each enterprise applica-
tion. I'm an avid advocate of reusability wherever and whenever possible. Buying off-
the-shelf software, including application servers, is one of the best forms of reuse and
is certainly cost effective. Unfortunately, as with all other things in this industry, the
buy decision comes with its own costs and consequences.

Does that mean that this book is useless to you if your company decides to buy
the application server, rather than build some of the application server’s functionality
into the custom-developed enterprise application? Of course not.

ENTERPRISE DEVELOPMENT 7

1.2

This book offers you several advantages in working with commercial (or Open
Source) application servers or engines:

o Greater familiarity with the concepts.
Application servers have a number of areas within which they’re going to need to
work, and these are discussed within these pages. ClassLoaders, for example,
constitute an area that every application server will need to consider—and such
decision is one that could easily affect the way your application, or the adminis-
tration of your application, behaves.

* Guain the ability to provide the features not provided by the app server.

Suppose you are working on developing servlets for your corporate data center,
which aspires to the five-nines concept, but the servlet engine you use requires
the servlet engine to come down in order to reload a new servlet. Your system
administrators are not going to be happy about accepting a fixed overhead of
down time—even a few seconds—each time a new release is sent to them.
Instead, use what you'll learn in chapters two and three to build your servlet to
load code into individual ClassLoaders on each servlet request, and automati-
cally pick up changes in code without restarting the servlet engine. It’s a win-
win: the system administrators are able to preserve the precious seconds lost dut-
ing the servlet-engine cycling, and you get to release new code as necessary to
keep the users happy.

* Guain the ability to work around vendor defects.
Once I was working for a company using a major vendor’s EJB product. We dis-
covered, after many late nights of debugging and code disassembly, that the ven-
dor failed to implement the new ClassLoader relationship introduced in Java2.
We eventually had to code around it. Without a good understanding of how
ClassLoaders worked in Java2, we'd have been at it for much, much longer.

* Guain the ability (within Open Source projects) to understand the internals.
Understanding these concepts is even more critical for those developers tasked with
the responsibility for the maintenance of the corporation’s adopted Open Source
projects. In some cases, some of the code within this book will help enhance the
Open Source project directly, providing for features not already present.

THREE ZEROES

IT administrators and data-center directors often speak of five-nines when talking
about server availability; in that, they mean that the servers (and the data they serve
to the enterprise) are up and running 99.999 percent of the time. Computed out,
that means those servers are down a total of about five minutes per year.’ It’s an
ambitious goal, and any IT organization that achieves it should be justifiably proud.

331,536,000 seconds/year *.00001 = 315.36000, or about five minutes per year.

CHAPTER 1 ENTERPRISE JAVA

1.2.1

However, as with most goals of this nature, even that’s not the ideal; the ideal, of
course, is 100 percent up-time. And although 100 percent up-time (that is, servers
are never down for maintenance, fault-correction, or upgrade) may be an impossible
goal, the mere act of pursuing an impossible goal brings seckers closer to it than they
could be without it.

Which brings me to my proposal of a new standard for enterprise software devel-
opers: three zeroes.

Zero development

Zero development, taken literally, is an oxymoron—how can you develop something
without spending any time developing it? Within this book, however, I use it to refer
to reusable code and/or components; it means that it costs nothing to make changes
or add features to software or systems, either as upgrades to existing systems, as fea-
ture requests by users, or as new code for new systems. By this, I mean that it costs
developers nothing, not that no time is spent. Consider this example: before the com-
mercial product called Crystal Reports was available on the market, reports on the
data within the corporate database had to be coded, tested, released, and maintained
by developers. With the advent of the ad hoc query/reporting tool market, users
could now create their own reports, run them, view the results, and modify the
reports as necessary, without requiring developer time or assistance.*

Of course, if you believe the marketing hype splashed across the industry trade
magazines, there are tools on the market to do this for you—cut your development
costs to zero, or five minutes, or a few wizard-driven screens, or whatever. Unfortu-
nately, there’s usually a hidden cost to this sort of Tinkertoy software construction—
the inability to extend the software beyond what the tool developers conceived, or the
inability to call down to native OS APIs, and so on. Rapid application development
(RAD) tools are useful to do the things for which they were designed; it’s when the
users want to do that extra something that the RAD tools demonstrate their inability
to be flexible. With power, comes complexity. With complexity, comes power.
Remove the complexity, and you remove power.

This book isn’t about creating magical solutions; this book is about building soft-
ware. As I will be saying over and over again throughout the book, software develop-
ment (in fact, all of computer science) is about trade-offs: size against speed, power
against simplicity, development time against execution time. Software developers need
to understand the context of their problem before they can apply a solution, whether
that solution is a prepackaged RAD product or painstaking from-the-ground-up soft-
ware construction.

4 Some may argue that this is still development time, only it’s development time by nondevelopers (or
by less-skilled developers). This may be true, but it’s a philosophical discussion at this point. If a user
uses the macro language of a tool to create a macro, is that programming?

THREE ZEROES 9

10

If all of this sounds familiar, it’s because you’ve been reading up on the pat-
terns movement. Patterns, as defined by Brad Appleton’s introduction to them,’
are not a solution to just a problem, but to a problem within a predefined con-
text. Because patterns offer so much in the way of prepared expertise, and because
they offer a useful vocabulary by which we can discuss design solutions, I use pat-
terns as part of the book’s vocabulary. Patterns are a form of design reuse, and
any tool we can use to speed up the development of software, even if it’s just the
ability to refer to the organization of common-purpose objects, brings us closer
to zero development.

Zero development is not just about design reuse. It’s also about building reus-
able software that can be used as black-box components. Java builds on this com-
ponent concept from its very roots, choosing to favor shallow, broad-based
inheritance hierarchies instead of the deeply nested hierarchies built with C++ in the
late 1980s and early 1990s. This approach was hailed as the ultimate in software
design, allowing developers to create applications out of objects. Problem was, it
never happened.

Fundamentally, the problem with the deeply nested hierarchy is its dependence
on inheritance as a reuse mechanism. The problem with inheritance as a reuse mech-
anism is simple: classes inheriting another must know details about the base class, and
effective reuse dictates that objects using one another do not need to understand the
details of the object being used. Inheritance also led to the fragile base class problem
in which changes to a base class ripple throughout the rest of the system, wreaking
havoc everywhere that classes extended the base class and made assumptions regarding
its parent’s behavior.

Recently, the notion of reusable objects has undergone a revolution. Led partly
by the development of the Java run-time libraries, but also by a growing recognition
within the C++ and other object-language communities, object developers have real-
ized that inheritance on its own doesn’t provide reuse. Instead, the emphasis on reuse
is coming from componentry and Open Source advocates.

Componentry, as a reuse mechanism, first gained prominence within the software
development community through the overwhelming success of Microsoft’s Visual
Basic. Regardless of object-oriented purists’ opinions of the language and development
ideology, Visual Basic’s approach to reusable components, building black-box
dynamic-link libraries (DLLs) (first called VBXs, later migrated to 32-bit Windows and
COM as ActiveX controls) spawned an entire industry of components.

One of the key components was binary compatibility. Because VB ran only on
Microsoft operating systems, multiplatform capability was not a factor, as opposed to
C++, where portability could only be achieved at the source level, and poorly even
then. Differences in compiler capabilities, differences in platforms underneath the

5> Available at hetp://www.enteract.com/~bradapp/docs/patterns-intro.html

CHAPTER 1 ENTERPRISE JAVA

1.2.2

compiled code, even differences in the fundamental size of intrinsic types,® all led to
break source code developed for one platform but compiled on another. Java, with its
portability, has no such concerns, at either the source or the binary level.

The Open Source movement has also contributed tremendously to the reuse of
components. With more and more individuals and companies making the source for
their components available, less and less time needs to be spent on a project. Now
organizations can have the best of both worlds—control of the source in the event of
a bug or problem that requires an immediate fix, but without having to develop the
source independently.

Zero development, by its definition, is an unattainable goal; developing software with-
out incurring any development costs is a contradiction in terms. The closer we can approach
that goal, however, the lower development costs will be, and the less time we have to spend
on development of components that could otherwise be reused. Consequently, we can
spend more time on what our users want. And that, above all else, is what we’re here for.

Zero deployment

Software is not only developed, it must be deployed. This is the act of installing the
software on the target system, whether it is a stand-alone data-center server machine, or
end-user machines all across the organization. In consumer software, this is driven by an
installation application, either purchased from a vendor or home-grown. In enterprise
development, however, despite how capable the user of an installation application may
be, the individuals installing the application are typically on their own, with minimal
support from the developers. Deployment to a centralized server is far less costly than
deployment to end users systems. However, if the software in question is for end users,
that deployment would seem to be inherently necessary and unavoidable.

In fact, the attempt to avoid this cost is the entire driving force behind the thin cli-
ent architecture, where a web browser is used to view HTML pages or interact with Java
applets as their contact with the system. Because HTML is loaded from a central HTTP
server, and stores nothing on the end-users’ systems, deploying a new version of an appli-
cation to the organization merely requires modification of the HTML pages or Java
applet code on the server. Thin client systems aren’t limited to just HTML/HTTP sys-
tems, however. Within the last two years, books, papers, and articles have been released
describing stand-alone applications making use of distributed objects and a thin presen-
tation layer on the end-users’ machine. It’s just that HTML/HTTP systems are more
convenient, since almost everybody has a web browser installed on their system.

Part of the reason for this move toward zero deployment approaches is the rec-
ognition of some simple facts:

© C++ guarantees nothing about the size of an i nt within the C++ language, except that it will always
be less than or equal to the size of a | ong, and greater than or equal to the size of a shor t . This sort
of ambiguity is what led James Gosling to decide, up front, that Java’s intrinsic types would be fixed,
regardless of platform.

THREE ZEROES 11

1.2.3

12

 Users don’t want to install software themselves.
Some will not be qualified to do so, most simply won’t want to.

o Software systems aren’t completely independent anymore.
They're built from preexisting components and libraries, which have their own
deployment costs. Connecting to a database using JDBC, for example, may
require the installation of additional drivers on the end-user’s system, to handle
the actual low-level communications between the client and the server. In the
case of Java, the Java interpreter and environment (the JRE) must be installed on
the end-user’s system in order to run Java code. What's worse, these collateral
deployment costs aren’t one-time costs; each time an upgrade or patch is made
available, it must be installed on the end-user’s machine all over again. This takes
time (IT staff man-hours) and money (licensing fees).

o [t takes time to push these developments out.

Assuming an install is flawless and takes five minutes, an IT staff member can per-
form about ten installs an hour. For a 150-seat call center, that means two IT staff
members must spend an entire day each performing these installations, assuming
no problems along the way. Additionally, from the moment the first install takes
place until the last install is finished, the entire call center will be in a state of
flux—half the users will be on system 1.1, the others on 1.2 or 2.0, or whatever
is being installed. This could present serious problems to the production data-
base behind it, since what is perfectly and correctly formatted data in one version
could seem corrupted to the other. Ideally, all work could stop within the call
center until the install was complete, but this isn’t likely, especially for a 24-by-7
call center or corporation. The situation only gets worse if the organization is
worldwide. On top of this, there is always the possibility that the software will
need to be recalled due to serious flaw, bug, or simple user resistance.

For these reasons, and more, software architects and developers can’t ignore the
costs of deploying their software. This doesn’t mean trying to reduce the third-party
components used or creating nifty installation scripts; this means reducing the need for
frequent updates, and designing for change from the moment the system is conceived.

Zero administration

The server application’s relevance to the development department doesnt end once
it’s been deployed to the server. Making the application easy to administer—to moni-
tor, to control, to adapt, or to use—makes those who have to do that more adminis-
tration friendly toward accepting the responsibility of keeping the server up. This is
key for development staff, since it is the client’s or customer’s—not the developers'—
opinion of the software that ultimately decides its acceptability. The most elegant
software ever written is no good if the users won't touch it. More importantly, there is
no need for development staff that produces software that’s unusable, unstable or dif-
ficult to administer.

CHAPTER 1 ENTERPRISE JAVA

To developers who are accustomed to being the crown jewels within product-

development companies, the move to enterprise development will come as quite a
shock. Within the enterprise, the developers are no longer the raison d’étre for the cor-
poration’s existence, but simply support staff to allow the corporation’s core employ-
ees to better accomplish their job. Within some corporations, this is the system
administrators, because the corporation is all about shuffling data; within others, this
will be the corporation’s call center, or their field representatives, or their salespeople,
and the system administrators will be in the same support role as the developers. Either
way, the development staff cannot afford to alienate or otherwise estrange the system
administrators. Moreover, it is in the development staff’s best interest to make the sys-
tem administrators’ jobs as easy as possible, for a variety of reasons:

THREE ZEROES

System administrators will often be the deciding factor as to the deployability of software.
If the system administrators don’t think the software is worth deploying, what-
ever the reason, they won’t deploy it. Projects have died right at that point.

System administrators will often be the first-line help support for the application
being developed.

The more the system administrators are in line with the application and support-
ing the development group, the less often the developers will be called to support
the application after its delivery. If, however, the system administrators have no
faith in the application, or in the development group that created it, users may
be told about each and every place the application fails. This does nothing to
improve the development group’s reputation within the corporation.

Developers and system administrators are, from the very beginning, in an antagonis-
tic relationship.

System administrators must support what developers create. If the application
fails, it’s the system administrators who get called. Developers typically chafe at
the restrictions system administrators place on network resources, while system
administrators resent the constant barrage of requests developers bring to them.
Developers desire complete access to the systems on which they are doing devel-
opment, while system administrators are reluctant to grant that complete access,
since they will be called upon to support that system when something goes
wrong. Developers must understand the system administrators’ concerns, and
meet them as best they can. Attempting to reduce the cost of administration of
applications developed for the server goes a long way toward that.

System administrators and developers are part of the same IT division, which some-
times has a credibility problem.

Approximately half of all IT projects are canceled, and over three-fourths run over
schedule, budget, or both. IT credibility suffers every time a system goes down,
or an application fails. Neither side wants to be blamed for the other’s mistakes,
so the IT department as a whole looks fractious and divided. By working with
system administrators to make their job as smooth as possible, developers not

13

1.3

1.3.1

1.3.2

14

only earn loyalty points from the system administration group, they also earn
credibility points with the rest of the corporation.

Zero administration means making the applications easier to administer by pro-
viding clear GUIs instead of cryptic text files, by allowing configuration of the appli-
cation to occur while it is running instead of requiring the application to be taken
down and restarted, or by allowing system administrators to configure the application
from any machine throughout the corporation, with security restrictions still in place.
It also means that system administrators can be assured that, in the event of a failure
of an application, they will be notified. Lastly, zero administration means having, at
their fingertips, statistics regarding the application’s performance, load on the current
machine, and/or resources consumed.

We will be pursuing zero administration in a variety of ways: by building remote-
enabled GUI configuration of running applications, by building configuration security
into the application automatically, and by providing application-specific statistics to
system administrators at any given moment in a generic manner. It’s a tall order, but
giving system administrators these capabilities will go a long way toward making peace
between developers and system administrators.

JAVA IN THE ENTERPRISE

There are two views of Java in the enterprise—one from Sun, and one from me.
Although they conflict somewhat, it’s good to know what they are before we launch
too deeply into them.

Sun’s view

Sun’s view of Java’s role is rather clearly stated within the Java 2 Enterprise Edition
overview document. Java, through its enterprise-centric APIs, such as EJB, provides
the usual buzzwords: robust, mission-critical support for z-tier applications using
thin clients. At the same time, Java provides an elegant client platform, superior in
every way to anything else on the market today.

Sun sees the enterprise system as a fundamentally distributed one, with clients
using thin clients, either straight web browsers over HT'TP or perhaps applets, to access
servlets or Java Server Pages (JSPs) running on a web server. The web server, actually
a J2EE application server in disguise, in turn provides access to EJBs over RMI/IIOP
(which in turn allows for CORBA access, both to and from the EJB components) for
the actual business logic. The Beans themselves know how to access relational data-
bases, in which the data is actually stored.

All the world is a Java world, and Sun is content.

Alternate views

Unfortunately, not all applications support this fundamental model.
To start with, not all applications within an enterprise system are, at heart, client/
server systems like the prototypical Sun J2EE application. Some will be workflow

CHAPTER 1 ENTERPRISE JAVA

applications, routing information between users, and requiring work to be done in
between users as data packets enter and leave various stations. Other applications will
be stand-alone daemon processes, polling over relational database tables as rows are
inserted, and acting upon the newly introduced entities. Other applications will be
triggered by calls inside the database (using Oracle 87, for example, or using JNI/native
code attached to the database to be called from within a database trigger), to route data
through a sequence of filters and steps before storing it someplace else.

Under other situations, the heart will be a legacy mainframe system, requiring
some sort of terminal session to the mainframe to carry out the necessary data-feeds.
Numerous third-party toolkits and source codes have appeared, allowing Java to access
3270-emulation sessions, but these are all proprietary and nonstandard thus far. J2EE
makes no representation of this within it, except to make vague references about access
to legacy systems.

Worse, a number of enterprise systems are already partially (or completely) imple-
mented in C++ or C, and Java developers are asked to integrate new changes into the
existing system. JNI is about the only way to go with this, yet the J2EE specification
makes no mention of this scenario except to say that it’s possible. Readers are left to
their own devices to figure out where the native code should live, and what implication
that has for the model as a whole.

On the whole, Sun’s J2EE view of the world is a sin of omission, rather than of
incorrection. Most systems will, to some degree, follow the classic client-needs-data/
server-feeds-data model, which the J2EE specification excels at providing. And
granted, one can extend the notion of “client” to mean many things, but some of the
things mentioned above would be difficult to do within J2EE.

1.4 WHy JAVA?

This isn’t about Java’s applicability as a programming language. It’s about Java’s appli-
cability as an enterprise development programming language.

I want to highlight those aspects of Java that I believe directly affect our lives as
enterprise developers.

General purpose

Java is not restricted to any one medium, domain, or technology. This comes as a
great surprise to some, since Java’s hype is so closely tied to the Internet, web pages,
and applets. Java can be used to create applications, including those on the server
side, just as C++, C, or Pascal can. In fact, as the title of this book implies, Java excels
at development of stand-alone server applications that have nothing to do whatsoever
with the Internet, web pages, or applets.

WHY JAvA? 15

16

Concurrent

Java is the only popular” language that contains direct, linguistic support for concur-
rent (multithreaded) application development. Rather than leaving the notion of
thread support to the platform upon which the language code is executed, as C++
does, Java contains direct support for threads via its synchr oni zed keyword and its
run-time library (namely, the Thread, Runnable, ThreadGroup, and other classes
from the j ava. | ang package).

This inherent support for threads suddenly makes developing reusable compo-
nents for the Java environment much simpler—rather than having to try to second-
guess all the platforms and environments in which a component could be run (as with
C++), Java component creators can always assume that threads will be present, and
must code (and architect) accordingly. For example, the creators of the JFC Swing
toolkit could handle all GUI event management inside of a separate thread, rather than
the C++ approach, where users had to extend a particular class (usually called TAp-
plication or CApp) which contains the event loop code. While this approach carries
its own consequences, the ability to assume threads will be present when developing
code is a valuable asset. Throughout this book, we will be making use of Java’s con-
current nature in a variety of ways, both to obtain better performance as well as to
heighten the application’s robustness and security.

Class-based, object-oriented

I could launch into a lecture about the benefits of object-oriented programming tech-
nology here, but you're already on the OOP bandwagon if you're a Java developer.

Strongly typed

Because Java is a strongly typed language, we can put into place safeguards within the
code that prevent abuse and potential maintenance headaches. Java goes the extra dis-
tance in this via its use of interfaces, as well—it’s trivial to introduce a new, purely
contractual interface into the system that guarantees certain behavior, therefore mak-
ing it easier to strongly type our own code. Want a particular collection to contain
only objects that can be streamed out? Write the collection to take Serializable types
instead of Object. Want to provide an event-based notification system? Define an
interface that clients must implement in order to receive those callbacks, and have the
clients register themselves with you. The strong typing allows the compiler to help us
keep order imposed on the system, and that’s always a bonus.

7 Well-known outside of research circles, as opposed to languages unknown to programmers outside of
the academic world.

CHAPTER 1 ENTERPRISE JAVA

1.4.1

WHY JAVA?

Automatic storage management

Most C++ programmers have a hard time buying the garbage collection argument.
Their loss. Java’s garbage collection mechanism frees us from one of the most onerous
parts of development—ownership semantics.

Within C++, or any other language in which I must explicitly manage memory,
ownership semantics take on a huge life of their own. I have to decide, either explicitly
or implicitly, who owns the object. If, for example, I place a stack-allocated object into
a container that assumes ownership of, and therefore responsibility for, destruction of
objects placed within it, then ’'m destined for disaster at worst, memory leaks at best.
Java’s management of memory removes the need for ownership semantic discussions.
Now, I can just drop the Object into the ArrayList, and leave it at that—the ArrayList
doesn’t need to worry about whether or not it needs to destroy the objects contained
within it. If the objects are referenced elsewhere after the ArrayList is destroyed, then
they stay alive. If not, they die. Straightforward, simple, elegant.

This isn’t to say that explicit memory management doesn’t offer advantages. C++
offers some powerful mechanisms for low-level control of memory-management, but
most enterprise applications have no need for that level of sophistication. Why use an
artist’s paintbrush to paint your house?

Bytecode compilation

This is, of course, where Java finds the happy middle-ground between interpretation
and full compilation. Its bytecode-compiled nature keeps us from having to fully
source-interpret the code each and every time the code is run. It’s a nice middle-of-
the-road solution between C++ (native-code compilation) and Smalltalk (source-level
interpretation).

While we’re on this subject, however, let me heap praise upon the individual at
Sun who conceived the notion of Java’s ClassLoaders. Brilliance. Sheer, unadulterated,
brilliance. By granting us, the developers, the ability to create custom ClassLoaders,
we have more control over how our system functions than most developers really
imagine. This, more than anything else within the language or the platform, is what
gives us real power.

Criticisms of Java as a server-side language

The principal language of choice for developing server-side applications is currently
C++; therefore, if Java is to compete with C++ as a server-side development language,
it must answer the criticisms leveled at it by C++. It does so to some degree above, but
server-side application developers have their own concerns.

Too slow

This is, without a doubt, the most-often-used accusation against Java. Because Java
is an interpreted language, so the argument goes, it can’t possibly ever hope to com-
pete on the same scale as code compiled into natively executed code. Unfortunately,

17

18

this is also the hardest argument to disprove, as C++ compiler manufacturers vie
with Java compiler/virtual-machine manufacturers, producing one benchmark after
another that proves one side or the other is right. In truth, the only thing these
incessant benchmark studies prove, is that marketing materials can skew bench-
marks to say anything.

Java is an interpreted language. However, it is interpreted in the same manner
that a natively compiled application is interpreted—integer opcodes and operands are
executed by a CPU, branching and calling down to the hardware through driver layers
when necessary. In C++ code, the executing CPU is the actual hardware CPU itself,
while in Java, it’s a software-driven CPU emulator. Whereas a C++ compiler compiles
to the x86 or Sparc instruction set, a Java compiler compiles to the Java instruction
set. This means that Java does not suffer from the same speed penalties of other inter-
preted languages (such as Basic or Lisp); it doesn’t need to tokenize, parse, or sym-
bolically link the source code. Instead, it only needs to find the compiled .class file,
load and link it from its binary form, and execute it from there. This reduces Java’s
interpretation penalty significantly.

What also aids Java’s case against its speed deficiencies is the recent release of a
number of just-in-time (JIT) compilers, which examine (at run time) the most com-
monly called methods, and compile them into native code. Operating on the 80-20
rule,® the JIT will, in theory, transform the interpreted bytecode into actual native
code, therefore reducing even further the interpretation penalty. JIT manufacturers,
naturally, claim performance equivalent to that of C++ code in their benchmarks, but
such announcements must be taken with a grain of salt. Sun has finally released its own
JIT, the Hotspot engine, free for download from the Javasoft website. Hotspot does
a good job of improving the Sun JVM engine’s execution speed, not, perhaps, to com-
parable levels to C++ code, but good enough for many (if not most) tasks.

Java promoters can also point to the realities of the computer hardware industry,
in which CPU speeds double every eighteen months, and average core memory levels
follow similar exponential paths. It wasn’t much more than six years ago, that the aver-
age desktop PC was an 80386/33 with 4 MB of RAM; the average desktop PC of 1998
was a Pentium-11/266 with either 32 MB or 64 MB of RAM. Server machines have
undergone a similar exponential climb in processing power and speed. The argument,
then, is that execution speed is less critical, since hardware will continue to climb for
the forseeable future. Even should current average levels of hardware on the server be
inadequate for acceptable Java performance, upgrading the server hardware is usually
a far more cost-effective solution than attempting the man-hours necessary to perform
accurate measurement and optimization efforts. Consider the math: $10,000 for a
new multi-CPU, high-RAM level server machine, or $50/hour per man to perform the

8 The 80-20 rule states that 80 percent of the time spent in an application is spent in 20 percent of the
code, and vice versa. Therefore, optimization strategies focus on identifying that critical 20 percent of
the code, and making it as fast as possible, through in-line assembler code (C++) or JNI code (Java).

CHAPTER 1 ENTERPRISE JAVA

optimization effort, including regression testing to ensure that optimization didn’t
alter the actual behavior or introduce bugs. If the optimization effort takes more than
200 hours, it’s a complete wash—more than 200 hours (five people spending a full
week), and it would have been more cost-effective to upgrade the hardware.

The truth is that Java’s execution speed doesn’t matter. It’s the development speed
that decides Java’s final acceptance as a language. This may seem an odd argument to
make, but about five years ago the same arguments were leveled at C++ regarding its
execution speed. Instead of these concerns weighing down C++’s eventual acceptance,
hardware simply got faster, and C++’s execution overhead” became less and less rele-
vant. The same will become true for Java. As the hardware improves, and available
memory on servers grows, Java’s execution overhead will become a moot point.

Bear in mind, too, that it’s because of Java’s interpreted nature that we can do
some of the meta-level things we’re going to discuss in chapters 2 and 3—at run time,
we can examine any arbitrary Java class, and know just about every programmatic
detail we’d ever need about that class. No additional information, no additional type
library, is required. Natively compiled code can’t do that, because it needs to work for
more than just OO languages; trying to run Reflection on code compiled from C or
Pascal would require some very interesting fudging.

Alternatively, tell those C++ critics that if they’re really concerned about perfor-
mance, they’d code the thing in Assembler. In the meantime, we’ve got work to do.

Too high-level

This has never been true; even beginning with Java 1.0, Java has supported the native
keyword, allowing Java developers to declare methods in a Java class that are imple-
mented in C/C++ code. For most operating systems, C or C++ is as down to the
metal as anybody wants to get. Still, even for those who want to get down to the bare-
bones assembler level, most C/C++ compilers allow for inline assembly code.

Java 1.0’s native method integration, however, was a royal pain; it was awkward
to use, it was nonportable between Java compilers, and chances were good it wouldn’t
work outside of the JVM compiler the vendor provided. For example, Sun’s native-
method approach for its JVM was radically different from Microsoft’s, which in turn
was radically different from the approach Netscape used. This was the impetus and
drive behind the release of the JNI specification when JDK 1.1 was released.

JNIin 1.1 (and later, Java 2) radically changed all this, for the first time making
it standard to be able to call down to native C/C++ code. Currently, JNI only contains
bindings to allow Java to call to C/C++ functions, but there’s been literally no discus-
sion of ever allowing JNI to call into anything else. Microsoft further extended its
native-integration mechanism by allowing Java code to call into COM components

9 Which turned out to be far lower than most people believed. The same, I believe, will hold for Java.

WHY JAVA? 19

20

quickly and easily, but the Sun-Microsoft lawsuit brings the long-term viability of
Microsoft’s Java implementation into question.

Regardless of your feeling on Sun’s and/or Microsoft’s position on their native-
integration features for their respective JVMs (and whether it’s breaking “standard”
Java to do so), the basic fact remains that Java has the hooks necessary to get to the
metal. Typically, this argument is raised in conjunction with the follow-up comment
of, “We need to use ‘library X’ to get our work done.” For example, a large body of
C/C++ code exists to read data over a serial port from scientific or other monitoring
equipment; for years, Java had no capabilities to read or write to the PC’s serial or par-
allel ports from within Java code. One such situation arose in my own experience. The
company for whom I was working at the time wanted to produce reports via the Crys-
tal Reports report-generation engine, but at that time Crystal Reports had program-
matic API only for C, C++ and Visual Basic.

The answer, of course, was to create a Java class API that wrappered the C++ API
somewhat closely, using native methods to create, call into, and destroy a correspond-
ing C++ object within the Java object used from the Java code. Thanks to the shallow
nature of the Java classes (they provided almost no behavior on their own, passing all
arguments on to the C++ object they wrapped around), the total development time
for this Java-wrapper library was about four days. Java can get down to the metal when
necessary, and we’ll see this demonstrated in a later chapter.

Doesn’t have feature X that C++ does

Java’s linguistic history very obviously comes from C++; as a result, it is constantly
held up against the extremely rich linguistic featureset of C++ and comes out on the
short end of the stick. A brief, cursory examination reveals several C++ features that
Java lacks: default parameter values, overloaded operators, and templates. C++ pro-
grammers, especially those accustomed to these features, feel as if they’re trying to
code with one hand bound behind their backs when moving to Java.

Remember, however, that Java never billed itself as a complete replacement for
C++, and that James Gosling deliberately left out some of these features from C++
because he felt they were too complex and confusing for developers. Bjarne Stroustrup
and Gosling have different philosophies regarding the nature of user-defined objects
within the language: Stroustrup, in C++, wants C++ classes to act, feel, and behave like
built-in types as much as possible;'? Gosling makes a clear differentiation from built-
in types and user-defined ones.

Remember, too, that C++ lacked all of these features when it first broke onto the
programming scene a decade ago. C++ 2.1 lacked templates, exception handling,
RTTI, and namespaces. C++ has evolved into what it is today; Java is moving through
that process now. As a result, the language is quickly becoming a different beast than

10 Design and Evolution of C++

CHAPTER 1 ENTERPRISE JAVA

what Gosling introduced five years ago. Does this reduce its usefulness for program-
mers today? Not at all; default parameters can always be silently supported by provid-
ing additional overloaded method calls of the same name:

/] C++ class with default paranmeters on nethod
cl ass Foo

{
public:
void Bar(int x1, int x2=12, int x3=24);
}s
/1 Means | can call it like this:
Foo f;
f.Bar(6);
f.Bar(6, 66);
f.Bar(6, 66, 666);
/**
* Java version of the above C++ class
*/
public class Foo

{
public void Bar(int x1)
{ Bar(x1, 12, 24); }

public void Bar(int x1, int x2)
{ Bar(x1, x2, 24); }

public void Bar(int x1, int x2, int x3)

{
// Do sonething with x1, x2, and x3

}

/**

* Duplication of the above call syntax:
*/

public static void main(String[] args)

{

Foo f = new Foo();
f.Bar(6);

f.Bar (6, 66);
f.Bar(6, 66, 666);

}

It’s not quite as convenient as the C++ version, but the workaround is there, if neces-
sary, until Sun adds default parameters to the Java language. What's more, default
parameters are somewhat overrated, even within C++; I never used them that much
in my C++ code. I found it cleaner and more understandable to use the multiple-
overloaded methods approach.

WHY JAVA? 21

22

Overloaded operators are definitely more of a problem within Java, especially in
mathematical code. Whereas in C++, a class can overload its + and/or += implemen-
tation to support the addition of two mathematical object types, such as this:

Matrix ni;
Matrix ng;

QU _interface. get Userl nput (mL, nR);
Matrix nB = nl + ng;

Java has no such facility, requiring developers to use the more ungainly form:

Matrix ni new Matrix();
Matrix n2 = new Matrix();

GUl _interface. get User| nput (mL, nR);
Matrix nmB = Matrix.add(nml, nR);
/1 or could use sonething like:
/] Matrix mB = new Matrix(ntl);
/1 nB.add(nR);

This is awkward, overly verbose, and makes formulaic expressions in Java unnecessar-
ily long compared to C++ equivalents. There’s certainly no argument that operator
overloading was a great source of language abuse in C++ code, and there’s no argu-
ment that trying to read C++ code that makes heavy use of operator overloading can
be difficult when the reader doesn’t realize the addition taking place is actually an
overloaded operator. This is more of a developer issue than it is a language issue; as
Ian Malcolm says in Michael Crichton’s jurassic Park, “You went out and did it long
before you wondered if you should.” Fortunately Java appears to recognize the useful-
ness of operator overloading within the language—Sun is currently evaluating a pro-
posal'! for adding it to the next release of Java.

Finally, there’s the matter of templates (generic types). In the interest of fairness,
I'll make my biases clear: I really miss templates from C++. Templates in C++ have
gained some new popularity for generic componentization, as evidenced by the stan-
dard template library’s ability to vary not only the type the container holds, but also
the method by which it allocates memory for that container, sorts the container, and
so on. Templates provide some very powerful abstraction and reuse mechanism capa-
bility that Java simply cannot match at the moment.

Java’s new Collection classes, introduced as part of the JDK 1.2 release, offer some
of this same flexibility, but the fundamental problem (the same one that plagued C++
until templates were widely implemented in C++ compilers) is still the same: lack of
type-safety. Consider the following code:

Il C++

// This vector nust contain *only* Foo types!
std: : vect or<Foo*> fooVector;

1 From James Gosling himself.

CHAPTER 1 ENTERPRISE JAVA

WHY JAVA?

fooVector.insert(new Foo());
/I This is acceptable--fooVector stores “Foo” instances

fooVector.insert(new Bar());
/I The above line fails to compile, since fooVector’s insert()
/I method, by virtue of the template, *only* takes Foo
/l'instances, and a Bar isn't a Foo

/**

* Java version

*/

/I This Vector must contain *only* Foo types!

java.util.Vector fooVector = new java.util.Vector();

fooVector.addElement(new Foo());
/I Perfectly acceptable

fooVector.addElement(new Bar());
/I Unfortunately, *also* perfectly acceptable, since Vector's
/I addElement() method takes an Object

As you can see, there is no programmatic way for Vector to screen out anything other
than a Foo instance being placed within it. This in turn can cause problems down the
road, when fooVector returns an Enumeration, and each element is cast to a Foo
instance, since the programmer explicitly stated that fooVector should contain only
Foo instances. Unfortunately, the new guy on the team didn't read that part, added a
Bar, and caused a ClassCastException in front of the big boss on the day of the demo.
Type-safety #s your friend; use it whenever possible.

There are certainly ways around this, to gain this sort of type-safety in Java, but
none of them are particularly elegant. The first is to create your own derived-from-
Vector type that provides type-safe methods to add and remove the elements in ques-
tion; however, this still contains several holes. First, the generic Object-parameter
methods on Vector are still present on your derived class, so unless you explicitly rede-
fine those methods to screen out illegal types, you can’t prevent a programmer from
adding the wrong type. This can be worked around by not extending Vector, and
instead containing a Vector within the type-safe container class and delegating all
work to the inner Vector:

public class StringVector

{

/1

public void addEl enent (String el emn

{

vect or. addEl enent (el en) ;

}

private Vector vector = new Vector();
}

23

24

Unfortunately, this means that because StringVector no longer extends Vector, it can-
not be passed in wherever a standard Vector is expected. While this may not present a
serious difficulty, it's awkward enough to cause problems in those Java frameworks
that pass collections-of-#hings around as parameters to method calls. This, too, can be
worked around by providing a method to return the contained Vector, but this then
opens up the possibility that anybody wishing access to the guts can get them; this
violates all the rules of encapsulation.

Several experimental Java compilers, such as Pizza or GJ (Generic Java), provide
extensions to the Java language that provide this sort of templatelike facility. This
approach too has its drawbacks, most notably using one of these compilers wipes out
the possibility of using any of the major IDEs or debuggers, since the debugger can’t
understand the source to provide inline source-level debugging support. Some of these
compilers can produce standard Java source as output (instead of compiled bytecode),
but even this sort of preprocessing has its problems. Not only is the code you write
with one of these tools nonstandard, so any incoming Java developers will be some-
what at a loss, but obtaining management support for using the tool can be an uphill
struggle. Since most of these utilities come from research institutions and come with-
out corporate facilities for support, IS and IT managers won’t want to touch them.

The recent Sun Community Source Licensing policy has opened up the idea of
introducing generic types into Java, and I'm fervently hoping Sun gives it a serious
look. As with operator overloading, templates turned out to be an easily abused feature
of C++, and so scared many developers away from using them; hopefully the same
story won’t repeat itself within Java. Until the time that generic types become available
within Java, however, we’ll just have to limp along without them, using Object to hold
generic-objects in non-type-safe fashion.

Lacks the tool support of C++

This may have been true in the days of Java 1.0 in 1995; it certainly cannot be said of
the Java 2 in 1999. No less than a half-dozen Java development environments are on
the open market from the same companies that make C++ development environ-
ments: Borland-now-Inprise, IBM, Symantec, Metrowerks, even Microsoft, all have
useful IDEs for the Java developer. Rational Software’s UML CASE tool, Rational
Rose, supports both C++ and Java code generation and reverse-engineering. And just
as many database vendors have JDBC drivers as have ODBC drivers. It’s pure rubbish
to assert that Java lacks tool support.

Given that, it’s an almost certainty that a follow-up comment from the critic will
be something along the lines of “Well, vendor X doesn’t have a Java version of the
library or tool that I need, and they do have a C++ version.” Java still isn’t left out,
however—through JNI, or CORBA, C++ libraries and/or tools can be used within the
Java environment. Chances are more than likely that vendor X is already at work on
a Java port of its library or tool, if for no other reason than to try to capitalize on the
Java hype-wave that’s sweeping the IT industry.

CHAPTER 1 ENTERPRISE JAVA

1.5

SUMMARY

Too new; too unproven

The same was said of C++ a decade ago; that didn’t stop C++ from becoming the
overwhelming language of choice for system- and business-level development. This
argument is losing credibility every day, as Java gains acceptance in more and more
corporate development shops and organizations with every passing hour. While Java
may not command the same kinds of numbers of developers that C++ does today, it’s
getting closer and closer with every survey.

In addition, it doesn’t take much in the way of research to find a number of firms,
including some very large Fortune 500 companies, using Java as the development plat-
form/language. In fact, the whole Y2K problem contributed to this—the Javasoft web-
site recently posted a transcript of an interview at JavaOne with a number of Sun
personalities, including Gosling. During this interview, Gosling stated a “number of
people came up to me and said, ‘Since we had to fix the Y2K thing, we just rewrote
the whole thing in Java.””

I believe this argument is simply corporate inertia at work: “We don’t use it now,
we've standardized on language ‘Z’, we’ll have to train new people on it,” and so on
and so forth. These points all have merit. Standardization is good—it helps centralize
the corporation’s training and development efforts. Simply because a new technology
is there doesn’t mean a company should rush to embrace it—new tools/languages/
environments can carry hidden and unknown costs that can come back and haunt a
firm later. But, while all of these points hold merit, without a conscious drive to make
use of new technologies where appropriate,'? corporations would still be using Z80
Assembler for n-tier distributed object development.

SUMMARY

Java is an ideal language for development on the server. Its garbage collection support
removes the tiresome need for developers to concern themselves with ownership
semantics for objects, at the cost of some performance. Its simplistic syntax reduces
the learning curve for developers new to Java, and its similiarity to C++ allows for
easy migration of C++ developers to Java, at the cost of some of C++’s advanced (and
extremely powerful) features, such as templates.

Enterprise development has its own unique forces and context, different from
that of other types of development such as “vertical market” consumer products, such
as word processors or personal-accounting applications. Enterprise developers must
try to reduce the costs at the same time they maximize the benefits of building custom
software. Toward that end, we will work for the idealized three zeroes: zero develop-
ment, zero deployment, and zero administration. As part of that, we will build reusable
software components and a sample generic application system.

Welcome to Server-Based Java. 1 hope you enjoy the ride.

121 cannot stress this enough. Java is not, nor ever will be, the silver bullet solution to any and all prob-
lems. For it to succeed, it must be applied to problems it is capable of solving.

25

1.6

26

ADDITIONAL READING

* Erich Gamma, Richard Helm, Richard Johnson, and John Vlissides, Design Pat-
terns: Elements of Reusable Object Design (Addison-Wesley, 1995).

This canonical patterns book, is also known as the “Gang of Four” or “GOF”
book in pattern circles. Just about every patterns book written builds off of these
twenty-three. Readers are highly encouraged to at least have a passing familiarity
with this book, as Java itself makes use of most, if not all, of these patterns
throughout its run-time library and core object model.

CHAPTER 1 ENTERPRISE JAVA

CHAPTEHR 2

ClassLoaders

2.1 Dynamic linking 28

2.2 ClassLoaders: rules and expectations 37
2.3 Javas built-in ClassLoaders 49

2.4 Summary 58

2.5 Additional reading 59

Java’s dynamic class loading mechanism is “unusual in supporting all of the following
features: laziness, type-safe linkage, user-defined extensibility, and multiple communicat-
ing name spaces.” In this chapter, we will examine that mechanism and discover not
only how it provides us with some powerful capabilities, but how they can be used to
achieve one Holy Grail of enterprise development: the ability to upgrade code on a
running server without taking the server down.

If you’re not familiar with the basics of Java’s dynamic linking capabilities (for
example, why your CLASSPATH needs to be set during both compilation and execu-
tion of your Java code), then I recommend Inside the Java Virtual Machine by Bill Ven-
ner. If you prefer, you can obtain much of the same material from the Java Language
specification and/or the Java Virtual Machine specification.

! Sheng Liang and Gilad Bracha, “Dynamic Class Loading in the Java Virtual Machine,” from the 13%
Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Ap-
plications (OOPSLA *98), Vancouver, BC, Canada, October 1998.

27

2.1

2.1.1

28

DYNAMIC LINKING

Java is a dynamically linked system. This means all code is linked into the executing
JVM at run time, instead of at compile time, as with C++.2 The means by which
this dynamic linking takes place is through Java’s ClassLoader system, which is
wrapped up in the java.lang.ClassLoader class, and works along with support
within the JVM. There is no exception to this rule—all code loaded into the JVM
must come through a ClassLoader, even the standard Java run-time library. Upon
JVM startup, a bootstrap ClassLoader subtype is created (within the JVM—no Java
code is present yet), and the first class—Object—is loaded into the system from its
corresponding .class representation.

This dynamic linking carries with it implicit assumptions. Because the JVM
knows nothing about the code at the time of JVM startup, it has to be able to examine
each and every loaded class and verify its methods, parameters, fields, and inheritance
relationships in order to verify that the code isn’t malicious or dangerous. Without
this, it would be possible to accidentally mismatch versions of .class files, and poten-
tially trash the VM, which would 7oz look good in front of a client or executive vice
president. Without this, type-safety within the VM would also be impossible.

Because the JVM already has to do this rather deep run-time introspection of the
code, Sun chose (as of JDK 1.1) to make this introspection capability available to the
users of the system. This is known as Java Reflection, and offers us unique, run-time
dynamic loading capabilities.

Run-time dynamic loading

Run-time dynamic loading, as I choose to call it, is different from load-time dynamic
loading. The latter is the usual form of coding familiar to most Java programmers:

public class Hello

{
public static void main(String[] args)
{
System.out.printin(“Hello, world!”);
}
}

In the above, when the JVM loads the Hello class, it notices that the compiler has
flagged Hello as using the System class. If System (more accurately, java.lang.System)
hasn’t been loaded by this point, the JVM must run off and load System in before it
can finish loading Hello. The same is true of String and Object (which Hello implic-
itly extends, remember), and any classes used in turn by those two classes.

2 Excluding, of course, dynamic linking with C++. Even then, however, the linker brings in stubs that
are capable of performing the actual dynamic linking step; from a purely technical perspective, C++
does not support dynamic linking implicitly.

CHAPTER 2 CLASSLOADERS

Run-time dynamic linking, however, looks and feels different from standard
compile-time dynamic linking. In this approach, we defer until run time the name of
the class to load, instead of coding it directly into the source code.

public class Dynani cCode
{
public static void main(String[] args)
throws Exception// a lazy way to not deal with Exceptions
{
/'l Get the name of the class to |oad and execute off the conmand
/1 line's first argument (after "java Dynam cCode")
if (args.length < 1)

{
System out. println("Usage: java Dynani cCode <class to run>");
Systemexit(-1);

}

Class cls = Class.forNanme(args[0]); // ***

Obj ect obj = cls.new nstance(); [***

The above two lines are the interesting ones—we are constructing an object without
knowing (or, for that matter, caring) what its actual type is. Class.forName returns to
us a java.lang.Class object, and in the next line, we ask the Class object for a new
instance of an object whose type is represented by that Class.
/] Cast the bject to a Runnable so we can invoke the run() nethod
/] on it

Runnabl e r = (Runnabl e) obj;
r.run();

}

The rest of the application simply casts the returned object to a Runnable object,
then executes its r un method. Naturally, if the object’s type doesn’t implement Run-
nable, we'll get a ClassCastException at run time, and the application will fail. This is
one of the things we surrender in doing this kind of compile-time type ignorance—
compile-time type-safety is pretty much thrown out the window.

Note that the Class class represents the type of an object. In Java we can represent
(at run time) the nature of the type system as actual Object instances (of type Class)
within the system.
Class cls = Class.forName(“java.lang.String”);
Object obj = cls.newlnstance();
String s = (String)obj;
In the above code, the instance cl s3 represents the Java class String. This means that,
using Java’s Reflection mechanism we can examine all sorts of things about the class

3 One thing to remember when working with the O ass type in Java—because “class” is a keyword, any
attempt to use it as a variable name will yield all sorts of compile errors.

DYNAMIC LINKING 29

30

java.lang.String, and through the use of the newl nst ance method, create new
instances of String, and so forth. The key to remember is that ¢l s is not a String;
cl s is a Class. The next line, where we create an instance of the object whose type is
represented by cl s, is where we finally end up with a String object—obj is a String.
We guarantee that by doing the cast on the next line.

If cl s in the above case represents the String class, why can’t we get String back
from newl nst ance? Why does it have to return an Object, which we then have to
downcast? The reason, of course, has to do with the fact that the Java compiler, at com-
pile time, has no idea of the type you're creating when you call newl nst ance. The
argument to Class.forName could be anything, even an invalid class name. Because
Java lacks any sort of “parameterized” type facility (such as that found in C++ tem-
plates), we can’t code the return type to do the compile-time check for type-safety later.

This is just one example where templates in Java would be really useful; for exam-
ple, we could write, instead:

Class<String> cls = Class.forName(“java.lang.String”);
String str = cls.newlnstance();

Unfortunately, doing this would break too many other Java linguistic and run-time
rules, so I think we'll just have to do without templates in Java.

Going back to the original code snippet, we take the first argument given to us
on the command line. We create a Class around that argument, and we create an
instance of an object from that Class, all without knowing what it really is. In fact, we
don’t care about its actual type. We're effectively writing a statement where we are
new-ing an object, without needing the object’s name. To prove it, let’s write more
code, and try running it:

public class First
i mpl enents Runnabl e

{
public void run()
{
Systemout.printIn("First!");
}
}

public class Second
i mpl enents Runnabl e

{
public void run()
{
System out. println("Second!");
}
}

Remember, DynamicCode.java knows nothing about these two classes. Prove it to
yourself by deleting the files from the working directory when you compile these,
and notice how DynamicCode.java compiles without a hitch. (Remember, the Java

CHAPTER 2 CLASSLOADERS

compiler automatically compiles classes that are referenced in source code if they're
not already compiled, so any dependencies between code modules are immediately
resolved, unlike in C++ or C.) Ifll even run (albeit with an exception if you specify
an argument)—no dependency is present.

Now, if you run DynamicCode, passing in First or Second:
C:\ proj ects\ssj\cd\src\chap02> java Dynani cCode First
First!

C:\ proj ects\ssj\cd\src\chap02> java Dynam cCode Second
Second!

Notice that in each case, the appropriate string was printed. Java loaded the
First.class, found its r un() method, and executed it; the same for Second.class. All of
this happened flawlessly, without knowing about either class at the time the developer
compiled the DynamicCode.java code.

In fact, we've achieved something a number of C++ programmers would kill
for—the ability to create code that can be loaded at run time and executed, without
having to know its type at the time the project was compiled. A number of technol-
ogies have arisen from this concept: Netscape plug-ins, Microsoft ActiveX objects,
CORBA (through its Dynamic Invocation and Dynamic Skeleton interfaces), and so
forth. This is powerful technology at our fingertips.

Some of you may be curious to know why First and Second have to implement
Runnable; others of you may be curious to know if this dynamic instantiation capa-
bility violates Java’s type-safety guarantee. The answer to both questions is related. We
need to have some interface to cast the Object returned from € ass. newl nst ance,
so we can call on it without violating type safety. Runnable happens to provide a con-
venient interface to do that. It doesn’t have to be Runnable; it could be any interface
we define, which is precisely what we’ll do when we build the first cut of our Generic
Java Application Server system later in the book.

If’s not necessary to require that all classes implement a particular interface in
order to be called through run-time dynamic linking; we can also use Java’s Reflection
API to accomplish the same task.

Reflection

Reflection is the ability to examine the type of an object at run time. Put in practical
terms, Reflection allows us to do away with compile-time type requirements, and call
any arbitrary method at any arbitrary time on any arbitrary object without having to
know that object’s type at compile time (listing 2.1).

Listing 2.1 Coding DynamicCode for Reflection

public class ReflectingDynani cCode
{

public static void main(String[] args)
throws Exception// a lazy way to not deal with Exceptions

{

DYNAMIC LINKING 31

/1 Get the name of the class to | oad and execute off the commuand
/1 line's first argument (after "java Dynam cCode")

/1

if (args.length < 1)

{
System out. println("Usage: java Dynam cCode <class to run>");
Systemexit(-1);

}

Class cls = Cass.forNane(args[0]);
oj ect obj = cls.new nstance();

/1 Reflect on the dass; find the nethod naned "run" that takes
/1 no argunents and returns no return val ue

/1

java.l ang.refl ect. Method[] nethods = cls. get Met hods();

for (int i=0; i<methods.length; i++)

{
System out . println("Checki ng name of " + cls.getNane()
+ "." + methods[i].getNanme());
if (nmethods[i].getNanme().equals("run"))
{
if (methods[i].getReturnType().equal s(java.lang. Voi d. TYPE) &&
nmet hods[i]. get Paranet er Types().length == 0)
{
/1 methods[i] is the Method that corresponds to the
/1 method "void run()". Call it.
/1
bj ect ret = nmethods[i].invoke(obj, null);
if (ret !'=null)
Systemout.printIn("??? run()’'s not supposed to " +
"return me sonething!");
}
}
}

Loading and running it with First and Second (this time with Runnable removed
from the class declaration) yields the following results:

C:\ Proj ect s\ SSJ\ cd\ src\chap2> java Refl ectingDynanm cCode Refl ectedFirst
Checki ng nanme of ReflectedFirst.equals

Checki ng nane of ReflectedFirst.getd ass

Checki ng nane of Refl ectedFirst. hashCode

Checki ng nanme of ReflectedFirst.notify

Checki ng nane of ReflectedFirst.notifyAll

Checki ng nane of ReflectedFirst.toString

Checki ng nane of ReflectedFirst.wait

Checki ng nane of ReflectedFirst.wait

Checki ng nane of ReflectedFirst.wait

CHAPTER 2 CLASSLOADERS

Checki ng nane of ReflectedFirst.run
First!

C:\ Proj ect s\ SSJ\ cd\ src\ chap2>

Notice that in the code for ReflectedFirst, there’s no longer the Runnable interface, just to
make sure were not somehow casting it back to a Runnable to make the r un call work.
What'’s going on in this new version is a bit interesting, so let’s take it step by step.

The first difference is listed below.

/1 Reflect on the Cass; find the method named "run" that takes
// no arguments and returns no return val ue

/1

java.lang.reflect. Method[] methods = cls. get Met hods();

for (int i=0; i<methods.|ength; i++)

{
System out. println("Checking name of " + cls.getNanme()
+ "." + methods[i].getNane());
if (nmethods[i].getNanme().equals("run"))
{
if (nethods[i].getReturnType().equal s(java.lang.Void. TYPE) &&
net hods[i]. get Paranet er Types().length == 0)
{
/1 methods[i] is the Method that corresponds to the
/1 method "void run()". Call it.
/1
oj ect ret = nmethods[i].invoke(obj, null);
if (ret !'=null)
Systemout.printIn("??? run()’'s not supposed to " +
"return me sonething!");
}
}
}

In DynamicCode.java, the code simply cast the returned Object to a Runnable. If the
cast succeeded, then it called run on it. It can do this because the Runnable type is
known at the time the code is compiled. If we happen to try to run DynamicCode on
a class file that doesn’t implement Runnable, then we’ll get a java.lang.ClassCastEx-
ception at the point we make the cast. This is simple Java.

In this second version, ReflectingDynamicCode doesn’t attempt the cast. Instead,
it asks the Class object for all of its methods, via the Cl ass. get Met hods call. This
API call returns an array of java.lang.reflect. Method objects. We could have asked this
Class for a list of all the interfaces it supports (via the get | nt er f aces call), or even
a list of all the fields of this Class (via get Fi el ds) had we desired. But since we’re
only interested in knowing whether or not we can call r un on this class, the code just
pulls back all the Methods on this Class.

Once we have the array of Methods, we simply iterate through them until we find
a Method with the name “run.” Because Java allows us to overload parameter types to
methods with the same name, we need to make sure we have the void-return, no-args

DYNAMIC LINKING 33

34

version. This is accomplished by asking the Method object what its return type is, and
comparing it against the Class object java.lang.Void. TYPE. We then check to make sure
that its parameter types count is zero, that is, it’s not expecting any arguments, and we
know we’ve found the right one.

Method provides a singularly powerful API call, called i nvoke. This method
allows us to fill in the parameters (if there were any), hand it an Object on which to
make the call (which in this case will be the Object we got from newl nst ance way
back when), and then makes the call. If there’s a return value, it will be handed back
as an Object (which will be nul | if the return type is declared as voi d, as is the case
here). C/C++ programmers can think of it as a generic function pointer—once you’ve
got it, you just call through it without caring where it came from.

We have, without knowing anything about a type at compile time, executed a
method, fulfilling all the rules of type-safety while we were at it. This is powerful stuff!
This is precisely the same technology Microsoft created when it created the OLE Auto-
mation API—the ability to call methods on an object without knowing about that
object ahead of time. Visual Basic (up through version 4) was built on this foundation,
and was (is) wildly successful. The JavaBeans technology system uses Reflection exten-
sively, as well, for much the same purpose. Most of your upcoming EJB servers and
environments will also use it to discover what code they need to generate to support
your Enterprise JavaBeans.

So why don’t we make use of this in the first version, instead of limiting ourselves
to the Runnable interface? Two reasons: Reflection is slow. Granted, you’ll only have
to do it once, when you first load the Class, but it will still take time to do. Second,
our server needs to know precisely how to call all these methods. Yes, we can find out
what parameters are expected in a method call, but we can’t (not through Reflection,
anyway) find out what those parameters are supposed to mean. Does that String
parameter mean a person’s name, or a textual representation of a number to write to
disk? Is that bool ean for indicating the object should display an OK button in the
window, or for indicating that the object needs to persist itself to disk, right now? It’s
a far better design decision (and maintenance decision) to have a single interface that
all objects subscribe to if they want to participate in your system. Still, Reflection can
sometimes get you out of situations that would otherwise be untenable.

Reflection and the metamodel

One of the most powerful features of the Reflection model is the ability to work with
the metamodel of a class system. The metamodel is to an object system what metadata
is to a database—a description of the model itself. Just as being able to influence the
metadata of a database system can lead to powerful (and potentially very complex)
capabilities, so too can being able to use the metamodel of an object system give you
some important capabilities.

CHAPTER 2 CLASSLOADERS

Consider the following code in listing 2.2:

Listing 2.2 Source code for using the metamodel

inport java.lang.reflect.*;

public class TestSuite

{
public TestSuite(String classnane)
{
try
{
/1 Load the O ass given by classnane
/1
Class cls = O ass.forNane(cl assnane) ;
/1 See if it exposes a "void test()" method; if so, call it
/1
java.l ang.refl ect. Method[] nethods = cls. get Met hods();
for (int i=0; i<methods.|length; i++)
{
/1 Systemout. println("Checking nane of " + cls.getNane()
I + "." + methods[i].getNanme());
if (methods[i].getName().equal s("test"))
{
if (nethods[i].getReturnType().equal s(
java.l ang. Voi d. TYPE) &&
nmet hods[i]. get Paranet er Types().length == 0)
{
/1 methods[i] is the Method that corresponds to the
/1 method "void test()". Call it.
/1
Object ret = nmethods[i].invoke(null, null);
if (ret '=null)
Systemout.println("??? test()'s
not supposed to " +
"return nme something!");
}
}
}
}
catch (Exception ex)
{
ex. printStackTrace();
}
}
public static void main(String[] args)
{

// lterate through each arg, attenpting to load that class
/1 and execute its test() method

/1

for (int i=0; i<args.length; i++)

DYNAMIC LINKING 35

36

new Test Suite(args[i]);

}
}
public static void test ()
{
Systemout.println("Running test....");
/1
Systemout.println("Test conplete!");
}

The foregoing code can effectively act as your regression testing system—simply define
at est method in each class you want to test, place the name of the class on the com-
mand line to TestSuite, and execute the TestSuite class. TestSuite will load the class and
call its static t est method. If no method is found, it just moves on to the next one.
So what? We could do the same thing, just by defining mai n and calling the class
directly from the command line. What real advantage does this offer us? Aside from the
practical advantage of having a single class to run in order to test any class in your Java
system, there’s the more important realization of what you can do with Reflection. You
could create SQL schema based on a class’s fields, in order to be able to store any Java
type within an RDBMS. You could use it as JavaBeans does, to introspect a particular
class and determine what operations it supports. You could generate code (as most EJB
servers/containers do) to wrap an externally created class, in order to help ensure against
poorly written code crashing your system. You could also use Reflection to obtain a
flexibility that interfaces can’t offer—simply tell your clients that they have to write
methods that conform to a given signature (as we do above with the t est method),
and they will be able to plug into your system. This way, clients don’t have to imple-
ment or extend any particular class in order to hook in to your server framework. That
offers a measure of flexibility that simply can’t be met in any other popular language.

Reflection considerations

There is one drawback: Reflection carries with it the loss of compile-time error check-
ing. Assume that I use the above TestSuite as my regression-testing mechanism, and I
accidentally misspell the method t est ast set . What happens? Absolutely nothing,
at least at compile time. Because the compiler can’t realize the intent of the call—
Reflection takes place at run time, remember, not compile time, so compile-time
information isn’t available—it can’t tell you that you've misspelled the method.
Unfortunately, you won't get a run-time error, either, except that you'll never fall into
the code block that calls Met hod. i nvoke to invoke the test. The same will be true
if you get the name right, but accidentally give it a parameter to the call.

CHAPTER 2 CLASSLOADERS

2.2

2.2.1

Reflection is a powerful feature of Java. By offering us the ability to inspect a
loaded class at run time, we gain the ability to program generically and at the meta
object level. In fact, several systems have been built by researchers toward that exact
purpose—providing meta-object support at run time via Java’s Reflection model.
Here are some possibilities (some of which we’ll explore later in this book):

* Using Reflection to determine if a loaded class supports a given interface (such as
Runnable, to know if it can be multithreaded, or Serializable, to know if
instances of it can be serialized safely).

* Using Reflection to determine if a loaded class follows a certain design para-
digm (such as the Service interface built later in this chapter to support GJAS)
or pattern.

* Using Reflection to build, at run time or as part of a compile-time system, Proxy
classes to provide location-transparency of user code.

¢ Using Reflection to build metadata representations of object types.

Reflection can be a powerful mechansim; just be aware of the costs and implica-
tions of using it within your own systems.

CLASSLOADERS: RULES AND EXPECTATIONS

Java has specific rules regarding the use of ClassLoaders and how (and when) class
files are loaded, reloaded, or unloaded from the JVM. Understanding these rules is
crucial to unlocking the power of ClassLoaders, both in using them as well as in cre-
ating your own custom versions.

Java .class file format

While understanding the Java compiled bytecode format (commonly referred to as
the .class file formart) is not critical to understanding Java’s ClassLoader mechanism, a
good working knowledge of its layout is useful to have for discussion of the custom
ClassLoaders we'll get into later.

In truth, this format really isn’t a format for how the bytes must lay out while
residing on disk; this format only describes how the bytecode making up a given com-
piled Java class must exist when handed to the ClassLoader def i ned ass method.
This means that:

o Java doesn’t care if the bytecode comes from the local disk or from some other resource.
In fact, Java doesnt care if the bytecode didn’t exist more than a second or two
ago, a fact which makes technologies like JSP possible.

* Java doesn'’t care in what format within a file the bytecode is stored while it is resting
on disk.
Although it wouldn’t be Sun-certifiable 100 percent pure Java, a Java interpreter
could even require its bytecode to be in an entirely different format when load-
ing from disk.

CLASSLOADERS: RULES AND EXPECTATIONS 37

38

* Java doesn’t care where the bytecode came from before it was bytecode.
Several programming languages have already been ported to compile into the
Java bytecode format, for execution in any standard Java virtual machine, such as
Ada95, BASIC, and Logo.

Despite the flexibility of being able to load Java bytecode from customized for-
mats, 99.9 percent of the Java developers in the world will make use of the standard
Java .class file format, varying only in the way the code is stored or the way the code
is generated/compiled.

Java Virtual Machine Specification by Tim Lindholm and Frank Yellin defines the
Java .class file format as a single instance of the following ClassFile pseudostructure:

Listing 2.3 A ClassFile pseudostructure

ClassFile
{
u4 magic;
u2 m nor Version;
u2 nmj or \Ver si on;
u2 const ant Pool Count ;
const ant Pool | nf o
{
ul tag;
ul info[];
} const ant Pool [const ant Pool Count - 1] ;
u2 accessFl ags;
u2 thisd ass;
u2 superd ass;
u2 interfacesCount;
u2 interfaces[interfacesCount];

u2 fieldsCount;
fieldlnfo
{
u2 accessFl ags;
u2 nanel ndex;
u2 descri ptorlndex;
u2 attributesCount;
attributelnfo { ... } attributes[]; // see below for attributelnfo
} fields[fieldsCount];

u2 methodsCount;
methodinfo
{
u2 accessFlags;
u2 namelndex;
u2 descriptorindex;
u2 attributesCount;
attributelnfo { ... } attributes[]; // see below for attributelnfo
} methods[methodsCount];

CHAPTER 2 CLASSLOADERS

2.2.2

u2 attributesCount;
attributelnfo
{
u2 attribut eNanel ndex;
u4 attributelLength;
ul info[attributelLength];
} attributes[attributesCount];

}
|

(where ul is an unsigned single-byte type, U2 is an unsigned two-byte type, and u4 is
an unsigned four-byte type).

While I won’t go into deep details regarding the .class layout, the constants, val-
ues, and various specification-mandated attribute types or constant pool entry types,4
I do want to draw attention to a peculiar quirk of the format. Notice that places where
one might expect strings or character arrays to appear, name index values appear
instead. This is because within the Java bytecode format, a// constants, strings, num-
bers, method names and signatures (both defined within this method and calls on
other classes), field names, even this class’s name and its parent’s name, are all stored
within a single table called the constant pool. All name indexes, then, are offset into this
constant pool, which stores both the actual type of the constant in the t ag field, and
the data of the constant (numeric value, UTF-8 string for names, and so forth) in the
i nf o field. Note that there are no fixed-lengths in any part of the format; this forces
any code that wants to parse and pick apart the compiled bytecode to do it in a byte-
by-byte fashion.

Also notice that there is no field for package within the format; this is because the
class is stored in its fully qualified classname, a la com.javageeks.classloader.FileSys-
temClassLoader, instead of as FileSystemClassLoader, as specified within the .java file.
In fact, the name stored won’t be the dot-separated name at all, but in Java’s unique
mangling signature: Lcom/javageeks/classloader/FileSystemClassLoader; (note that
the semicolon is part of the name). Any place where a class name is expected or used,
the full mangled name is used instead.

A quick and easy way to identify if a particular bytecode stream is a valid .class
format stream is to check the first four bytes of the stream for the value 0xCAFEBABE.
This is the official magic number for Java class files, and any conformant .class format
stream has to follow along if it wants to play in the JVM.

Using ClassLoader

Using a ClassLoader is actually relatively simple, from the client’s point of
view—instantiate a ClassLoader with the appropriate information, ask it for a
Class by name, and if the ClassLoader can comply, one will be provided; if not,

4 See Bill Venners’ Inside the Java Virtual Machine (McGraw-Hill, 1998) for an excellent description, or
the Java Virtual Machine Specification (Addison-Wesley, 1997), by Tim Lindholm and Frank Yellin.

CLASSLOADERS: RULES AND EXPECTATIONS 39

40

a O assNot FoundExcept i on will be thrown. Boiled down to code, it looks
like this:

Cl assLoader cl = . . .;
Class classString;

”

/I Create an instance of the class “java.lang.String

try
{

classString = cl.loadClass(“java.lang.String”);
}
catch (ClassNotFoundException cnfEx)
{

cnfEx.printStackTrace();
}

Once the Class is retrieved, typically the next step is to instantiate an object of that
type. The Ol ass. newl nst ance method creates an instance of the type represented
by the Class, calling the class’ default constructor as in listing 2.4

Listing 2.4 Calling Class.newlnstance

Class classString; // from above

try

{
bj ect obj = classString. newl nstance();

}

catch (InstantiationException instEx)

{
/1 Instantiation of an object of that type cannot occur; this is
/] usually due to an attenpt by the programmer to instantiate a
/1 nonconcrete type, like an interface, an abstract class, etc.
i nst Ex. printStackTrace();

}

catch (111 egal AccessException ill AccEx)

{

/1 The JVM cannot access the necessary constructor to initialize
/1 an instance of this class; this is usually because the
/I class’s default constructor is private or otherwise
/I unavailable
illAccEx.printStackTrace();
}
catch (ExceptionIninitializerError exInInitErr)
{
/I An initializer block within the class threw an exception,
/I which terminated the initialization of the object; because
/I Java forbids objects remaining in an indeterminate state,

It’s impossible to invoke a constructor other than the default constructor through O ass. new n-
st ance. This is why, when a class is compiled, the Java compiler will synthesize a default constructor
for you if the code does not provide one.

CHAPTER 2 CLASSLOADERS

223

/1 the exception killed the object and cane back here
exInlnitErr.printStackTrace();

}

catch (SecurityException secEx)

{
/1 A Java Security policy prevents the instantiation of objects
/1 froma Cdass in this codebase
secEx. print StackTrace();

}

The above code is functionally equivalent to

String str = new String();

“All that work, just to get a lousy St ri ng?” Don’t underestimate the power of what
we've done here; we've effectively created an instance of a class, without needing to
know anything of that type at run time. This sort of loose coupling can do some truly
amazing things.

java.lang.ClassLoader

ClassLoader’s design is an almost perfect Factory Method® pattern: an abstract Cre-
ator (ClassLoader) defines an interface by which a Product is returned to callers (cli-
ent code or the JVM itself, depending on the situation). Users are then able to
subclass the Creator to create ConcreteCreator (custom ClassLoader) classes which
return ConcreteProduct (again, Class objects, the only deviation from the pattern as
defined by the Gang of Four) instances.

With the release of the Java 2 platform, ClassLoader’s interface and semantics
were redefined somewhat to make it easier for developers to extend the Java class-
loading mechanism quickly and easily. As a result, some existing ClassLoader code
written for 1.1 or 1.0 may not function properly within the Java 2 platform environ-
ment; unfortunately, there’s no trivial way to know except to visit the code and reim-
plement the ClassLoader-derived class.

The most signficant change between Java 1.x and Java 2 is the relationship of
ClassLoaders to one another. In Java 2, all ClassLoaders have a parent ClassLoader to
whom they will give first shot at class-loading. This is known as the delegating Class-
Loader model, and marks a significant change from how ClassLoaders operated in pre-
vious versions of Java.

ClassLoader delegation

Java has changed the way ClassLoaders were meant to be written from Java 1.0 to Java 2.
As a result, much of the existing literature regarding the creation of ClassLoaders is
flat-out wrong, and (hopefully) will be corrected soon. Most of this wrongness is due

6 Design Patterns, p 107

CLASSLOADERS: RULES AND EXPECTATIONS 41

42

to Javas changing the intent of the Factory Methods within the ClassLoader API; spe-
cifically, the intent of the | oadCl ass method changed, and from that one change
stems most (if not all) of the problems.

In Java 1.x, the approach to creating a custom ClassLoader was to override the
loadClass method and provide an implementation there that located and loaded the
bytecode, then called def i ned ass to return the actual Class instance. For example,
this description and example come straight from the JDK 1.1.7 documentation set:

The network class loader subclass must define the method | 0cadd ass to
load a class from the network. Once it has downloaded the bytes that make
up the class, it should use the method def i neCl ass to create a class instance.
A sample implementation is:

cl ass Networ kA assLoader {
String host;
int port;
Hasht abl e cache = new Hashtabl e();

private byte | oadd assData(String nane)[] {
/1l load the class data fromthe connection

}
publ i c synchroni zed d ass | oadd ass(String nane,
bool ean resol ve) {
O ass c = cache. get (nane) ;
if (c == null) {
byte data[] = | oadd assDat a(hane) ;

c = defined ass(data, O, data.length);
cache. put (nane, c);

if (resolve)
resol ved ass(c);
return c;

The | oadd ass method, then, serves as the Factory Method within the pattern in
the JDK 1.x ClassLoader.

Note, also, that the Java 1.x ClassLoader required that derived types hold a ref-
erence to loaded Class instances. This was not to support caching of Class instances,
as some surmised, but to ensure that the Class couldn’t be garbage-collected until all
objects using it were also released. Java already knows if a Class has been loaded into
the JVM or not, so it will not ask the ClassLoader to load a class already loaded; thus,
caching was wasted. Instead, because the Class instance is a normal Java object like any
other, it could be garbage-collected unless a reference was held to it somewhere within
the system.

The Java 1.1 ClassLoader system pictorially resembles figure 2.1.

As you can see, if a request for a new Class comes in to a particular ClassLoader,
the ClassLoader must check with the system ClassLoader first, then attempt to load
the Class itself.

CHAPTER 2 CLASSLOADERS

System
ClasslLoader

ClassLoader ClassLoader ClassLoader

Figure 2.1
Java 1.1 ClassLoader relationships

This approach worked for single-level O assLoader hierarchies (running an
AppletClassLoader to download code from an HTTP server, for example). However,
when Java developers began to examine more complex relationships (loading a Class-
Loader from within customClassLoader, for example), it became obvious that this
design would fail hideously over time—the 1.1 model couldn’t track the complex
Loader-within-a-Loader relationships. Consider this concept: normally, the Java
bookstrap ClassLoaders are used to load Java code from disk or extension. However,
for a given project, a ClassLoader is written to load Java code from a database. A sec-
ond custom ClassLoader is deployed within that database, to reach across the wire to
find classes running on a server. When the bootstrap ClassLoader loads the client class,
the client creates an instance of the custom database ClassLoader (which, because it
must be found by the primordial ClassLoaders, must reside on disk), and uses that to
load a series of classes. As part of that, the socket-based ClassLoader is loaded and
instantiated, and used to pull more code across the wire for execution (figure 2.2).

System
ClasslLoader
Database Applet Socket
ClassLoader ClassLoader ClasslLoader
Figure 2.2
Socket ClassLoader and database-
ClassLoader working together

Now, when a class, stored in the database, is requested of the socket ClassLoader,
under the 1.1 rules, it will fail completely; the 1.1 ClassLoader scheme knows only about
itself (the socket ClassLoader, in this case) and the bootstrap (a.k.a. the system) Class-
Loader. Because the class requested comes from the database ClassLoader, both attempts,
one by the socket ClassLoader, the other by the system ClassLoader, will fail.

CLASSLOADERS: RULES AND EXPECTATIONS 43

44

Thus was the concept of parent ClassLoaders born: instead of automatically
deferring the request to the system ClassLoader, under Java 2, a ClassLoader should
instead ask the ClassLoader that loaded 7z This allows for the mentioned sort of chain-
ing all the way back to the root, the system ClassLoader, which, for purposes of our
discussion, has no parent (figure 2.3).

Bootstrap

ClassLoader (4— ExtCIassI__oader < AppCIassIToader 4— MyClasslLoader
; (sun.misc) (sun.misc)

(native code)

Figure 2.3 The Java2 ClassLoader Delegation model—parents and children

When Java 2 revamped the ClassLoader mechanism (to allow for the cool Extension
system, which we’ll explore in detail in chapter 4), unfortunately it had to break a few of
its Java 1.x rules. To start, | oadCl ass is no longer the method to override within Class-
Loader; instead, that task falls to f i ndCl ass. In the new system, | oadCl ass provides
the necessary delegate-to-your-parent-first behavior, so derived ClassLoader types don’t
have to worry about their parent ClassLoader:

/! Fromsrc/javal/lang directory in the JDK 1.2
public class C assLoader

{
protected synchronized Cass | oadC ass(String nane,
bool ean resol ve)
t hrows C assNot FoundExcepti on
{
/Il First, check if the class has already been | oaded
Class ¢ = findLoadedd ass(nane);
if (c ==null) {
try {
if (parent !'= null) {
c = parent.| oadC ass(nane, false);
} else {
¢ = findBootstrapC ass(nane);
}
} catch (C assNot FoundException e) {
/1 If still not found, then call finddass in order
/1 to find the class.
¢ = findd ass(nane);
}
}
if (resolve) {
resol veC ass(c);
}
return c;
}
}

CHAPTER 2 CLASSLOADERS

As you can see, ClassLoader.loadClass is first going to check to see if the class has
already been loaded. If not, it will call its parent’s | oadCl ass method to see if the
parent knows where to find the class. This is important. It’s going to have ramifica-
tions on the way GJAS (and any other dynamic-class-loading system built using Java 2)
will be loaded and stored. If the parent fails to load the class, only then does the
derived ClassLoader type get a crack at loading the Class via its f i ndCl ass method.

That’s the way it’s supposed to work. But as you can see, comparing the JDK 1.x
example with the Java 2 approach reveals a serious hole. If NetworkClassLoader, as
defined by the Java 1.x documentation set, is compiled and executed, the whole delegating-
ClassLoader paradigm is broken. This means that if the NetworkClassLoader is created
by a class which in turn was loaded from a different ClassLoader, NetworkClassLoader
will not defer loading of classes to its parent when asked to; instead, it will attempt to load
the code via its own methods, fail, and throw a ClassNotFoundException.

In point of fact, it’s much easier to break this parent-ClassLoader scheme than
you might first imagine. Consider this ClassLoader constructor—the default one
invoked if no parentClassLoader is specified as a constructor parameter:

/1 Fromsrc/javal/lang directory in the JDK 1.2
protected C asslLoader ()

{
SecurityManager security = System get SecurityManager();
if (security !'= null) {
security. checkCreat eCl assLoader();
}
this. parent = getSystenCl assLoader(); [[*** |ine 7
initialized = true;
}

The relevant line is line 7 which calls get Syst enCl assLoader () to obtain the
system ClassLoader as this ClassLoader’s parent. This is a dangerous implementation
because it makes the same fundamental assumption that the 1.1 ClassLoader scheme
did, that your parent, by default, will always be the system ClassLoader.

In fact, the default assumption should be that your parent ClassLoader will be the
one that loaded you, regardless of which ClassLoader it actually is (system or otherwise).
JavaSoft may not call this a bug, per se, but in order to properly support ClassLoader-
chaining, derived ClassLoaders must now ensure that they pass their parent to the con-
structor, as in:

public class Derivedd assLoader extends O assLoader

{
public DerivedC assLoader ()

{

super (DerivedC assLoader. cl ass. get Cl assLoader ());

/1 . . . Oher initialization .

CLASSLOADERS: RULES AND EXPECTATIONS 45

46

The use of .class within the call to the ClassLoader constructor may seem awkward
and unusual here; unfortunately, it’s necessary, since Java disallows calling getClass on
an object within its constructor, since the object may not be fully formed or initial-
ized yet. The .class keyword, on the other hand, refers explicitly to the Class for the
class DerivedClassLoader, which is statically resolvable, and so doesn’t require com-
pleted initialization of this DerivedClassLoader instance. The drawback is that any
class name might be accidentally used here, which makes this code sequence particu-
larly vulnerable to cut-and-paste errors.

You might find this all a bit esoteric; after all, most Java code isn’t written to use
multiple custom ClassLoaders, or even to use one. Unfortunately, this concerns Java
programmers more than they might expect. With the increase of generic application
servers (EJB or otherwise, such as the GJAS system we’re building within this book),
multiple ClassLoaders are on the way. For example, most EJB servers will define their
own ClassLoader to control the loading and unloading of EJBs within the server; if the
Beans in turn attempt to use a custom ClassLoader, then everybody’s got to play by
the rules of the Java 2 system, or else things will break very quickly. Another such case
is the ubiquitous applet—with the relaxation of constraints on the applet sandbox
(assuming verification of the applet code, of course, on the client machine), it becomes
possible for applets to do some custom ClassLoading. However, applets, as we’ve
already discussed, are already using AppletClassLoader to pull down their Applet-
derived class and any supporting code required by the applet. Toss in a RMIClass-
Loader, or any other form, and if everybody’s not playing by the rules, ClassNotFound-
Exceptions (or ClassCastExceptions, as classes attempt to cross name space barriers)
rule the day.

A few other rules changed in Java 2, as well. Java 1.x required that the loadClass
method be synchronized, in case multiple Threads using the same ClassLoader asked
for a class at the same time. Unfortunately, this wasn’t a very well-popularized fact, and
several ClassLoaders were written without the synchr oni zed keyword, leading to
the possibility of multiple Threads inside the same ClassLoader instance’s | oadd ass.
Java 2 takes care of this, since | oadC ass is synchroni zed (and will continue to
hold the lock while f i ndCl ass is called within it) and thus requires no explicit syn-
chronization on the part of its derived types.

The only ClassLoader in the system without a parent ClassLoader is the bootstrap
ClassLoader, which is responsible for the loading of the Java run-time classes. This
(implemented entirely within the JVM, so details regarding its behavior and/or exist-
ence are not standard across JVMs) will always be the first in any ClassLoader chain,
and will be responsible for the loading of all classes within the Java run-time
library.”We'll cover the changes this made when we talk about custom ClassLoaders.

7 Basically all the classes stored in the rt.jar file in the JRE\lib directory, plus some others.

CHAPTER 2 CLASSLOADERS

ClassLoader API

In keeping with the Factory Method pattern, the designers of Java provide three

abstract methods which subclasses of ClassLoader must implement in order to provide

all ClassLoader operations. However, because not all ClassLoaders will want to provide

all operations, ClassLoader also provides a no-op definition of each method. This way,

if a ClassLoader doesn’t want to provide class-loading, resource-loading and/or native-

library-loading support, no additional code need be written to indicate that.
ClassLoader’s API can be broken into the following groups:

» The public API

get Parent returns the parent ClassLoader to this one. get Resource/

get Resour ceAsSt r eant get Resour ces returns a single resource, as an
InputStream, or an Enumeration of all resources available within this instance.
“Resources” is a deliberately vague term, and can include such things as image files
(.GIF or .JPEG, for example), audio or other multimedia files, or even plain text or
other data. One such type resource could be Serialized data of initial data values
within the class. get Syst enC assLoader/ get Syst enResour ce/ get -

Syst enResour ceAsSt r eant get Syst enResour ces return the system ver-
sions of the above: the system (or bootstrap, or root) ClassLoader, or the resources
loadable from within the system ClassLoader. Finally, | oadC ass is the API used
to load, link, and initialize Java classes.

* The FactoryMethod APIs
findd ass, findLi brary, fi ndResour ce, and fi ndResour ces are the
factory methods as described by the Factory Method pattern. These will be the APIs
overridden in derived classes, and as such, will be covered later. fi ndSyst em
d ass is effectively a wrapper around get Syst enCl assLoader (). fi nd-
d ass(), and will not need to be overridden by derived ClassLoaders, despite its
seemingly related name.

» The base APIs
def i ned ass provides a convenience method for translating a bytecode array
to a Class object, performing all the loading, linking, and initialization necessary
on the class. Internally, def i neCl ass defaults to the use of a native method,
def i ned assO0, so the actual work necessary to define a class within the JVM
remains hidden from prying eyes unless you have the Java 2 Source Release.
def i nePackage provides the ability to define a new Package instance (which
represents all packages loaded by this ClassLoader) within this ClassLoader;
frankly, unless your ClassLoader is dealing explicitly with signed/sealed jar files,®
this method won’t be of much use. The same goes for get Package and/or

8 This sort of security is more intended toward relaxing some of the restrictions on the applet sandbox,
and more than likely won’t be applicable within a server application. This may change, however, as the
Java Security model changes to accommodate more server-side idioms and needs.

CLASSLOADERS: RULES AND EXPECTATIONS 47

224

48

get Packages; in fact, I'm not entirely sure of the reason for these methods to
be here, marked protected. That sort of information would seem to be of more
use to external clients than to derived ClassLoader types. | oadCl ass comes in
two versions, one for public view (described earlier), and one for internal use.
Both provide the delegating behavior of the new JDK 1.2 ClassLoader model, so
avoid overriding them unless you have a very good idea of what you're doing.
resol ved ass is used to resolve all symbolic representations, as described ear-
lier; fortunately, custom ClassLoaders never need to call this method, since
defi ned ass and native JVM behavior take care of all the details once the
bytecode has been obtained. Lastly, set Si gner s is used to establish the signers
of a class, again, in relation to the relaxation of the applet sandbox.

More details on the methods’ parameters and exception-declarations can be
found in the Java documentation set. Later in chapter 3, we’ll go over the details of
creating a custom ClassLoader to be fully Java 2-compliant.

A Class always remembers the ClassLoader that loaded it,” and any classes refer-
enced by that Class that haven’t been loaded will be loaded (if possible) by that same
ClassLoader. This is how, in fact, AppletClassLoader manages to know to load Classes
from the web server’s loaded page instead of trying to load it from the web browser’s
Java libraries. Thus, when the applet is first loaded into the client web browser, as it
executes, any classes it uses will also be loaded by the AppletClassLoader that loaded
the applet in the first place. The same will hold true for any ClassLoader, not just
AppletClassLoader.

Java name spaces

In Java, a class’s name is not just its class name, or its package name plus class name.
When identifying classes already loaded by a JVM, a particular bytecode image is
identified by its package name, its class name, and the instance of the ClassLoader
used to define it. That is, for any Class (¢) in a package (p) loaded by a ClassLoader
instance (c/), the JVM class name key for that Class is

(c, p, cl)

In this manner, each ClassLoader forms a unique name space. Everything related
directly to classes, including static data, is contained within it. This means that if a
class with static data is loaded into two separate name spaces, then two sets of static
data are maintained for that class, one within each name space.

Classes are also unrecognizable across name spaces. While a class is permitted to
extend a class from another name space, two classes of the same package name/class
name are 7ot identical if loaded within separate name spaces, and any attempt to cast

g Specifically, the O assLoader instance that called O assLoader . def i ned ass to turn the array
of bytes into a verified, executable Cl ass.

CHAPTER 2 CLASSLOADERS

from one to the other will generate ClassCastExceptions. We'll see an example of this
concept in action when we start examining custom ClassLoaders in chapter 3.

2.3 JAVA'S BUILT-IN CLASSLOADERS

As mentioned, Java comes with several ClassLoaders within the standard Java JDK
run-time library. Some of these are openly available (those within the j ava. * pack-
ages), while others aren’t visible unless a Java decompiler is used on the rt.jar file in the
Java 2 jre/lib directory, or the Java 2 source download is examined. Regardless, all of
the listed ClassLoaders that follow are available with any Java 2-compliant installation.

2.3.1 java.security.SecureClassLoader

SecureClassLoader is new to Java, coming as part of the Java 2 platform’s revamped
security emphasis. Its primary purpose is to provide secure control over the loading
and using of compiled bytecode within the JVM. As such, its intent is not to provide
a secure means by which class code can be loaded, as you might expect, but to provide
a base class which other ClassLoader types can extend and use to hook into Java’s
security system. As such, it is the base class to a number of the other ClassLoaders
within the Java run-time library, most notably URLClassLoader.

Because it is intended as an abstract base class, and not to be used directly, Secure-
ClassLoader’s two constructor methods are both marked protected, making it impossible
for developers to instantiate one directly. Full details on using the SecureClassLoader is
beyond the scope of this book, since getting into that leads directly into discussion of
Java’s Security system.

2.3.2 java.net.URLClassLoader

The URLClassLoader is, in fact, just about the only implemented ClassLoader within
the Java 1.2 run-time library. All other ClassLoaders extend this class in some form or
another, providing additional functionality around the URLClassLoader class in the
form of the Decorator pattern.'? If readers understand the URLClassLoader and its
capabilities, and nothing else, they will already be ahead of the game.

Using URLClassLoader to load from disk

The most common type of URL used with URLClassLoader (within the JDK source
code, if not user code) is to load classes from local disk. The code below looks in the
subdirectory “subdir” under the current directory for a “Hello.class” class file. It then
uses the | oadCl ass method of URLClassLoader to retrieve the Class object for
“Hello”, and in the same line calls the newl nst ance method of Class to create a
new instance of the Hello class. Because the Hello class (in this example) contains a

10 Design Patterns, p. 175

JAVA'S BUILT-IN CLASSLOADERS 49

50

System out . println call to write “Hello!”, we can visually see that the class was
loaded, verified, and linked.

The code is as follows:

public class FileURLC ient

{
/**
* Attenpt to instantiate an instance of the class
* Hello, found in the subdirectory "subdir" fromthe
* chap02 directory
*/
public static void main(String[] args)
throws Exception
{
URL[] urlArray =
{
new java.io.File("subdir/").toURL()
b
URLC assLoader ucl = new URLC assLoader (url Array);
bj ect obj =
ucl .l oadCl ass("Hel |l 0").new nstance();
/1 Hello should print "Hello" to the System out stream
}
}

In this example, I use the Fi | e. t oURL method to create a URL from an existing File
object, so as to be able to deal with operating-system-specific path issues (such as path
separator characters, or absolute versus relative path names, and so forth) generically.!!
I strongly suggest to anyone looking to use, build, or work with file URLs to do the
immediate work using java.io.File objects, then use the t 0URL method of File to obtain
the actual URL, rather than trying to build the URL using the java.net.URL constructors.

URLClassLoader also silently deals with Java libraries, .jar and .zip files, as well:

i mport java. net. URL;
i nport java.net.URLC asslLoader;

public class FileURLC ient
{

/**

* Attenpt to instantiate an instance of the class

* Hello, found in the subdirectory "subdir" fromthe
* chap02 directory

*/

"I The whole file name/path name issue is probably one of Java’s weakest areas in terms of its portability.
Because different operating systems use differing characters and syntax to represent files and directories,
trying to represent a file in an absolute path is nearly impossible to do in a generic way. For example, a
subdirectory “temp” off of the root directory is “/temp” in UNIX, “C:\temp” in Windows, and “Hard
Drive:temp” in the MacOS; things get even more convoluted when dealing with multiple drives.

CHAPTER 2 CLASSLOADERS

public static void main(String[] args)
throws Exception

{
URL[] urlArray =
{
new java.io.File("subdir.jar").toURL()
I
URLC asslLoader ucl = new URLC asslLoader (url Array);
oj ect obj =
ucl . | oadd ass("Hel |l 0").new nstance();
/! Hello should print "Hello" to the System out stream
}

}

By simply adding .jar to the end of the URL, the URL will look to open the .jar file
and extract the classes (and resources) from there, instead of via the file system. In the
example above, using .jar told URLClassLoader to look for Hello.class within the .jar
file, instead of looking for “Hello.class” as a file within the subdirectory “subdir”.
This holds true for any use of URLClassLoader, including using it to retrieve classes
via an HTTP server and/or FTP server.

Using URLClassLoader to load from a HTTP server

Using URLClassLoader to pull class code from an HTTP server is usually of far more
interest to most Java developers. It is, in fact, the basic means by which applets
exist—the applet code (which must extend Applet, of course) is pulled down from
the HT'TP server into the browser’s process space, started, and stopped when the user
moves on to another page. If we can harness this mechanism for use in our own appli-
cations, we can gain a tremendous amount of flexibility and make a significant step
toward zero deployment.

First, let’s examine how to use URLClassLoader to load a class from an HTTP server:

/1 inmports not shown

public class HTTPURLC i ent
{
/**
* Attenpt to instantiate an instance of the class
* comjavageeks.util.Hello, found only on the javageeks.com
* HTTP server in the "/SSJ/ exanpl es" directory.
*/
public static void main(String[] args)
throws Exception

{
URL[] urlArray =
{
new URL("http", "ww.javageeks.coni,
"/ SSJ/ exanpl es/ ™)
b

JAVAS BUILT-IN CLASSLOADERS 51

52

URLC assLoader ucl = new URLC assLoader (url Array);
bj ect obj =
ucl . 1 oadCl ass("chap02. Hel | 0") . new nst ance();

/1 Hello should print "Hello from JavaGeeks.com " to the
/1 System out stream

}

The example creates a URL representing the URL http://www.javageeks.com/SS]/
examples, hands it into a URLClassLoader instance, just as the prior file example did,
and asks URLClassLoader to instantiate an instance of the class “com.java-
geeks.util.Hello”. That class, whose code is not shown here, in turn writes a message
to the System.out stream from its constructor. This application has one distinctive
difference, however, from the earlier file://-based version; if this class is executed on a
machine without a working connection to the Internet, a ClassNotFoundException
will be thrown. Any attempt to look for the source code to “Hello.java” in the down-
load bundle from the web site will fail; this compiled class file exists only on the java-
geeks.com server, to prove that the code cannot be loaded from local disk by
accident. The class file can only come from the web site.

The zero deployment advantages to using URLClassLoader are myriad. Assume,
for a moment, that we have a department that performs routine report-analysis on a
corporate database or data warehouse. New reports are constantly being requested,
existing reports are being modified, and old reports are being removed as the business
needs change. The development team could attempt to build a complex menu that
allows users to select the reports from within the application. Unfortunately, this
would require recoding each time the list of reports changed, eating into productive
development time, and would require the application to be redistributed to all the
department’s users, eating into productive system administrator time.

Instead, if the code can be centralized to load from a single source (the depart-
ment’s internal HTTP server, for example), then a thin bootstrap client can be distrib-
uted (once) to the department’s users. This thin boostrap client then uses the HTTP
server to load the actual client code and its supporting classes, from which the users
select the report they’d like to run. Or, if the bootstrap client is slightly more intelli-
gent, it can open the URL as a standard URL and walk across the .class files it finds
there, looking for those that meet a particular mask and displaying those to the user.
Regardless, we've now reduced the deployment costs of these constantly changing
reports to almost nothing, since developers now only need focus on the development
of the reports themselves, and not the front-end GUIs to support them.

Using URLClassLoader to load from an FTP server

Having demonstrated that we can easily load code from an HTTP server, which seems
to be all the rage these days, it might seem curious that the next demonstration centers

CHAPTER 2 CLASSLOADERS

on loading code from an FTP server. Let’s first demonstrate that it can be done, then
discuss why we might care about it.

The actual act of using an FTP server to access the code is remarkably similar to
that code using an HTTP server, except that the URLs used to access the FTP server
are more complex:

/1 inmports not shown

public class FTPURLC i ent

{
/**
* Attenpt to instantiate an instance of the class
* comjavageeks.util.Hello, found only on the javageeks.com
* FTP server in the "exanples" directory.
*/
public static void main(String[] args)
throws Exception
{
URL[] urlArray =
{
new URL("ftp", "reader:password@ww.javageeks.com",
") /1 using 'reader’ account
b
URLC assLoader ucl = new URLC assLoader (url Array);
oj ect obj =
ucl . | oadCl ass("Hel |l 0"). new nstance();
// Hello should print "Hello from JavaGeeks.com " to the
/] System out stream
}
}

This code is almost identical to the HTTPURLClient code from earlier, except that
the URL specified in the ur | Array array is different; in fact, it’s downright strange.
The first argument, " f t p", is understandable, indicating the URL is to use the “ftp://”
prefix to the URL, and the third argument, "/ SSJ/ exanpl es/ " indicates the sub-
directory to which the URL refers. The second argument, however, makes almost no
sense, unless the reader is intimately familiar with the URL specification.

Normally, an FTP URL looks like ftp://www.javageeks.com/SomeDir, indicat-
ing the FTP protocol, on the server www.javageeks.com, in the directory SomeDir.
However, FTP isn’t a user-less protocol like HTTP; in order to utilize an FTP con-
nection, a username and password must be given to the FTP server for authentication.
This is what the reader:password@ in front of the server name is for, to pass the user-
name (reader) and password (password) to the FTP server as login information. The
trailing colon on the URL is to work around a bug in the Java run-time libraries (spe-
cifically, in the URLConnection class) which assumes that any colon in the URL will
be a port designator, and so uses St ri ng. | ast | ndexCf (": ") to find it. Unfor-
tunately, if the trailing colon isn’t there, it assumes that reader is the full server name

JAVAS BUILT-IN CLASSLOADERS 53

54

and password@ftp.javageeks.com is the port number to use, which generates an
I nval i dPort RangeExcepti on.

Once the strangeness of the FTP URL is hurdled, the rest of FTPURLClient is
straightforward—pass the URL array into an instance of URLClassLoader, then ask
the URLClassLoader to instantiate an instance of “Hello”. As with the HTTPURL-
Client, when this class is executed on a machine with a connection to the Internet
(the code is coming from the JavaGeeks site), the Hello constructor displays its wel-
coming message.

Principally, there are two reasons to go through the exercise of showing how over-
the-wire ClassLoading can be done with an FTP server. First, because FTP is an accept-
able URL protocol, we should at least verify that it can be done. Secondly, if it can be
done, there’s likely to be some organization or development team looking to do it. For
example, an FTP server provides enhanced security (requiring a user account and pass-
word on the FTP server, if anonymous access isn’t allowed), thus preventing unautho-
rized use of the classes, or perhaps providing per-user code access.

This second reason contains more merit than might be immediately obvious. The
notion of user roles is ubiquitous within server-side applications, so much so that
numerous patterns have been written describing it.!? It’s not uncommon within a
variety of enterprise systems to see code such as the following, which displays different
dialogs based on whether or not the user is an “Administrator”:

if (getUser().getRole().equals(“Administrator”))
new AdministratorDialog().execute();

else
new UserDialog().execute();

Or worse, the developer will try to save a few lines of code and do these i f - el se
statements within the dialog itself, to determine if certain fields should be editable
versus read-only, visible versus hidden, or even labeled differently or containing dif-
ferent data, based on these sorts of decisions.

What's wrong with that? Everything. Principally, you are now encoding business
rules into the dialog presentation code; your dialog now needs to worry about user
roles, and how to obtain the current user ID, and so forth. The more of these rules
that make it into your presentation-layer code, the more difficult that code is to main-
tain, enhance, and support.

Worse yet, adding a new role into the system requires changes across the entire
system—every place this sort of “can a user role do X?” is made, a new branch to the
if/else logic must be added to accommodate the new role. This is time-consuming,
tedious, and very bug-prone. If, instead, user roles can be restricted as a group from
certain classes, it simplifies the addition (removal, or modification) of those roles.

12 See “Additional reading” for a list of pattern resources.

CHAPTER 2 CLASSLOADERS

Using the FTPClassLoader allows the developer to make use of the security mea-
sures built into the FTP server (which, on UNIX systems, in turn relies on the security
measures built into the UNIX operating system on which the FTP server is running)
to discriminate between users, and, implicitly, their roles within the system by speci-
fying the URL by just its username and password. Then, the preceding dialog-execu-
tion can be written as:

public static void main(String[] args)

{

String usernaneg;
String password;

/1 obtain usernanme/ password from user
new Logi nDi al og(user nane, password).execute();

URL ftpURL = new URL(“ftp”, username + “:” + password +
“@ftp.javageeks.com”, “/Classes/”);
urlClassLoader = new URLClassLoader(ftpURL);
I urlClassLoader is stored within this class instance

...
}

public void displayDialog()
{

SomeRoleSensitiveDialog srsd =
(SomeRoleSensitiveDialog)urlClassLoader.loadClass(
“Dialog”).newlInstance();
srsd.execute();

/I Note that this assumes that the bytecode itself thinks its name
/l'is “Dialog.class” (that is, it was compiled from a file called
I/ “Dialog.java™); if it was compiled from any other .java filename,
/I the bytecode will fail verification by the JVM!

}

What’s the advantage? The fact that the dialog now knows nothing about user roles;
that knowledge is now incorporated into the FTP system itself,!® and is broken out
into separate dialogs. More importantly, changes to one user-role’s dialog won't affect
the other, so testing will be easier and more isolated. Development might be trickier,
because developers will be forced to maintain separate directory trees for each user-
role set of classes (one for admins, one for users, and so on), since the class names on
the local disk will all be identical, but this is usually fairly manageable and in some
cases, it is preferable.

In many cases, however, the majority of code that best belongs in a centralized
fashion like this (either through the FTP server, HTTP server or even SQL database)

13 This presumes that the FTP system will drop users into different directories based on user IDs, which
may not be standard features on all FTP systems. It’s far more likely that different departments will
maintain their own FTP servers.

JAVA’S BUILT-IN CLASSLOADERS 55

56

encompasses the various business rules and objects for a given system, since these are
the ones that typically change the most from version to version.

Placing this code into the centralized server means that these rules can be dif-
ferentiated from one client to another, even within the same system, substituting the
client name in place of user-role, as in the foregoing example.'* A sample of this
would be a data-entry system for customer information—different departments
within the enterprise will have different “rules” for which fields are required and
which are optional. Marketing, for example, may insist on obtaining some market-
segment data (such as age group), while technical/product support will insist on hav-
ing detailed records about the product in the system’s database. By placing this code
on separate FTP servers, based on department name, we can silently differentiate
between departments without requiring any modification to the client code. This is
a significant step toward both zero development (client code need not be rewritten
for different departments) and zero deployment (since changed code needs only be
copied up to the appropriate place on the FTP server). It even aids in zero adminis-
tration, since now a new security system specific to the application needn’t be main-
tained by the system administrators; once users are added to the UNIX (or whatever
hosts the FTP server) user database, they are automatically (again, assuming the FTP
server uses the underlying operating system’s user database for authentication, which
most do) added to the list of authorized users of the client code. This in turn helps
the system administrator—the fewer passwords users have to memorize to get their
work done, the more likely they are to use nontrivial passwords that are harder to
break using password-generating tools.

Using URLClassLoader for custom URL types

URLClassLoader isn't restricted to just file, http or ftp URL types. In fact, just as the
URL syntax is intended to be open and flexible to new protocol types, so too is URL-
ClassLoader intended to be open and flexible for loading classes from any supported
URL type.

While the details are too long to get into here, the basic idea is simple: URLClass-
Loader obtains its URL objects (from which it in turn obtains objects to open and read
the URL resource) from a URLSt r eanHand| er Fact ory. URLSt r eanrHandl er -
Fact ory is a simple interface, sporting a single method, cr eat eURLSt r eantHan-
dl er. By creating a custom class that implements URLSt r eanHandl er Fact ory
that in turn creates URLStreamHandler-derived classes (as appropriate to the protocol
passed in), you can create a custom protocol to support loading classes and/or other
resources from any other source imaginable.

14 The Strategy or Facade patterns fit in well here.

CHAPTER 2 CLASSLOADERS

2.3.3 sun.applet.AppletClassLoader

The AppletClassLoader, as its name implies, is the ClassLoader intended for use by
web browsers to download and start execution of Applet bytecode on a web page.
Because each web browser may provide its own implementation of a ClassLoader that
downloads the bytecode, this ClassLoader may not be the one used within your
favorite web browser. Moreover, its use would only be of interest to those who are
seeking to exactly duplicate applet-download semantics, including the full security
restrictions placed on applets.

AppletClassLoader extends URLClassLoader, as might be expected. As a result,
any web browser written to use AppletClassLoader automatically picks up its ability
to load code via more than one .jar file or subdirectory, via the HTML <CODEBASE>
directive. In fact, it’s fairly easy to discover which Web browsers use this version of
Sun’s AppletClassLoader, and which don’t, because several popular Web browsers
won’t accept more than one .jar file as a source for an applet. As a resul, if developers
create nontrivial applets, test their execution under more than just the Sun applet
viewer or HotJava Web browser, they may be unpleasantly surprised.

Aside from its support for Java’s security model, Appl et Cl assLoader doesn’t
hold any surprises but there is a bit of trivia involved. Applets can share static data
across applet instances, and so can use that as an inter-applet communication mech-
anism. Once you realize that, at least historically, a new AppletClassLoader is started
for each web page loaded, and is then used to load the applet code into the client
browser, you understand how applets can share static data across instances, since static
data is on a per-ClassLoader basis. This is neither mandated, nor required, and can,
in fact, represent a security hole.

234 java.rmi.server.RMIClassLoader

RMIClassLoader, contrary to what you might believe, isn’t a ClassLoader, but a wrap-
per class around the marshaling and loading of classes in the RMI run-time system. In
fact, RMIClassLoader is a simple bridge around the sun.rmi.server.LoaderHandler
class, which in turn maintains a map of inner Loader classes, which are the actual
classes extending URLClassLoader.

Given URLClassLoader’s ability to download code from an HTTP or FTP server, as
well as the customized ClassLoaders we'll be developing throughout the rest of the book,
the usefulness of RMIClassLoader wanes somewhat, except for RMI itself. Even then, RMI-
ClassLoader isn’t the interesting part of the mechanism, since it defers all behavior to its
concrete implementation, LoaderHandler, which in turn provides the support for the
java.rm . server. codebase property and other RMI-classloading functionality.

RMI plays a key role in the pursuit of zero deployment; however, we’ll get more
into the capabilities of RMI later.

235 Bootstrap ClassLoader

This is technically not a ClassLoader, either, since it exists solely within the native
code boundaries of the JVM, and is used to load the key core Java classes (like Object)

JAVAS BUILT-IN CLASSLOADERS 57

2.3.6

2.4

58

into the virtual machine. It relies on the sun. boot . cl ass. pat h property to find
the Java run-time library (rt.jar, in JDK 1.2, under the jre/lib directory), meaning that
it is possible for us to change this value to point to another location, although it’s cer-
tainly not recommended for the faint of heart.

sun.misc.Launcher$ExtClassLoader

The ExtClassLoader, also referred to as the extensions ClassLoader, is responsible for
the loading of Java Extensions classes, which we cover in more detail in chapter 4. For
now, it’s enough to state that ExtClassLoader, which extends URLClassLoader, stores
the jar files in the directories specified in the j ava. ext. di r s property as separate
URLs, each of which is passed into its URLClassLoader base-class constructor.

sun.misc.Launcher$AppClassLoader

The AppClassLoader, also referred to as the system or application ClassLoader, is
another URLClassLoader-derivative class that handles the loading of code specified in
thej ava. cl ass. pat h property. Each directory or .jar file found along the CLASS-
PATH is transformed into a URL, which is passed to the URLClassLoader base-class
constructor on construction of the AppClassLoader.

This ClassLoader is also the returned instance when ClassLoader.getSystemClass-
Loader is called; as a result, this will typically (unless your code runs under its own
ClassLoader, as do applets or servlets) be the ClassLoader that loads your code. As a
result, it’s fairly easy to see why your code has access to all installed Java Extensions—
because AppClassLoader uses the Extensions ClassLoader as its delegating parent;
everything in the Extensions directory or directories is now available to your code.

The implication here is that your code is not loaded by the same ClassLoader that
loads the Java run-time classes. This won’t have serious effects on most normal appli-
cation code, but advanced use of ClassLoaders can lead to problems. For example, any
code stored as an extension, attempting to load code off of the CLASSPATH, will run
into problems related to the Java ClassLoader name space separation.

SUMMARY

ClassLoaders are, without a doubt, one of the most powerful technologies within
Java; by allowing us, as developers, to control from where code can be loaded, we can
now distribute applications in ways that we couldn’t dream about five years ago. This
concept extends to more than just zero deployment.

Consider a system in which customized behavior needs to be developed for a
series of clients, varying not only on a per-client basis, but on a per-entity basis within
the client. For example, an insurance company may want to perform different tasks
on the call-center representative’s PC during an insurance sales call, depending on
what data is entered. Some sample ideas might be:

CHAPTER 2 CLASSLOADERS

* Pop up a message box reminding the rep to suggestive-sell life-insurance policies
to callers over the age of 30

* Introduce new specials on various policies, but only if the candidate fits a partic-
ular criteria

* Remind the call-center rep of the month’s current internal promotional program,
reminding him/her to undertake particular actions based on the rep’s proximity
to the promotional target

Realistically, these sorts of monthly changes could drive a developer mad—a new
release, every month? Recoding, retesting, everything, every month?

Instead of coding these sorts of mutable rules directly within the application code,
set up a custom ClassLoader. Create the custom ClassLoader at a particular point dur-
ing the call and load code associated with this call directly from the database, or from
a socket, so long as the code is coming from a code source separate from the applica-
tion’s. This allows the developers to change code associated with the databse without
having to modify the existing code base.

Of course, this is dependent on knowing how to create your own ClassLoaders.
Unfortunately, creating them seems to be something of a mystic art—even in late
1999, books and articles are being published that get it wrong. In the next chapter,
I’ll show you how Sun wants you to build ClassLoaders, so that they’ll fit flawlessly
within the Java ClassLoader hierarchy.

2.5 ADDITIONAL READING
* Java Virtual Machine Specification (2nd Edition) (Addison-Wesley).

This is the new-and-improved version of the Java Virtual Machine Specification
with the latest enhancements and changes made for JDK 1.2. Chapter 5
describes the ClassLoader mechanism in detail. If you plan to do any work with
custom ClassLoaders, you will want to read this text; ditto for anyone working
with the ClassFile API, as you'll need some knowledge of Java’s assembly lan-
guage opcodes and operands. It’s also good to know, just in general, since this
forms the reference for those wishing to provide compliant JVM implementa-
tions. If it’s not in here, the JVM doesn’t have to provide it. The JVMS is also
available online, at http://java.sun.com/docs/books.

* Java Language Specification (2" Edition) (Addison-Wiesley).

This, like the Java Virtual Machine Specification, is the definition of the Java lan-
guage and all that it offers. In particular, it contains a description of how the
ClassLoader mechanism works from the perspective of the language itself.

Sheng Liang and Gilad Bracha, “Dynamic Class Loading in the Java Virtual
Machine” (presented at 13™ Annual ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA ’98),
Vancouver, BC, Canada, October, 1998).

ADDITIONAL READING 59

60

Sheng Liang presented this paper to the OOPSLA 98 conference on the new
JDK 1.2 ClassLoader mechanism, and it remains the finest description of the
ClassLoader mechanism to date.

CHAPTER 2 CLASSLOADERS

3.1

3

Custom ClassLoaders

3.1 Extending ClassLoader 61
3.2 On-the-fly code upgrades 80
3.3 GJAS: first steps 85

3.4 Summary 92

If the Internet has taught the world anything about information, it’s that it can come
from a variety of places, in a variety of formats, accessible in a variety of ways.
Nobody had any concept of the e-zine before the web craze. They make sense, now—
same concept as a printed magazine with authors writing articles for readers to read,
but a different delivery system. The same holds true for e-newspaper sites offered by
Yahoo or Pointcast. We can apply that precept to our Java bytecode, as well—same
concept, finding bytecode for execution by the JVM, just different delivery systems.

EXTENDING CLASSLOADER

A Java 2 ClassLoader needs to override one of three of the f i nd methods:

* findd ass: This method is expected to obtain the bytecode for the fully quali-
fied class name given in its sole parameter. Once the bytecode is found, a derived
ClassLoader must call defineClass, passing in the name of the class, the bytecode
array, the offset at which to start, and the length of the array. The reason for the
offset and length as parameters is an attempt to allow for optimization on the
part of derived ClassLoaders. Instead of loading bytecode one class at a time, a
ClassLoader can load/download/compile a set of classes, an entire package, or
perhaps the entire .jar file (or more) once. Then, when asked, it provides the

61

3.1.1

62

same bytecode array over and over again, using different offsets and lengths to
indicate the position of each class within the master array.

* findResour ce: This method is expected to obtain the bytes for a given arbi-
trary name. Although most common usage has this name being a filename,
nothing within the ClassLoader specification requires that this be the case.
Instead, ClassLoader implementations are free to use the “/”-separated names as
any sort of naming convention protocol they deem practical. As with fi nd-
d ass, findResource is called from the ClassLoader’s public method,
get Resour ce, which also delegates the first attempt at finding the resource to
its parent ClassLoader. If you implement this method, be sure to provide similar
semantics for the f i ndResour ces method, as well.

e findLibrary: This method will likely be the least-often overridden method,
because only developers who use JNI to write native-code libraries for Java need
worry about it. This method is called when a ClassLoader is told to load a class
which uses a native library. Unlike the fi ndCl ass or fi ndResour ce meth-
ods, fi ndLi br ary need only return an absolute pathname to the native library
in question, rather than the actual binary data itself.

Note that every class holds a reference back to the ClassLoader that loaded it, so
any class code that requires the use of an external resource shouldn’t reference it (for
loading, playing, unloading, whatever) any other way than by calling

URL url ToResource = this.getC ass().getC assLoader ().getResource(. . .);

Why? If the class is ever moved from being loaded from disk to being loaded from a
customized ClassLoader, then any references to load anything from disk will fail. The
foregoing code sequence works in all cases, presuming that the same ClassLoader that
loaded the class also knows how to retrieve the needed resource. This in turn leads to
the suggestion that if you create a custom ClassLoader, at least provide implementa-
tions for f i ndCl ass and f i ndResour ce.

Having said all that, let’s examine some custom ClassLoaders in a more prac-
tical fashion.

FileSystemClassLoader

Let’s start by duplicating existing functionality by building a ClassLoader that picks
up class bytecode from the local file system. (Listing 3.1) We're not going to try any-
thing tricky here, so we’ll not worry about .jar/.zip files or resources. The code can be
found on the publisher's web site (as part of the com j avageeks. cl assl oader
package, in the Lib subdirectory), reproduced here for convenience:

Listing 3.1 Code for a FileSystemClassLoader

import java.io.*;
i mport java.net.?*;
import java.util.*;

CHAPTER 3 CUSTOM CLASSLOADERS

public class FileSystenC assLoader extends C assLoader

{
/**
* Default constructor uses the hone directory of the JDK as its
* root in the file system
*/
public FileSystenC assLoader ()
throws Fil eNot FoundExcepti on
{
thi s(System get Properties().getProperty("java. hone"));
}
/**
* Constructor taking a String indicating the point on the |ocal
* file systemto take as the root in the file system
*/
public FileSystenCl assLoader(String root)
throws Fil eNot FoundExcepti on
{

super (Fi | eSyst enCl assLoader. cl ass. get G assLoader ());

// Test to make sure root is a legitinate directory on the
/1 local file system
/1
File f = new File(root);
if (f.isDirectory())
mroot = root;
el se
t hrow new Fi | eNot FoundException();

}

/**
* Attenpt to find the bytecode given for the class <code>nane</code>
* froma file on disk. WIIl not |ook al ong CLASSPATH, nor in .jar
* files
*/
public Cass findC ass(String nane)
throws C assNot FoundExcepti on
{
try
{
/1 Assune that ’'name’ follows standard Java package-to-directory
/! naming conventions, where each "." represents a directory
/| separator character (backslash on Wndows, slash on Unix,
/1 colon on MacOS).
/1
String pathName = mroot + File.separatorChar +
nanme.replace(’.’, File.separatorChar) + ".class";

/1 Try to open the file and read in its contents
/1
FilelnputStreaminFile =
new Fi | el nput St r ean{ pat hNane) ;
byte[] classBytes = new byte[inFile.available()];

EXTENDING CLASSLOADER 63

64

inFile.read(cl assBytes);

/1 Now we’ ve got the bytecode, but we still need to turn it

/1 into a verified class; that’'s what the nethod
/1 d assLoader.defineClass is for.

/1
return defineC ass(nanme, classBytes, 0, classBytes.length);
}
catch (java.io. | OException ioEx)
{
i OEx. printStackTrace();
t hrow new Cl assNot FoundExcepti on();
}

}
private String mroot = null;

/] Test driver

11

public static void main(String[] args)
throws Exception

String userDir = System getProperties().getProperty(“user.dir");
Fi | eSyst enCl assLoader fscl = new Fil eSystenC assLoader (userDir);

/'l Test the O assLoader by trying to load itself! (I first found
/! the idea in "Java Virtual Machine", by Troy Downing and Jon

/1 Meyer (OReilly), who in turn credit

/1 http://magma. M nes. edu/ student s/ d/ drferrin/Cool _Beans.)

/1
Class ¢ = fscl.loadCd ass("Fil eSystenCl assLoader");

/1 Instantiate an instance of the FileSysten assLoader as an

/!l nject; leave it like this for the nonent
/1
Obj ect o = c.newl nstance();

/Il Verify that it is, in fact, a FileSystenC assLoader
/1
System out. println(o.getd ass().getNane());

/I Note--because of the Java name space’s mechanism, this cast will
/I fail! This is because FileSystemClassLoader was first loaded by

/l the primordial ClassLoader, and the attempt to cast the new

/I Object (which was returned by the FileSystemClassLoader we

/I created a few lines ago) will fail, because you cannot cast

I across ClassLoader lines.

1

FileSystemClassLoader fscl2 = (FileSystemClassLoader)c.newlnstance();

CHAPTER 3 CUSTOM CLASSLOADERS

This isn’t all that tricky—two constructors, one which takes a String, the other which
takes nothing, define the root of our FileSystemClassLoader’s search path. The meat
of the action occurs in f i ndQl ass. This method is the one responsible for attempt-
ing to locate the bytecode represented by the passed-in name (given in the parameter
nane). We convert the package name to a path, the class name to a file name, tack
.class on the end, and attempt to load it in. If it succeeds, we use the base class’
def i ned ass method to turn the bytes into verified class bytecode, and a Class
instance results. If it fails, we throw a j ava. | ang. Cl assNot FoundExcepti on,
as per the standard ClassLoader documentation. It’s all pretty simple—we even pro-
vide a mai n method, so we can test the component.

Sowhydowegetaj ava. | ang. Cl assCast Except i on on the last line of mai n?

C:\ Proj ect s\ SSJ\ cd\ src\chap2>j ava Fil eSyst enCl assLoader
Fi | eSyst enCl assLoader
Exception in thread "main" java.lang. C assCast Excepti on:
Fi | eSyst enCl assLoader
at Fil eSystenCl assLoader. mai n(Fi | eSyst enCl assLoader . j ava: 105)

C:\ Proj ect s\ SSJ\ cd\ src\ chap2>

The answer brings us back to Java’s name space concept, and the notion that classes
loaded into separate name spaces are independent and unrelated types. This is proba-
bly the trickiest part of Java’s classloading scheme, and the hardest one to track down
when an error occurs.

When we first started up the FileSystemClassLoader, the Application Class-
Loader (the one used by the JVM to load the classes necessary to even execute a Java
class) loads in the FileSystemClassLoader image. That is, given the discussion of classes
being unique on class name/package name/classloader instance.

"Fi | eSystenC assLoader" = ("Fil eSystend assLoader", "", "Appd assLoader #1")

Later, however, we use the FileSystemClassLoader to load a new Class into the JVM:

"Fil eSystenCl assLoader" = ("Fil eSystenC assLoader", "",
"Fil eSyst enCl assLoader #1")

The JVM sees these two as separate, distinct class types, both of which extend
java.l ang. Qbj ect (loaded by the Application ClassLoader, of course). When we
ask the Object obj to return its Class, it hands back a Class that identifies itself as
“FileSystemClassLoader”, which is right. However, it’s the version loaded by FileSys-
temClassLoader #1, not bootstrap ClassLoader #1; that is,

0.getCl ass().getd assLoader () != fscl.getd ass().getd assLoader ();

Thus, when we try to cast obj (" Fi | eSyst enCl assLoader ", , "FileSys-
tenCl assLoader #1") from Object to FileSystemClassLoader(" Fi | eSyst em
O assLoader", "", "AppC assLoader #1"), the JVM is not going to see any
relationship between these two classes, and throws a ClassCastException in protest.

EXTENDING CLASSLOADER 65

3.1.2

66

Although this may seem like an overly restrictive arrangement on the surface, it
has its benefits. Because each ClassLoader forms a unique name space, any static mem-
ber data for a given class must be partitioned within a name space; that is, if a class
having a static member is loaded via two separate ClassLoaders, the JVM has two sep-
arate instances of the static data for that class. This in turns leads us to completely par-
tition classes away from one another, even to the point of loading different versions
of the same class into the JVM. This will in turn form the core of our ability to load
new code into a running server without affecting existing clients.

HashtableClassLoader

Another simple ClassLoader is the HashtableClassLoader (listing 3.2), which simply
returns class instances from a Map of class names to byte arrays. It doesn’t attempt to
find the class bytecode from any other location other than its stored Map instance,
making it extremely fast in lookup:

Listing 3.2 Code for a HashtableClassLoader

import java.io.*;
i nport java.net.*;
import java.util.*;

cl ass ByteArray
i mpl enents java.io.Serializable

{
public ByteArray(byte[] bytes)
{
m bytes = bytes;
}
public byte[] getBytes()
{
return mbytes;
}
private byte[] mbytes;
}

public class Hashtabl eCl assLoader extends java.lang. Cl assLoader

{
publ i ¢ Hasht abl e assLoader ()

{
t hi s(new HashMap());

}

publ i ¢ Hasht abl ed assLoader (Map tabl e)

{
super (Hasht abl eCl assLoader. cl ass. get C assLoader ());
m cl asstable = tabl e;

}

public void putC ass(String classNanme, byte[] bytes)

{

CHAPTER 3 CUSTOM CLASSLOADERS

m cl asst abl e. put (cl assNane, new ByteArray(bytes));

}

public Cass findC ass(String cl assNane)
throws C assNot FoundExcepti on

{
try
{
Byt eArray byteArray = (ByteArray)mcl asstabl e. get (cl assNane) ;
byte[] bytes = byteArray.getBytes();
return defineC ass(cl assNanme, bytes, 0, bytes.length);
}
catch (Exception ex)
{
t hrow new Cl assNot FoundExcepti on(cl assNane, ex);
}
}
/1 Internal menbers
/1
private Map m.cl asstabl e;
/1 Driver
11

public static void main(String[] args)
throws Exception
{
/1 Try the Hasht abl eCl assLoader
Hasht abl eCl assLoader hcl = new Hasht abl eCl assLoader ();

/1 Load "Hello.class" fromroot dir into the Hashtable
Filelnput Streamfis = new Fil el nput Strean{"/Hello.class");
int ct = fis.available();

byte[] Hello_bytes = new byte[ct];

fis.read(Hell o_bytes);

hcl . put 0 ass("Hel |l 0", Hello_bytes);

/1 Try the | oadd ass
oj ect obj = hcl.loadd ass("Hello0").new nstance();

As you can see, HashtableClassLoader does nothing other than call defi ned ass
on the byte array stored within the Map instance. Because HashtableClassLoader is
Serializable, and most Map-implementing classes are likewise (most notably, Hash-
Map and Hashtable), HashtableClassLoader offers interesting possibilities as a travel-
ing ClassLoader when serialized and sent to another JVM.

3.1.3 CompilerClassLoader

Now that we've examined the basics of customized ClassLoaders, let’s try something
trickier. Instead of simply loading a bytecode image from disk, we will generate the

EXTENDING CLASSLOADER 67

68

bytecode at run time via a CompilerClassLoader. This is only possible because several
Java compilers, including the JDK “jevec” compiler, are themselves written in Java
and are available as Java packages for use, as opposed to native executables.

The CompilerClassLoader offers a number of advantages, not the least of which
is that the compilation step can now be removed from development, another move
toward both zero deployment and zero administration. Additionally, Java can now be
embedded within user objects, perhaps as a macro language and compiled on the fly
for use within user applications. In fact, this idea has proven to be popular already—
it forms the basis for the JSP specification.

Listing 3.3 shows the code for CompilerClassLoader. Note that in order for this
to run successfully, the classes underneath the sun. t ool s package hierarchy must be
available at run time. Technically, this is a violation of the JDK’s licensing scheme, so
be sure to check with JavaSoft or Sun representatives if you plan to use this approach
to develop software for commercial resale. In the meantime, in order to run this code,
ensure that the tools.jar from the JDK 1.2 lib directory is somewhere on the CLASS-
PATH or is installed as an Extension on the target system.

Listing 3.3 Code for a CompilerClassLoader

import java.io.*;
i mport java.net.*;
i nport java.util.*;

public class ConpilerC assLoader extends java.lang. C assLoader
{
/**
* Uses "user.honme" as root dir to work from
*/
publ i c Conpil erC assLoader ()
{
try
{
m sour ceDi r Root = new Fi |l e(System get Property("user. hone"));
}
catch (Exception ex)
{
ex. printStackTrace();
m sour ceDi rRoot = nul | ;

}

/**

*

*/

public Conpil erd assLoader (Fil e sourceDi r Root)
{

m sour ceDi r Root = sourceDi r Root ;

}

public String getC asspath()
{

CHAPTER 3 CUSTOM CLASSLOADERS

return mcl asspat h;

}
public void setC asspath(String classpath)
{
m cl asspath = cl asspat h;
}
/**

* Retrieve conpiled code
*
/
protected C ass findC ass(String nane)
throws C assNot FoundExcepti on

{
|

As with any ClassLoader-extending class, the heart is in its f i ndCl ass method. Here,
we go through an x-step process to find (that is, compile) the class bytecode in question:

if (m.sourceDirRoot == null)
t hrow new Cl assNot FoundException("No root dir specified!");

This is a simple sanity-check to make certain CompilerClassLoader has a directory
from which to load.

/1 Transl ate the Java-canonical nanme into an equival ent
/1 file nane; anything after a "$" is renoved, since "$"
/1 only shows up in anonynous/inner classes, which are

/l fromthe "$"-prefixed file. Tack a .java on it, and

/1 look for the file

String javaNanme = nane;

if (javaNane.indexOF("$") > 0)

javaName = javaNane. substring(0, javaNane.indexOf("$"));
/'l Replace "." with File.fileSeparatorChar’s
javaNanme = javaNane.replace(’.’, File.separatorChar);
javaNane += ".java";

File javaFile = new Fil e(m sourceDirRoot, javaNane);
System out. println("Looking for " + javaFile.toString());

The first step is to find the .java file we need to compile. This is more difficult than it
might seem. Under normal circumstances, a .java file will translate directly into a .class
file; for example, “Hello.java” will become “Hello.class”. Three exceptions kick in almost
immediately, however. Anonymous classes and inner classes will both compile with a
"$" embedded after the .java file name, so an inner class Foo inside of the class Hello in
Hello.java will compile to Hello$Foo.class, and an anonymous class will put a number in
place of the inner-class name (Hello-$1.class). Each of these situations can be dealt with,
since the .java file name that produced them is available (strip off everything to the right
of "$" in the class name). What really kills this implementation is the fact that a .java
file can contain more than one distinct class; in fact, the HashtableClassLoader imple-
mentation in listing 3.2 does precisely this, defining a package-access class ByteArray in
the HashtableClassLoader.java file. This in turn produces the ByteArray.class file, which

EXTENDING CLASSLOADER 69

70

contains no hint that it is actually available through another .java file. Unfortunately,

aside from trying to perform some kind of caching mechanism for those classes already

compiled, there is no way around this, and it represents a hole in this implementation.
/1l Attenpt to conpile it down to bytecode

String[] javacArgs = new String[]
{

/1"-classpat h",

/I mcl asspath,

"-deprecation",

javaFi | e. get Pat h()
b
Byt eArrayQut put Stream j avacOQut = new Byt eArrayQut put Strean();
sun.tools.javac. Main javaConpiler =

new sun. t ool s. j avac. Mai n(

new PrintStrean(javacQut, true), "javac");

Next, we create an instance of the sun.tools.javac.Main class, passing into the con-
structor the PrintStream instance to use for output messages (which, in this case, we
want written to a ByteArrayOutputStream, since we don’t necessarily know where
these messages will ultimately go. It could easily be a GUI application that exercises
this ClassLoader). We also need the name to use for the application’s name; here, we
use "j avac" for consistency. No other initialization is necessary.

if(!javaConpiler.conpile(javacArgs))
{
t hrow new C assNot FoundExcepti on(javacQut.toString());

}

Next, we need to do the actual compilation. This is as simple as calling conpi | e
with the array of Strings containing the normal command-line arguments to javac;
we specify the " - cl asspat h" and " - depr ecati on" options, hand the name of
the .java file to compile, and if conpi | e returns t r ue, the .class files produced by
that .java file now reside on disk. A more sophisticated CompilerClassLoader might
control the directory to which the .class files are written, or provide more in the way
of the command-line options (optimization, dependency-tracking, and so forth), but
this implementation doesn’t for sake of simplicity.

/1 1f we got here, the file conpiled just fine; load its

/1 bytecode into the byte array

String className = null;
if (name.lastlndexOF("$") > -1)

{
cl assName = nane.replace(’.’, File.separatorChar)
+ ".class";
}
el se
{
cl assNanme = j avaNane. substring(0,

javaNane. | ast | ndexCOfF (". ")) + ".class";

CHAPTER 3 CUSTOM CLASSLOADERS

try

File inFile =

new Fil e(m sourceDirRoot, classNane);
FilelnputStreamin =

new Fil el nput Strean(inFile);
byte[] bytecode = new byte[(int)inFile.length()];
in.read(bytecode, 0, (int)inFile.length());

/1 Hand the bytecode to C assLoader. defi neC ass
/1 and return
return defineC ass(nanme, bytecode, 0, bytecode.length);

Lastly, we need to get the compiled bytecode into the JVM. This part is the simplest
of the steps—simply find the .class file on the disk (corresponding to the class name
requested), call def i neCl ass on it, and hand it back.

}
catch (java.io.|OException ioEx)
{
t hrow new C assNot FoundExcepti on(i oEx.toString());
}

}

/1 Internal menbers
private File msourceDirRoot;
private String mclasspath;

[/ Test driver
public static void main(String[] args)
throws Exception

{
PCCl assLoader cl = new PCO assLoader(new File("C\\"));
cl .l oadd ass("Test. PkgHel | 0"). new nst ance();

}

One drawback to this implementation is the fact that it produces .class files on disk
that must then be loaded by CompilerClassLoader; for a large number of Java files,
this could get costly in terms of performance and disk space. Ideally, the Javac class
interface would be written to accept any sort of stream as the source code input, and
produce ByteArrayOutputStream instances as output, but the Javac interface doesn’t
provide this. While it might be possible to create classes that fit in with the Javac
framework that provided this stream-based behavior, it would require an intimate
knowledge of the source code. The same, unfortunately, is also true of Pizza, GJ, and
other Java compilers.

StrategyClassLoader and ClassLoaderStrategy

The Strategy pattern allows you to “Define a family of algorithms, encapsulate each
one, and make them interchangeable. Strategy lets the algorithm vary independently

EXTENDING CLASSLOADER 71

72

from the clients that use it.”! This is precisely what we want out of the ClassLoader
scheme—vary the implementation without changing the scaffolding around it.
Unfortunately, the ClassLoader implementation, as it stands, provides a severe
impediment to effective reuse and encapsulation of ClassLoaders.

The ClassLoader API, despite its redesign to delegate all class-bytecode loading to
the fi ndCl ass method, still expects fi ndCl ass to call def i neCl ass with the
loaded bytecode, because it requires fi ndCl ass to return a Class instance. Had
findd ass been required to return only the bytecode (as a byt e[] return value,
instead of a Class), then derived classes could use the Decorator or Strategy pattern to
enhance, modify, or provide alternative means of loading bytecode. For example, con-
sider the (very real) desire of silently adding debugging messages to compiled bytecode
when running the server in debug mode; instead of having to extend URLClassLoader
and reimplement its fi ndCl ass method with our particular extended behavior
thrown in, we could take a ClassLoader instance as a parameter, call its f i ndCl ass
method to find the bytecode (without caring how the ClassLoader loaded or generated
it), and instrument the bytecode before passing it back to ClassLoader for definition.

StrategyClassLoader is an attempt to work around this limitation; it extends
C assLoader, but expects the guts of the loading behavior to come in the form of
a ClassLoaderStrategy-implementing instance. ClassLoaderStrategy is an interface
that factors out the heart of the ClassLoader interface for derived classes:

public interface C assLoader Strategy

{
public byte[] findd assBytes(String cl assNane);
public URL findResourceURL(String resourceNane);
public Enureration findResourcesEnun(String resourceNane);
public String findLibraryPath(String IibraryNane);
}

As you can see, it’s not a particularly large interface. However, it does provide the
basic change to the ClassLoader interface that I complained about earlier—it requires
implementors to only return the bytecode for the Class, and not to have to call
def i ned ass to obtain a Class instance. That behavior in turn falls to the Strategy-
ClassLoader class.

StrategyClassLoader uses the ClassLoaderStrategy instance only to obtain the
bytecode, resource, or native library; it otherwise provides all the standard behavior a

good Java 2 ClassLoader should. The abbreviated code looks like this:

public class StrategyC assLoader extends Cl assLoader

{
public StrategyC assLoader (Cl assLoader Strategy strategy)

{

1 Design Patterns, p. 315

CHAPTER 3 CUSTOM CLASSLOADERS

this(strategy, StrategyC assLoader.class. getd assLoader());

}
public StrategyC assLoader (Cl assLoader Strat egy strategy,
Cl assLoader parent)

{

super (parent);

m strategy = strategy;

}

protected O ass findC ass(String nane)
throws C assNot FoundExcepti on

{

byte[] classBytes = mstrategy.findd assBytes(nane);

if (classBytes == null)

{

t hrow new O assNot FoundException();

}

return defineC ass(nane, classBytes, 0, classBytes.length);
}
/[l . . . Oher nethods onmitted for brevity .

/1 Internal menbers
/1
private C assLoader Strategy m strategy;

}

Check the full code listing for the complete version; this snippet is only intended to
demonstrate StrategyClassLoader’s implementation for classes.

With judicious use of the ClassLoaderStrategy interface, StrategyClassLoader
could become the last ClassLoader you ever have to write (listing 3.4). Because it
implements all the necessary rules for extending ClassLoader, while at the same time
allowing flexibility in the actual loading of code, we get precisely the right combina-
tion of flexibility and reuse for which we are looking.

Listing 3.4 Code for the StrategyClassLoader

public static void main(String[] args)
throws Exception
{
/] Create an anonynous Strategy to use for this
/1 test alone
Cl assLoader Strategy strat = new Cl assLoader Strat egy()

{
public byte[] findC assBytes(String classNane)
{
// Load "Hello.class" fromroot dir
try
{

java.io.FilelnputStreamfis =

EXTENDING CLASSLOADER 73

74

new java.io.FilelnputStream("/Hello.class");
int ct = fis.available();
byte[] Hello_bytes = new byte[ct];
fis.read(Hell o_bytes);

return Hell o_bytes;

}
catch (Exception ex)
{
return null;
}

}

public java.net.URL
findResourceURL(String resourceNane)
{
return null;
}
public java.util.Enuneration
fi ndResour cesEnun(String resNane)

{
return null;
}
public String findLibraryPath(String |ibraryNane)
{
return "";
}
H
Strat egyC assLoader scl = new StrategyC assLoader(strat);
hj ect obj = scl.loadd ass("Hello0").new nstance();

This is obviously a contrived example, but shows the kind of flexibility we have in the
ClassLoaderStrategy interface. In this case, the anonymous ClassLoaderStrategy class
will look for “Hello.class” in the root directory of the current drive, load it, and hand
it back as the compiled code; it works for this example, but nothing else.

When reading the source code for the custom ClassLoaders, readers will note that each
ClassLoader class is also a ClassLoaderStrategy-implementing class.” This is so that each
ClassLoader can participate in either scheme (Java’s standard ClassLoader system or
the StrategyClassLoader system). This helps improve the system’s overall flexibility;
where possible, my code makes use of the StrategyClassLoader and appropriate Class-

2 This is also the reason for the peculiar names of the ClassLoaderStrategy interface. Because Java disal-
lows methods to overload based solely on return type, the only way to differentiate between the inter-
face method and the ClassLoader-inherited method is to change the name from findd ass to
fi ndd assByt es in my interface.

CHAPTER 3 CUSTOM CLASSLOADERS

LoaderStrategy-implementing classes, but where necessary, I can always fall back on
the standard ClassLoader-implementing approach.

For those still stuck in the Java 1.1 environment, we can make use of the Class-
LoaderStrategy approach by providing a slightly modified version of StrategyClass-
Loader; the code is part of the com j avageeks. cl ass| oader package. The only
real variation between this class and the StrategyClassLoader for Java 2 is that it does
the delegation to the Strategy instance inside | oadCl ass instead of in Java 2’s f i nd-
d ass. In fact, the StrategyClassLoader becomes even more important to the JDK 1.1
environment because of its ability to load classes from multiple sources. Because
JDK 1.1 lacks the delegating-parent concept, there is simply no way to define a mul-
titiered array of ClassLoaders, as in 1.2.

3.15 CompositeClassLoader

Recall that one of the rules regarding the ClassLoader mechanism is that a given class
can be associated with only a single given ClassLoader. What's more, the parental
relationship of the delegating ClassLoader system means that ClassLoaders cannot
work as peers—that is, a group of ClassLoaders working together to find a class from
a variety of sources, each with equal opportunity to find the class requested.

Because all CLASSPATH entries are referenced from a single ClassLoader, it will
attempt to look in all CLASSPATH-entry locations for a referenced class. Think about
what happens if a separate ClassLoader were to be created for each entry in the CLASS-
PATH. When a class (“A”), loaded from the first entry in the CLASSPATH references
a second class (“B”) found only in the second entry on the CLASSPATH, “B” will never
get loaded. “A” will look to its own ClassLoader, not find it, then look to its parent
ClassLoader, which will be the ExtClassLoader (which knows nothing about CLASS-
PATHs), and also won’t find it. Therefore, “B” doesn’t exist, according to the Class-
Loader hierarchy. Unfortunately, we don’t want a hierarchy here; we want a flat linear
list of ClassLoaders to test before giving up.

When a class is requested, the AppClassLoader, as it checks the CLASSPATH,
looks at each directory or .jar file in order, until one is found or it runs out of entries.
Were each of these entries in the CLASSPATH a separate ClassLoader, only that Class-
Loader and its immediate parent would be checked. This means that if class Foo was
originally found in the first entry of the CLASSPATH, then any class Foo used would
be checked using that same ClassLoader or its parent. So if Bar were referenced by Foo,
but existed in the second entry in the CLASSPATH, it would never be loaded.

Unfortunately, CLASSPATH has two drawbacks: it can only be used for classes
stored on disk, and, because it’s an environment setting, any end user can inadvert-
ently corrupt, destroy, or modify it. Even worse, automated installers can modify the
CLASSPATH, setting their code before yours, giving their code precedence over yours
when classes of the same name are loaded.

It can be advantageous to distribute code for Java servers in multiple places, even
though they might all be part of the same conceptual unit. For example, a standard

EXTENDING CLASSLOADER 75

76

reporting system may store the framework for the reporting engine (which changes
infrequently, at best) in a .jar file on an HTTP server, but the ever-changing reports
themselves in the same database as the data on which they’re reporting. A security sys-
tem may store insecure code in the open on disk, but wish to pull code under security
restrictions from a centralized security server via a socket.

Listing 3.5 is the code for the CompositeClassLoader class, which takes any num-
ber of ClassLoaderStrategy-implementing objects and defers the retrieval of bytecode
to those Strategy objects.

Listing 3.5 Code for CompositeClassLoader

public class Conposited assLoader extends C assLoader
i mpl enents C assLoader Strat egy

{
publ i c ConpositeC assLoader ()
{
t hi s(Conposi t ed assLoader. cl ass. get Cl assLoader (), null);
}

publ i c Conposited assLoader (Cl assLoader Strategy[] | oaders)
{

t hi s(Conposi t ed assLoader. cl ass. get Cl assLoader (), | oaders);

}
publ i c Conposited assLoader (Cl assLoader parent)
{
this(parent, null);
}

publ i c Conposited assLoader (Cl assLoader parent,
Cl assLoader Strategy[] | oaders)

{
/1 Establish parent Cl assLoader relationship
/1
super (Conposi t eCl assLoader. cl ass. get G assLoader ());
/1 Copy over ClassLoaderStrategy instances (if any)
/1
if (loaders !'= null && | oaders.length > 0)
{
for (int i=0; i<loaders.length; i++)
{
m | oader s. addEl enent (| oaders[i]);
}
}
}
public void addLoader (Cl assLoader Strategy cls)
{
m | oader s. addEl enent (cl s);
}
public Enuneration enunloaders()
{

return m| oaders. el ements();

CHAPTER 3 CUSTOM CLASSLOADERS

}

public void renpovelLoader (C assLoader Strategy cls)

{
m | oaders. renove(cl s);
}
public byte[] findd assBytes(String classNane)
{
byte[] bytecode = null;
for (Enuneration enum = enunioaders();
enum hasMor eEl enents();)
{
Cl assLoader Strategy strat =
(d assLoader Strat egy) enum next El ement () ;
byt ecode = strat.findd assBytes(cl assNane);
if (bytecode != null)
{
return bytecode;
}
}
return bytecode;
}
public URL findResourceURL(String resourceNane)
{
URL resource = null;
for (Enuneration enum = enunioaders();
enum hasMor eEl enents();)
{
Cl assLoader Strategy strat =
(d assLoader St rat egy) enum next El ement () ;
resource = strat.findResourceURL(resourceNane);
if (resource !'= null)
{
return resource;
}
}
return resource;
}
public Enuneration findResourcesEnum(String resourceNane)
{

Enunerati on resourceEnum = nul | ;

for (Enuneration enum = enunioaders();
enum hasMor eEl enents();)

{

Cl assLoader Strategy strat =
(C assLoader Strat egy) enum next El ement () ;
resourceEnum = strat.fi ndResour cesEnun{resourceNane);

if (resourceEnum!= null)

EXTENDING CLASSLOADER

78

return resourceEnum

}
}
return resour ceEnum
}
public String findLibraryPath(String |ibraryNane)
{
String libPath = null;
for (Enuneration enum = enunioaders();
enum hasMor eEl enents();)
{
Cl assLoader Strategy strat =
(d assLoader Strat egy) enum next El ement () ;
libPath = strat.findLi braryPath(li braryNane);
if (libPath !'= null)
{
return |ibPath;
}
}
return |ibPath;
}

protected Cass findC ass(String nane)
t hrows C assNot FoundExcepti on

{

byte[] classBytes = findCd assBytes(nane);

if (classBytes == null)

{

t hrow new O assNot FoundException();

}

return defineC ass(nanme, classBytes, 0, classBytes.length);
}

/1 Internal menbers
/1
private Vector m.| oaders = new Vector();

The test driver (see the source code for details) creates two ClassLoaderStrategy objects,
one a FileSystemClassLoader, and the other a HashtableClassLoader, and demonstrates
how classes can be loaded from either ClassLoader with equanimity. This is where the
idea of using Strategy objects, to vary the implementation, really pays off—the Com-
positeClassLoader doesn't care where any of the ClassLoaderStrategy instances actually
find the code, only that one of them can. And because CompositeClassLoader is, in and

CHAPTER 3 CUSTOM CLASSLOADERS

of itself, both a standard ClassLoader and a ClassLoaderStrategy-implementing class, it
can be used as either with equal efficacy.

Other ClassLoader tricks

In addition to providing ways by which bytecode can be loaded, a ClassLoader-
extending class can perform surgery and/or modification of the bytecode loaded
from some source, or even generate the bytecode directly from scratch, as mentioned
earlier. We've already demonstrated how a CompilerClassLoader can compile .java
files into .class code each time a class is requested, but under certain circumstances
we will want to generate the .class code directly from bytecode assembler directives.
More often, we will want to instrument, modify, or enhance bytecode to provide
certain behaviors.

Dynamically generating bytecode

Dynamically creating code, at run time, provides the ultimate in flexibilicy—if you
don’t have the behavior you want, create it!

The code demonstrating this concept can be found as part of the chapter 2 sample
applications; it’s too long to list here. The concept is simple: in the DynamicGen.java
file, a StrategyClassLoader is created, passing in an instance that uses the ClassFile API
(the source code can be found on the publisher's web site at www.manning.com/
neward3; please make sure to copy it to your Java installation’s Extensions directory,
or put it on the CLASSPATH before running the sample) to dynamically build the code
to print “Hello, world!” on the console when constructed. Again, it’s a trivial example,
but it demonstrates how we can have total control over what we can do at run time.

Modifying bytecode on the way in

After the bytecode has been loaded from disk, but before the Class instance has been
defined (by a call to def i ned ass), a ClassLoader is free to modify the bytecode as
desired. Consider, for a moment, a hypothetical LogClassLoader, which extends
URLClassLoader to load classes from any URL, but then modifies the method byte-
code to write a message to a log file indicating method-entry and method-exit.
Although it greatly slows execution, this can be very useful for debugging purposes,
especially in environments where conventional debugging isnt feasible, practical, or
easy (such as servlet debugging). Alternatively, as another example, we could use this
filtering behavior to silently provide RMI stubs/skeletons when users request an RMI
object or class.

This idea of modifying bytecode during the loading process isn’t new; in fact, some
very interesting research, led by Shigeru Chiba of the University of Tsukuba, into
Java’s capacity for metaprogramming is taking place. Metaprogramming is a new con-
cept, represented only in its most primitive form by generic class mechanisms like C++
templates; metaprogramming offers powerful abstraction capabilities not possible
with a noninterpreted system like C++. This research has led to the development of

EXTENDING CLASSLOADER 79

3.1.7

3.2

80

the OpenJava and Javassist compilers, which read a form of meta-Java code, and in
turn modify the generated Java code on the way into the JVM. In addition, Kestrel,
the JDK version 1.3, defines a new technology called dynamic proxies, which makes
the previous ClassLoaders almost trivial to create.

Other ClassLoaders

As we move through this book and visit other subjects, we'll come back to the idea of
ClassLoaders and all the different ways we can get bytecode served up to us, so dont
think we’'re completely done with this subject. There’s a lot of potential here; it's my
opinion that it’s not Javas portability, simplistic syntax, or even its built-in thread
support, but its classloading capabilities that far outstrip any other language for
server-side application development.

ON-THE-FLY CODE UPGRADES

One of the givens in enterprise development is that evolution is inevitable—as code is
released into production, users will find bugs, come up with new ideas, or have new
requirements. It’s inevitable. The problem is, once a server goes into production, the
system administrators are loathe to take the system down just to upgrade the code.
Remember, they’re looking to keep the system up and running as long as possible—
downtime translates into direct loss of money for most IT organizations. So you're
stuck with fixed, monthly upgrade dates, which leads your customers to believe that
you're not supporting them as quickly as you should be.

For years, developers have been searching for ways to upgrade code without
bringing the server (or any clients using the code at the time of the upgrade) com-
pletely down. It could be done, under strict conditions, but most of the time the con-
ditions imposed were unacceptable to developers. For example, certain development
systems could allow for it, but they were usually interpreted, proprietary systems that
lacked language features, speed, or acceptance outside of that vendor’s product.

Java gives us the ability to do this sort of dynamic, on-the-fly upgrade without:

* taking the server down
* interrupting service to other unrelated clients
* interrupting service to clients currently using the code to be replaced.

Remember what we said about class uniqueness within the Java classloading scheme?
Within the JVM, a unique class is a tuple of the class’s fully qualified package-and-class
name and the instance of the ClassLoader that loaded it. In Java terms, a ClassLoader
holds a reference to each and every class it loads. Each class, in turn, holds a reference back
to the ClassLoader that loaded it. So long as either one of these are referenced from any-
where else in the JVM, that code will be used for new instances of that type. For example,
when we say

FileSystemClassLoader fscl = new FileSystemClassLoader(“D:\\");
for (int i=0; i<10; i++)

CHAPTER 3 CUSTOM CLASSLOADERS

{

Class c = fscl.loadClass(“com.neward.MyClient”);
Object o = c.newlInstance();

}

even if the .class file is modified during the middle of this loop, the old code is used.
This is because when we call Cl ass. newl nst ance, we reference back to the Class-
Loader that loaded the Class, and find it has already loaded that class. No new load is
necessary. However, if we write

for (int i=0; i<10; i++)

{
FileSystemClassLoader fscl = new FileSystemClassLoader(“D:\\");
Class c = fscl.loadClass(“com.blah.MyClient”);
Object o = c.newlInstance();

}

then if the .class file for MyClient changes in the middle of the loop, we will pick up
those changes.

Don’t believe me? Let’s test it. You'll find the following code on the publisher’s
web site:

Listing 3.6 Code for ClassLoadTest

i mport com j avageeks. cl assl oader . Fi | eSyst enCl assLoader ;

public class C assLoadTest
{
public static void main(String[] args)
throws Exception /1 cheap way to avoid catch()ing Exceptions
{
/1 The idea is sinple: load a .class and run() it, then pause for
/1 10 seconds before doing it again. If you nodify the .class file
/1l during the pause, then the new C assLoader should pick up the
// modification and execute the new file instead of the old one
/1
Systemout. println(args.|length);

if (args.length > 0)

{

if (args[0].startsWth("-unique"))

{
// W want to use a unique O assLoader isntance on each
/1 1oop
11
while (true)
{

Fi | eSyst enCl assLoader fscl =

new Fil eSystenCl assLoader ("./TestDir");
Class ¢ = fscl.loadO ass(args[1]);
bj ect o = c.newli nstance();
Systemout.println(o.toString());

ON-THE-FLY CODE UPGRADES 81

Systemout.println("Sleeping for 15 seconds....");
Thr ead. sl eep(15*1000);

}
}
el se
{
/1 W want to use the sane Cl assLoader instance on each
/1 1 oop
/1
Fi | eSystenCl assLoader fscl =
new Fil eSyst enCl assLoader ("./TestDir");
while (true)
{
Class ¢ = fscl.loadCO ass(args[0]);
bj ect o = c.new nstance();
Systemout.println(o.toString());
System out.printIn("Sleeping for 15 seconds....");
Thr ead. sl eep(15*1000);
}
}
}
el se
{
System out. println(
"Usage: java C assLoadTest [-unique] classname");
Systemout.printIn("\tWile the code is running,
open a new conmand");
Systemout.println("\tshell and execute TestDir’'s SW TCH. BAT.");
System out. println(
"\tThis will switch Hello.class fromone version");
Systemout.printin("\tto the other.");
return;
}

The point of this code should be fairly obvious: based on whether the - uni que
command-line option is present, either use a single FileSystemClassLoader
instance to load the class, or else use the same instance repeatedly. Within the
TestDir subdirectory under Chap02, you'll find a LoadTest.java file, which has
been compiled into two different versions:

public class LoadTest

{
public LoadTest ()

{

Thread t = new Thread(new Runnabl e()

{

public void run()

82 CHAPTER 3 CUSTOM CLASSLOADERS

try
{
while (true)
{
Systemout.printin("Hello, " +
//"fromthe first LoadTest!"); [/ ***
"fromthe second LoadTest!");
Thr ead. sl eep(5*1000) ;
}
}
catch (Exception ex)
{
}
}
b
t.set Daenon(true);
t.start();

}

Within that directory, two sets of .class files exist for LoadTest; the first (Load-
Test1.class and LoadTest1$1.class) uses the “from the first LoadTest” line, the second
(LoadTest2.class and LoadTest2$1.class) uses the “from the second LoadTest” line.
Remember, Java checks the compiled class name within the .class file against the
name given on the command line, so we can’t just issue

java O assLoadTest LoadTest1

and expect it to load the LoadTestl.class and execute it; we want the two different
versions of the .class files to have the same name, to pretend as if Load Test is getting a
new version that needs to be deployed.

To make this work, issue the following commands from a Win32 Command
shell? in the Chap02 directory:

start java C assLoadTest LoadTest

A new shell should appear, and the following output (or something very similar)
should appear:

1

LoadTest @b9dell13

Sl eepi ng for 15 seconds....
Hello, fromthe first LoadTest!
Hello, fromthe first LoadTest!

3 Again, this example assumes you’re running in a Win32 (Windows N'T, Windows 95/98) environ-
ment. From within a UNIX environment, however, it shouldn’t be too difficult to adapt the switch.bat
file to a standard shell-script file. Where I tell you to type “start java ...”, instead use the Unix “run-in-

»_ o«

the-background” switch, “&”: “java &”, and everything should work out just fine.

ON-THE-FLY CODE UPGRADES 83

84

Hello, fromthe first LoadTest!
LoadTest @5alell3

Sl eepi ng for 15 seconds....
Hello, fromthe first LoadTest!
Hell o, fromthe first LoadTest!
Hello, fromthe first LoadTest!
Hell o, fromthe first LoadTest!
Hello, fromthe first LoadTest!
Hello, fromthe first LoadTest!
LoadTest @7f 1e113

Sl eeping for 15 seconds....
Hello, fromthe first LoadTest!
Hell o, fromthe first LoadTest!
Hello, fromthe first LoadTest!
Hell o, fromthe first LoadTest!
Hell o, fromthe first LoadTest!
Hello, fromthe first LoadTest!

As you can see, ClassLoadTest, every fifteen seconds, is creating an instance of
LoadTest from the TestDir subdirectory. Now, if we go back to the original Command
prompt, change directories into TestDir, and call the switch batch file, nothing
changes. Because we started ClassLoad Test without the - uni que option, it’s reusing
the same FileSystemClassLoader instance over and over again to load the LoadTest
class and newl nst ance it. Since that instance of FileSystemClassLoader has already
loaded the LoadTest class (with the first version), it won’t go back to the disk.

Now, however, if we close everything and start again with an instance of Class-
LoadTest run this time with the - uni que option, we get a very different result. In
this case, from within the Command shell in the Chap02 directory, issue the following
command, followed by the second command a few seconds later:

start java ClassLoadTest —unique LoadTest

(Wait a few seconds)

cd TestDir
switch

Look what shows up in the console window:

2

LoadTest@d58ce277

Sleeping for 15 seconds....

Hello, from the first LoadTest!
Hello, from the first LoadTest!
Hello, from the first LoadTest!
LoadTest@d064e277

Sleeping for 15 seconds....

Hello, from the first LoadTest!
Hello, from the second LoadTest!
Hello, from the first LoadTest!
Hello, from the second LoadTest!

CHAPTER 3 CUSTOM CLASSLOADERS

3.3

3.3.1

Hell o, fromthe first LoadTest!
Hell o, fromthe second LoadTest!

When told to use a new ClassLoader instance each time to load a class, if the new
class on disk is different from the version loaded by a different ClassLoader, the new
version gets picked up, even if the old version is still being executed.

This is going to provide a substantial payoff later, in chapter 5, when we begin
the implementation of the Generic Java Application Server (GJAS).

GJAS: FIRST STEPS

So where does all this discussion leave us? How does this talk of classloading and run
time linking affect us in the server environment?

Remember that one of our goals in this book is to create a flexible, generic, exten-
sible server framework and system that you can use in your own server-based environ-
ment. A frequently asked question is: how do we avoid writing the same code over and
over again? We could, for example, write a simple Java class that is intended to be fired
up off the command line when the user logs in, executes, and terminates. This solu-
tion, however, will be acceptable only for the most simplistic of services. Once we start
talking about writing TCP/IP socket servers, as well as servers that need to restart as
soon as the machine restarts (in the event of a power failure or controlled shutdown,
for example), repeatedly rewriting that complexity does nothing except see how careful
(or careless) we are with our ability to cut and paste.

We can do better.

Goals
The GJAS needs to have the following qualities, at least to start:

* Extensible
We should be able to plug in additional services and/or servers without requiring
any code change to the server itself.

* Generic
We shouldn’t be excluded from including a particular server or service from
within this system due to the system’s approach or limitations.

* Dynamic
We should be able to vary which servers or services are started from run to run
(that is, the first time we run it, we should be able to run three servers that say,
“Hello, world!”; the next run, two Hello servers and one that executes a com-
mand line) without necessitating a code change.

* Independence
No server or service should be able to bring down the JVM (and therefore other
executing servers/services in the system).

GJAS: FIRST STEPS 85

3.3.2

86

We're not going to delve into implementation code quite yet; we need to address
a few other issues first, such as scalability and robustness. However, we can at least take
a first pass at the design and the interfaces required.

Meeting these requirements requires Java’s ClassLoading mechanism as well as
careful interface design. Extensibility can be met by defining a simple Service interface
which clients must implement, which we load and construct at run time. Genericness
can be met both through this run-time construction and careful design. Dynamicness
can be met by creating an API that our system exposes, allowing users to vary how the
servers/services are loaded. Independence can be met by making certain that any Java
exception thrown from within a user service can be thrown out of the system itself,
bringing down the JVM.

The code for the following classes can be found in the CustomClassLoader direc-
tory on the publisher’s web site. There will be other versions in other directories that
won’t match what we’re building thus far, so make sure you’re looking in the right
place. Figure 3.1 shows the UML diagram of the system so far:

ServerManager Server Service

1 0.* 1IN 1

Figure 3.1 Simplified UML diagram of GJAS so far

Service

We'll start with the basic interface that any service wanting to be a part of the GJAS
framework/system must implement (listing 3.7).

Listing 3.7 Code for Service.java

* Note: Service's Serializable interface should be honored,

* because Serialization is the basic nmeans of exchange between

* JUMs in RM calls, and if a Service is not Serializable then it
* cannot be transferred across JVMs.

* If a Service needs to maintain "interin data that shoul d not
* be Serialized, then remenber to mark the data nmenmbers as
* transient. Also, renenber that a given Serializable
* class can control what happens when it is serialized and
* deserialized by nmeans of the witeObject and readCbject nethods.
* This woul d allow, for exanple, those Services that nake use of
* JDBC Connections (as an exanple) to close down and reopen the
* Connection upon serialization and subsequent deserialization.
*/

public interface Service

i mpl enents java.io.Serializable
{

/**

* Start the Service. Al but the npst sinplistic Services

CHAPTER 3 CUSTOM CLASSLOADERS

* should fire off their own thread from here.

*/

public void start()
throws Exception;

/**

* Stop the Service.

*/

public void stop()
throws Exception;

/**

* Pause the Service.

*/

public void pause()
throws Exception;

/**

* Resume the Service.

*/

public void resune()
throws Exception;

/**

* Get the current state of the Service; nust be one of the
* follow ng types: STOPPED, STARTING RUNNI NG STOPPING
* PAUSI NG, PAUSED, or RESUM NG

*/

public String getState();

public static final String STOPPED = " STOPPED";
public static final String STARTING = "STARTI NG';
public static final String RUNNING = "RUNNI NG';
public static final String STOPPING = "STOPPI NG';
public static final String PAUSING = "PAUSI NG';
public static final String PAUSED = "PAUSED";
public static final String RESUM NG = "RESUM NG';
/**

* Return a String uniquely identifying this instance of the

* Service; this String nmust be unique not just to the Service
* class, but to the Service instance itself. Suggested return
* format is sonething |ike:

* String instancelD = this.getCl ass().getName() + ":" +
* getC assVersion() + ":" + getMIIlisecondCount();

* Note that maintaining an "instance count" of the nunber of
* instances of this class will fail, since all instances will
* be maintained within their own C assLoader, and static
* menbers are stored on a per-C assLoader basis.
*/
public String getlnstancel IX)

throws Exception;

GJAS: FIRST STEPS 87

3.3.3

88

The first question might very well be why we choose to force all GJAS-compliant
servers to have to implement Service, instead of simply requiring a compliant class to
make public certain methods of a particular signature, and use Reflection to call them?
After all, wouldn’t using Reflection offer a measure of flexibility that went beyond
most other programming languages?

The answer isn’t clear-cut, and stems mostly from personal choice. I’s my pref-
erence to accept the limitations of an interface-based API in exchange for the addi-
tional compile-time checking that the compiler gives me, both as the server developer,
as well as the client developer (the one who’s developing the services that will be
plugged into the system). It’s also easier for me as a server developer to manage, spe-
cifically from a code perspective. Not only are methods on the client service easier to
call, but they are also easier to read and understand.

It would also be a simple matter to combine the two approaches—in the Server-
Manager implementation (which we cover in a later chapter), we could add code to
use Reflection within the system if the class loaded didn’t implement Service. It’s a bit
of overkill—only one approach or the other should be used—but it can be a useful
trick under other circumstances.

Server

Given that we already have a basic interface we want any user of our system to have to
implement in order to be hooked in, why create another layer between the server
manager (IServerManager), and the actual Service? At the moment, the need for it is
fairly light—we probably could, in fact, just call the Service methods directly and be
happy with it. As we move on, though, we'll find that we have to do various things
around each call to the Service methods. For example, we'll eventually want code in
place that spins off a Thread to make the call to the Service method, and waits for a
few seconds to see if the call comes back, just in case Service is stuck in an infinite
loop or otherwise blocked. That way, we wont lock up the entire system. So Server
will become our handle to a Service, with each Service instance having a wrapper
Server around it. Server, in essence, will isolate us from Service being able to bring the
entire system down.

This is a classic example of the Proxy pattern, in which we’re defining another
object instance to act as the gateway to another object. In this case, the Server instance
will act as the Proxy to the actual Service instance. This nets us absolutely zero advan-
tage (and an additional function-call indirection for our trouble, which means we’re
actually worse off than calling the Service instance directly, at least for right now) at
the moment, but becomes more critical later.

The code for Server is, at this point, rudimentary and straightforward. Note that
we first specify Server as an interface (I Ser ver), in order to preserve Server’s intent
as a location-transparent class—we don’t want to know precisely how ServerManager
is hiding the Ser vi ce from us (listing 3.8).

CHAPTER 3 CUSTOM CLASSLOADERS

Listing 3.8 Code for IServer

* %

* The "public" interface for Servers; note that the Server instance
* type will vary directly with the ServerManager used, in order to
* best support the |location transparency concept. |Server serves as
* the Proxy to the Service instances | oaded into the ServerManager
* any control of the Services nust conme through the Server, since
* the client, if it tries to hold a Service instance within its own
* JUWM for "faster" access, may be holding a stale or otherw se
* unstabl e reference.
*/
public interface |Server

extends java.io.Serializable

* Starts the wapped Service instance. Services have 15 seconds in
* which to either initialize, or else start a thread to performthe
* necessary initialization and return. If a Service fails to respond

* within 15 seconds of the start of its start call, the Server
* and/ or ServerManager are free to destroy it.

*/

public bool ean start();

/**

* Stops the wapped Service instance; as with start, the

* Service gets 15 seconds to stop itself before the ServerManager is
* free to take nore drastic steps

*/

publ i c bool ean stop();

| **

* Pauses the w apped Service. The Service should respond within 15

* seconds of the start of this call; however, failure to do so is not
* sufficient grounds for the ServerManager or Server to destroy it.
*/

publ i c bool ean pause();

/**

* Resumes the wapped Service. The Service should respond within 15

* seconds of the start of this call; however, failure to do so is not
* sufficient grounds for the ServerManager or Server to destroy it.
*/

public bool ean resune();

/**

* Kills the wapped Service
*/

public void kill();

/**

* Returns the state of the w apped Service
*/
public String getState();

| **

GJAS: FIRST STEPS 89

3.34

90

* Returns the instance |ID of the wapped Service.
*/
public String getlnstancel D();
/**
* Returns the last Exception thrown, if any, by the wapped Service.
*/
public Exception getlLastError();

As you can see, | Server isnt much more than a small shell around the Service
methods. Notice also how | Ser ver extends the Serializable interface; this is so that
(in later chapters) we can send | Ser ver instances across RMI connections, sockets,
or even serialize it out to disk. By making | Server Serializable, we add a tremen-
dous amount of flexibility to how | Ser ver can interact with the ServerManager.

ServerManager

The core GJAS is the ServerManager class, which is the shell in which user-defined
Service-derived classes will execute. ServerManager, more than any other class in the
GJAS system, is the heart and soul of its application server. It holds the Services added
to it, hands out references to Services as requested by clients, and provides the basic
backplane for the GJAS system. However, in order to provide the maximum amount of
location transparency, we don’t necessarily want the ServerManager class itself doing
the actual work—wed like to be able to connect with ServerManagers in other virtual
machines, and so forth. We'll get to that later, but we'll lay the groundwork now.

We create ServerManager in a separated fashion. First, we'll create the basic
ServerManager interface, called | Ser ver Manager , that any class wishing to provide
ServerManager-like behavior must implement. Next, we'll create a class, ServerMan-
ager, that provides static-level access to the | Ser ver Manager instance. We want
only one ServerManager instance in a given JVM (the classic Singleton pattern), but
we don’t know ahead of time which we want. The reason we go to all this trouble is
that we want to provide a single way of interacting with the ServerManager, but we
want to vary the actual ServerManager implementation used. We write the ServerMan-
ager class to check to ensure that only one | Ser ver Manager instance is ever set as zhe
instance, and require any | Ser ver Manager -implementing class to set itself as the
ServerManager instance.

A ServerManager needs to provide, at a minimum, the following interface:

public interface |ServerManager

{

public void shutdown();

public |Server |oadService(Service svc);
public |Server addService(Service svc);
public void removeService(String instancel D);
public void kill Service(String instancelD);

CHAPTER 3 CUSTOM CLASSLOADERS

public String[] getServices();

public |Server getService(String instancelD);
public void log(String nsg);

public void | og(Exception ex);

public void error(String nsg);

public void error(Exception ex);

}

ServerManager’s API can be broken down into three sections: control of the Server-
Manager itself, Service management, and diagnostic/logging support.

Controlling the ServerManager itself consists of one method: shut down. The
method prepares the ServerManager to go down, and is required to take all the Services
down in as clean a manner as it can before terminating. Shutdown is an unvetoable
action, so if any Service tries to resist or simply takes too long, the ServerManager is
free to terminate it.

The next set of methods deals with adding, removing, and enumerating the Ser-
vices running within the ServerManager. As might be expected, addSer vi ce adds
the Service instance to the ServerManager and calls st art on the Service as it does.
The | oadSer vi ce method adds the Service instance, but doesn’t call st art ; this
means that addServi ce is the same as | oadServi ce(Service).start ().
Notice that both return the |Server instance we discussed above. The
removeServi ce method removes the Service specified by the instancel D
parameter, calling st op on the Service first. The ki | | Ser vi ce method removes
the Service altogether from the ServerManager—theoretically, when the Ser vi ce is
no longer referenced by the ServerManager, it will be garbage-collected, but don’t
depend on this behavior. The get Servi ces method returns the array of Strings
given by calling each Service’s get | nst ancel D method, and get Ser vi ce returns
the | Ser ver instance wrapping the Service in question.

The | og and error methods provide a single unified logging/error-reporting
facility. You may be wondering why, if we’re trying so hard to keep Services separate
from ServerManager, we would turn around and place the logging and error-reporting
facilities inside of ServerManager. For now, it makes the most sense to put them there.
If you have a real problem with that, feel free to create a Service (call it LogService and/
or ErrorService) that exposes the same APIs. In any event, accessing the APIs in Serv-
erManager is as simple as calling

ServerManager.log(“Started the FooBotz Service”);

Because ServerManager is a Singleton, we have no concerns about | og or error
output being fragmented across multiple locations, which could very easily be a prob-
lem if the logging and error-reporting services are standard services.

GJAS: FIRST STEPS 91

3.4

92

SUMMARY

ClassLoaders offer powerful functionality for our server framework and system. We've
moved from the traditional bundle-up-all-the-code, get-the-system-administrators-to-
install-it-on-all-the-users™-machines approach to a more distributed, zero-deployment
system. We can drop our code in a single centralized point, be that a shared filesystem,
FTP server, or HTTP server, and any new clients will pick up the new code, even as any
old clients continue to finish their interaction using the old code. As the last of the old
clients disappears, so does the loaded bytecode for the old instances. We've also seen
how we can modify the class bytecode as it is loaded into the JVM, thanks to the class
filters concept, or even build entirely new bytecode on the fly.

CHAPTER 3 CUSTOM CLASSLOADERS

a4

Extensions

4.1 Types of extensions 94

4.2 Implications of the extensions mechanism 100
4.3 Packaging extensions 102

4.4 The plug-in 104

4.5 Summary 125

JDK 1.2 offers a new mechanism for updating code: the Java extension mechanism.
From the JDK 1.2 documentation, (jdk1.2/docs/guide/extensions/index.html):

Extensions are packages of Java classes (and any associated native code) that
application developers can use to extend the functionality of the core platform.
The extension mechanism allows the Java virtual machine (VM) to use the
extension classes in much the same way as the VM uses the system classes. The
extension mechanism also provides a way for needed extensions to be retrieved
from specified URLs when they are not already installed in the JDK or JRE.

That last sentence should strike a nerve—“provides a way for needed extensions to be
retrieved from specified URLs when they are not already installed in the JDK or JRE.”
That would seem to imply that if a class isn’t present within the CLASSPATH or local
file system we can grab it from someplace else. That’s precisely what it means.

93

4.1

4.1.1

94

TYPES OF EXTENSIONS

The Java extension mechanism divides the world of Java extensions into two camps:
installed and download. Each carries its own advantages and drawbacks.

Installed extensions

An installed extension is code that resides within the JRE’s extension directory, which
within the Sun JRE distribution, is the JRE\1.2\lib\ext directory. Any compiled Java
code, whether in .class or .jar form, will be silently added to the JVM’s CLASSPATH if
it resides within this directory.

In this respect, the JRE’s extension directory now mimics the same semantics as
most modern operating systems and shared libraries. For example, under Win32, a
DLL will be found by a LoadLi brary() call regardless of the directory in which the
application is executing if the DLL resides in the Windows directory or Windows sys-
tem directory. Most UNIX OSs have something similar using the LD_LI BRARY_PATH
environment variable.

This makes distribution of Java applications much, much easier. Formerly,
installing a Java application to a client’s machine required not only the installation of
the .class or .jar file to the local file system, but also modification of the user’s CLASS-
PATH environment variable to include the new directory or directories or the .jar file
itself. While not a monumental task, users can (and quite frequently do) change their
environment variable settings, making Java applications particularly vulnerable. Now,
install scripts can copy the code over to the extension directory, and Java will auto-
matically find it.

Unfortunately, Java will look only in that specific directory, and not in any sub-
directories underneath it. This means that this directory is likely to become cluttered
and crowded as multiple applications install themselves to this one place. It also raises
the ugly possibility that versioning issues will begin to appear on user systems as appli-
cations using common third-party JAR files (GNU code, or third-party GUI toolkits)
which start accidentally overwriting newer versions with older versions on install. The
Windows development community has been struggling with this problem for a
decade, and accidental overwrites still occur despite their best efforts. Unless Sun
quickly takes steps to address this, I would be very careful about how files are named
when installed to this directory.

Fortunately, Java doesn’t seem to care what the JAR file itself is named; for that rea-
son, I'd suggest any JAR file to be installed to this directory follow a naming convention
similar to that of Sun’s package names. For example, if I create a .jar file containing the
“HelloWorld.class” file, version 1, then I'd rename it “com.javageeks.HelloWorld.jar”.
That way, in my install scripts, I can check for an earlier version of my application, and
search through the .jar file for a text file labeled “version”, and read which version of my
code I'm thinking about overwriting.

CHAPTER 4 EXTENSIONS

One undocumented’trick regarding extensions is the j ava. ext . di rs prop-
erty. When the Java run time starts, it defaults this property to be the JRE’s lib/ext
directory. However, by using the - D parameter at the command line (or by specifying
the equivalent option when using JNI invocation), it’s possible to change or add direc-
tories to this path list.

As proof, create a simple Hello.java class and put it in the root of your file system;
here I'm assuming it’s a Wintel PC, on the C: drive. Now fire up the Java interpreter
with the —D parameter like so:

java —Djava.ext.dirs=C:\ Hello

UNIX Java users would run:

java —Djava.ext.dirs=/ Hello

Your Hello class will be loaded and executed although it resides in the root directory
instead of in the standard Extensions directory.

This in turn offers some hope for directory management. Each subdirectory (corre-
sponding to a single application, development group, component, whatever) can be added
to the j ava. ext . di rs property when the JVM is started. Naturally, this, too, could
quickly become unmanageable, but until Sun changes this behavior, it’s the best we can do.?

What would actually be very cool would be to modify the j ava. ext.dirs
property, or its equivalent within the ClassLoader, to add Extension directories as the
application executes. Unfortunately, URLClassLoader, which serves as the base class
for Launcher$ExtClassLoader, doesn’t make its addURL method public, so we have
no hope of being able to do that. Once the Extension directories are loaded into the
ExtClassLoader, they’re fixed for the lifetime of the JVM.

Building an installed extension
Building an installed extension is as simple as building a normal JAR file. Begin with
standard Java code, compile it, and condense it into a JAR file:

/1 Hellowsrld.java (in src/chap2)
/1
public class HelloWrld

{
public static void main(String[] args)
{
Systemout.println("Hello, world!'");
}
}

1 As of this writing it only shows up when every property in the JVM is displayed via Syst em get -
Properties.

2 Ifyou hold a Sun Community Source License to Java 2, you could modify the source for the Extensions
ClassLoader that manages the extensions directory (sun.misc.Launcher$ExtClassLoader). While such
a modification would immediately render your environment impure Java, sometimes these sorts of lo-
calized source changes are necessary and beneficial in the long run.

TYPES OF EXTENSIONS 95

4.1.3

96

/~k

From the command |ine, do:

javac Helloworld.java

jar cvf com javageeks. HelloWorld.jar Hell oWrld.class

copy com j avageeks. Hel | oworl d. jar your-JRE-directory\lib\ext

or, if you use the GNU nake fromthe CD, edit the nakefile.rules
file in the ‘src’ directory, and do:

make clean all

*/

As I described, typically if 'm packaging up a JAR file for release or installation on
end-user machines, I'll also include a text file labeled “version” in the JAR:
Maj or 1
M nor O
Then, inside of an install script or install executable, I can look for an existing
com.javageeks.HelloWorld.jar file within the Extension directory. If one exists, I can
open it using the java.util.zip classes, extract the version file, parse it, and determine if
I need to overwrite what’s there.

Once the JAR file is created, copy it to the Extension directory, and attempt to
execute it:
copy Hellowrld.jar C\prg\jdkl. 2\jre\lib\ext

cd \
java Hell oworld

That’s all there is to it.

Download extensions

For all the power in the installed extension mechanism, download extensions will be
the ones in which people will probably be most interested. This is the ability to
download code from a URL if it is not already present on the system. However, as the
JDK 1.2 extension guide tells us, (jdk1.2/docs/guide/extensions/extensions.html):

Unlike the case of installed extensions, the location of the JAR files that
serve as download extensions is irrelevant. A download extension is an exten-
sion because it is specified as the value of the Cl ass- Pat h header in another
JAR file’s manifest, not because it has any particular location.

Another difference between installed and download extensions is that only
applets and applications bundled in a JAR file can make use of download
extensions. Applets and applications not bundled in a JAR file don’t have a
manifest from which to reference download extensions.

The key part comes in the second paragraph: “... only applets and applications
bundled in a JAR file can make use of download extensions.” So, in order to make use

CHAPTER 4 EXTENSIONS

of download extensions, we need to have our application in a JAR file, with the Man-
ifest file indicating where else to look for code that the JVM can’t find.

This offers some serious code-reuse capabilities, especially in a corporate intranet.
In a sense, this is the DLL or shared library concept taken to a distributed context.
Remember, the original idea of the shared library (or DLL, under Windows) was to
prevent multiple copies of the same code loaded everywhere. By providing a mecha-
nism by which code could be loaded only once across all processes using it, the shared
library/DLL concept not only reduced per-process memory requirements, but also
allowed for across-the-board updates of code by simply replacing the shared library.

Java now provides the same possibilities via this download extension mechanism.
Suppose a team makes use of the com.javageeks.foobar component library, which hap-
pens to be in version 2.0, to do its development. Normally, before the download
extension mechanism, the .jar file or .class files for the foobar library would need to
be deployed with the development team’s application. Should javageeks.com release
a new version of foobar (version 3), the development team needs to make a new release
with the new foobar .jar/.class files in it, even if no new development has taken place
on the application.

Instead, with the download extension mechanism, the development team can
mark the application’s JAR as being dependent on the foobar library by using java-
geeks.com’s URL to reference it:

Cl ass-Path: http://ww.javageeks. conijavalib/foobar.jar

Now, should javageeks.com release a new version of the foobar library, the develop-
ment team need not do anything to take advantage of the new version; in fact, it may
not even be aware of the new version. Just as DLLs could (in theory) be silently
upgraded with newer versions as bug fixes and patches were released, new download
extensions can also be silently upgraded without client knowledge.

This, of course, presumes that the download extension always exists at the given
URL referenced within the application’s .jar file. This may not be the case for com-
mercial or freeware source sites, but on a corporate intranet developers certainly
would. Just hang the shared component .jar/.class files from a known location on the
corporate or departmental web server, and any application which makes use of that
Jjar/.class file library will automatically pick up any new updates.

Download extensions do carry some restrictions that installed extensions don’t.
Each and every time an application or JAR file is run that uses a download extension
that resides off of a web server, the code will have to come across the wire in its entirety
(jdk1.2\docs\guide\extensions\extensions.html):

The extension mechanism will not install a download extension in the JRE
or JDK directory structure. Download extensions do not become installed
extensions after they have once been downloaded.

Unlike installed extensions, download extensions cannot have any native code.

TYPES OF EXTENSIONS 97

4.1.4

98

This means that each and every time the user fires up the application, it will have
to download all of the application’s class files over the wire. This can mean long load
times, especially if your network bandwidth is tight, or you have a large number of
users and/or a low-end intranet Web server.

Additionally, the restriction regarding native code may have more impact than
might originally have been estimated. As seen in later chapters, JNI and native code
can have some powerful applications in server-side Java applications.

Building a download extension

The Manifest file specification is given in jdk1.2\docs\guide\jar\manifest.html, and
the specific headers for Java extensions are given in jdkl.2\docs\guide\exten-
sions\extensions.html. Creating a Manifest file means you create a subdirectory (off
the directory in which the JAR file will be built) called META-INE and in that direc-
tory, create a file called MANIFEST.ME It needs to contain, at a minimum, the fol-
lowing line:

Mani f est - Version: 1.0.

This establishes it as a Manifest file to any JAR-reading utility that works with the
JAR file. Optionally, it can also contain a line indicating the creator of the JAR file:

Creat ed-By: JavaGeeks.com

You can establish this as an executable JAR file with the following line:

Mai n- C ass: com j avageeks. i ent App. Mai n.

This line indicates that when this JAR is specified to the Java interpreter using the -jar
flag, this class (com.javageeks.ClientApp.Main, in the above example) contains the
main method to execute. Specifying this line effectively allows us to create a stand-
alone JAR file to execute on user machines. Effectively, saying

java —jar YourJar.jar
where YourJar.jar contains a Main-Class line of ClientApp.Main is the same as

set CLASSPATH=%CLASSPATH%;YourJar.jar
java ClientApp.Main

As a result, for the first time, Java now has the ability to ship a prepackaged single file
that contains all the necessary elements for execution, without requiring modifica-
tions to the user’s environment settings.

The key to download extensions is the Class-Path manifest setting, as demon-
strated in this line:

Class-Path: servlet.jar foo.jar footoo.jar

Class-Path tells the JRE where else it needs to look for the additional classes that this
JAR file references. This line contains the file or URL reference telling the JVM where

CHAPTER 4 EXTENSIONS

to find additional .jar files on which this JAR depends. It will then attempt to use these
JAR files to resolve any requested classes during execution of the application code.

Readers familiar with the Java applet model will undoubtedly be curious why
download extensions would even be necessary, given that an applet embedded in a Java
page offers the same sort of functionality. After all, the applet model allows web page
designers to download code as necessary into the client JVM to execute applets. In fact,
the two approaches are distinctly related. However, in an application that uses down-
load extensions, no security restrictions are in place—the infamous applet sandbox
doesn’t exist in a standard Java application unless, of course, it is loaded into the appli-
cation via Java’s SecurityManager. This in turn means that all of those things inacces-
sible to Java applets is freely available to download extension code.

Additionally, the loading code doesn’t come from an HTML page, so no web
browser is required to execute the application. This in turn means that the loading
application remains independent of web servers, HTTP, or HTML.

Example: HelloDownload

In this particular example, because not all readers will have access to a web server with
which to test, we'll create a JAR file that in turn depends on one in a nonstandard
location. In this case, we'll be trying to use code from the root directory of the C:\
drive on a PC.

To start, create and compile two simple Java classes:
// Downl oad. j ava

/1
public class Downl oad

{
public void sayHello()
{
Systemout.println("Hello from Downl oad");
}
}

/1 Hel | oDownl oad. j ava
/1
public class Hell oDownl oad

{
public static void main(String[] args)
{
Downl oad dl = new Downl oad();
dl . sayHel | o();
}
}

Overly simplistic, but the classes should prove the point. The idea is simple: Hello-
Download depends on the class Download to run. Therefore, HelloDownload will be
either an installed extension or an executable JAR file (we need to make this front-end
a JAR file, as well), and will reference the Download.jar file in its Manifest file:

TYPES OF EXTENSIONS 99

4.2

4.2.1

100

Mani fest-Version: 1.0
Creat ed-By: JavaGeeks.com
Cl ass-Path: C /Downl oad.jar?3

Create the HelloDownload.jar file with the Manifest file named manifest by specify-
ing the name of the Manifest file on the jar utility command-line:

jar cvfm Hel | oDownl oad. j ar mani f est Hel | oDownl oad. cl ass

Create the Download.jar file in the normal fashion:

jar cvf Downl oad.jar Downl oad. cl ass version

Copy the Download.jar file to the root directory of the C:\ drive, and the HelloDown-
load.jar (renaming it to com.javageeks.HelloDownload.jar, if you wish) to the Exten-
sion directory. Change directory to someplace other than the current directory, so as
to make sure we're not picking up the code in the current directory, and execute:

java Hel | oDownl oad

Given a working JDK 1.2 installation, you should see the “Hello from Download”
message on your console window.

The Class-Path header can be a file-relative path or a standard HTTP URL. If you
have a web server, change the location of the Download.jar to be a location off your
web root, change the Cl ass- Pat h in the manifest file to be that URL, rebuild the
HelloDownload.jar file, and try running it. Because ExtClassLoader extends URL-
ClassLoader, any given URL type—file, http, or ftp—are all viable candidates in the
Class-Path tag.

IMPLICATIONS OF THE EXTENSIONS MECHANISM

Using Java extensions carries implications that may or may not be immediately obvious.

Distributed libraries through download extensions

One of the problems with building applications using a dynamic linking mechanism
is the inevitable necessity of upgrading the libraries which support the application. If
an application uses library “X,” there will undoubtedly be other applications also
using it, and a subsequent version of one of these libraries may in turn require a new
version of the “X” library. Getting this out to all the users of the application can be a
much more difficult problem, for the same reasons as those making it difficult to dis-
tribute the application in the first place. This becomes even more of an issue when
libraries in turn use other libraries. Suddenly, there’s an entire tree of dependencies.
The download extension mechanism offers one practical solution to this problem.
By marking the .jar files that a library or an application uses, any updates to a dependent

3 Readers running the example on a UNIX installation will need to change the Class-Path line in the
manifest file to read “/Download.jar” or “/~/Download.jar” instead of “C:/Download.jar”. There’s
nothing magical about the root directory; any directory on the file system can be used.

CHAPTER 4 EXTENSIONS

422

library can be picked up automatically. Two options are now possible—if maximum per-
formance is desired, system administrators can manually copy new versions of the library
down to end-users’ machines, or a stand-alone daemon process on the end-users’ system
can check (at startup or every twenty-four hours, or any other practical time) the current
versions of its .jar files against a central repository. Alternatively, the extension can use http
URLs, and pull them as necessary from the same centralized repository. (Both approaches
could be used simultaneously, as best benefits each individual application.)

The one drawback to this approach is that download extensions cannot load
native library code. Typically, however, on end-user systems, native code will be less
attractive due to the higher administrative support necessary to make it work, espe-
cially in heterogeneous networks. In those rare situations where native code needs to
be moved to each end-user’s workstation, the version-checking download daemon
process can pull both .jar files and native code at the same time.

Java EXEs; relation to C++ static linking

The ability of the Java 2 interpreter to execute .jar files directly also makes possible the abil-
ity to create stand-alone java executable files, .jar files, that contain all of the necessary .class
files to execute a given application. Recall from the start of chapter 2 one of the disadvan-
tages of dynamic linking: an application that uses dynamic linking will always be vulnerable
to upgrades of the classes on which it depends. In the C++ environment, this can be avoided
by linking all referenced code statically, as part of the compiled executable, so that the neces-
sary dependent code travels with and is never upgraded by a dynamic library upgrade.

This sort of static linking carries another, more practical benefit, in that many pop-
ular web browsers do not support more than one .jar file in the <APPLET> tag. Because
of this, attempting to keep the application’s code physically separate from the support
code it uses will yield unworkable results when that applet is viewed from a noncon-
forming browser. Instead, by packaging the entire codebase into a single .jar, that file can
be placed on the HTTP server and referenced from the web page. True, it means all of
the code must be downloaded each time, and that this may not be a trivial amount of
data; however, in this case, only if the web browser caches the downloaded .jar file will
any time savings be realized, since the necessary classes will need to be downloaded at
least once. By static-linking the .jar file, only those classes used by the application, and
not any extraneous code, are downloaded.

Performing this sort of static linking is not pain-free. While it may be a simple
matter to identify which code written by the developer needs to be deployed as part
of this stand-alone application .jar, doing the same for the Java run-time library4 or

4 While this may seem overzealous, it actually helps when trying to deal with different Web browsers imple-
menting different versions of the JDK. For example, most Web browsers aren’t JDK 1.2-compliant, and
most only supported up to about JDK 1.1.6 or so. Because JDK 1.2 introduced a number of classes not
found within JDK 1.1.6, such as the CORBA org.omg.* classes, any CORBA-using applet needs to have
those along for the ride.

IMPLICATIONS OF THE EXTENSIONS MECHANISM 101

4.3

102

third-party libraries used by the application can be another thing altogether. To go
along with this, code and any resources (graphics, sounds, resource bundles, and so
forth) used by the application need to be stored within the .jar file.

Because Java stores any classes used by a particular class within the class’ compiled
bytecode format, as Class entries in the class’s constant pool, we could create an auto-
mated tool to scan a particular class’ compiled bytecode, pick out all the Class entries
found there, and perform the same scan recursively. Such tools exist already, many of
which can be found within the Open Source community. This list-of-classes can then
be fed into the Sun jar utility to build the .jar file directly.

PACKAGING EXTENSIONS

If extensions provide an easy path for reusable components and component libraries,
then it’s natural to make GJAS (as well as other components we develop along the
way) an extension. Unfortunately, while parts of GJAS migrate very easily to the
extension architecture, the nature of Java’s ClassLoader architecture requires addi-
tional complexity within the GJAS codebase. Since the extensions’ ClassLoader is
unavailable for modification or separate instantiation, we need to make sure that any
Ser vi ces loaded by GJAS are first loaded by ClassLoaders other than the extensions’
ClassLoader unless all other avenues have been played out. The ClassLoader relation-
ship to our Services is illustrated in figure 4.1.

To start, the stand-alone components
can be bundled up into packages and
used independently of the GJAS archi-
tecture. This includes the ClassLoader
components (com.javageeks.classloader),
the thread components (com.javag-
eeks.thread), and socket clients (com.javagecks.client) developed along the way.’
Because these components will not need to use the change-on-the-fly mechanism
ClassLoaders provide and GJAS takes advantage of, we have no problems with storing
them as extensions.

The same is true of the Service, Server, and ServerManager classes, the core
parts of GJAS itself. Correspondingly, this means that any upgrade of GJAS will
require taking down the GJAS process, updating the codebase, and restarting the
process. Should developers require the ability to upgrade the GJAS components,
then GJAS (or any other component that requires on-the-fly upgrading) cannot be
stored in extensions, and will probably want to make use of some other mechanism
for easy distribution.

ClasslLoader) Service

Figure 4.1 ClassLoader-to-classes relationship

> The jar file is created in the “Lib” directory on the publisher's web site; see the makefile there for details
on the specifics of how these files are created and stored.

CHAPTER 4 EXTENSIONS

4.3.1

In the source tree on the web site, the entire “com.javageeks” is packaged into a
single .jar file. This may not be desirable in large-scale Java applications, since an
upgrade to any of the contained packages requires the replacement of the entire .jar
file. Instead, each package could be broken out into separate .jar files, with dependen-
cies on other .jar files labeled as download extensions, and upgraded individually as
necessary. This approach offers more flexibility in terms of piecemeal upgrades, but
sacrifices development ease; developers must now track each “library” separately. This
also requires separate versioning of each jar, and some greater testing to verify that var-
ious versions of each “library” work together.

The build-time vs. run-time dilemma

Unfortunately, this isn’t the only tension between the development and deployment
environments. Because Java is both a build-time and run-time interpretive system, it
makes no inherent distinction between run time and build time. This seems like
double-talk, without further explanation.

One of the first things a Java developer learns is that if the CLASSPATH isn’t set
to include all of the classes used by an application, the code won’t compile. For exam-
ple, unless the JSDT classes are on the CLASSPATH,® any code containing even an
i nport statement will not compile.

The reason is simple: the javac compiler is actually implemented in Java, and it
uses the CLASSPATH to find the classes to which a particular source file refers in order
to carry out its compile-time type checking. The javac compiler, in fact, is a simple
wrapper around the class sun.tools.javac.Main, and can be invoked using java
sun.tools.javac.Main, assuming the JDK 1.2 tools.jar file is on the CLASSPATH.

All of this doesn’t seem to have any relevance, at least not until we get into the
build time versus run time dilemma. There will be occasions, within development,
when a developer needs to have both a build-time environment and a run-time envi-
ronment on his/her machine. The classic case is with GJAS itself—even though we
need the Service classes we’ll be building to be available at build time, we don’t want
them to be stored in the Extensions directory at run time. If they’re on the CLASS-
PATH or in the Extensions directory, the system ClassLoader (AppClassLoader or Ext-
ClassLoader) will pick up the classes instead of our new ClassLoader instance, and we
won’t be able to do the load-new-code-on-the-fly trick demonstrated in the last chap-
ter. If the code is stored on the CLASSPATH or in the Extensions directory, testing may
be adversely affected, as in the case of GJAS.

Fortunately, this situation arises only on developers’ machines, since only devel-
opers require both the build-time and run-time environments. Neither the testing nor
the production environments require the build-time classes, since they’ll be picked up
by the individual ClassLoader instances and not by the system loader. Fortunately, as
well, most developers won’t be faced with this situation, since most developers won’t

® Orin the Extensions directory.

PACKAGING EXTENSIONS 103

4.4

104

be facing this sort of situation (where classes need to be picked up by a custom Class-
Loader and 7ot the system Loader).

Unfortunately, when working with an application server like GJAS, developers
will run into this situation head on. One solution is to use multiple JDK environments,
one CLASSPATH/extensions setup for compilation, and another for testing/execution.
For example, the developer can install the JDK under C:\JDK1.2, and install a stand-
alone JRE under C:\JRE1.2. The developer then runs two distinct Command Prompt
shells, one with PATH and CLASSPATH set to the JDK for compilation, and the other
with PATH and CLASSPATH set to point to the JRE.

This is awkward for a number of reasons. First, any code compiled within the first
shell must be transferred to the second shell’s CLASSPATH or extension setup. This
can be as simple as specifying a “-d <directory>" option to javac when compiling, but
can easily be forgotten or mismatched if the build process isn’t completely automated.
Secondly, it’s often difficult to maintain two separate clean environments, especially
if the application uses files or other environment variables, some of which may need
to be stored within the Win32 Registry (or other OS-specific centralized storage). This
typically isn’t too much of an issue since most of these supports are run-time related,
not build-time. Lastly, it’s not uncommon for developers to get confused, and run the
tests from within the wrong shell, and get back results they don’t expect.

This build-time/run-time dilemma doesn’t rear its ugly head too often, since it
only occurs when the multiple-code-loading mechanism needs to be in effect. Within
a developer’s test arena, once that mechanism has been proven, then all testing is typ-
ically geared against one Service class, and not a whole host at once within the same
run. For that reason, developers can usually keep the same CLASSPATH for both com-
pilation and testing, and simply know that the code will get picked up by the App-
or ExtClassLoader, and not their own custom version.

THE PLUG-IN

One of the interesting aspects of .jar files is their growing service as the level of atomic-
ity for black-box components. For example, EJB defines a Bean as a .jar, the Servlet 2.2
specification talks about Web-apps being bundled into .jars (with the extension .war),
and the Java2 Enterprise Edition specification uses the same approach. On top of all
this, as we've seen, the Sun interpreter will examine a .jar’s Manifest file for the
Mai n- O ass attribute for the class name to execute when given a -jar argument to
the JVM. If jar files are going to become the de facto standard for Java deployment,
certainly we can make use of it, as well.

As we'll see in a moment, allowing end users the ability to drop in new black-box
components gives your code tremendous flexibility. Consider a traditional client/server
reporting/data-viewing application. Under traditional development approaches, we
might code each report or view as a separate class, linking them all into a single .exe

CHAPTER 4 EXTENSIONS

4.4.1

(or .jar), and distributing that to the user. Each time a new report or view was required,
we’d have to re-release a new .exe/ jar.

Under an extensible-system approach, however, we’d instead create a basic inter-
face that report or view classes must implement. Instead of building the code into a
single .jar file, the application would be a simple shell which in turn looked into a sub-
directory (or other location) for the .jar files representing each report type. The user
could then pick from a list of the reports found, and the application shell would load
the code from that .jar file. If a new report were required, we’d simply code up the new
Jjar file, and either distribute that to the users, or have the IT staff distribute it via some
other form of push to the end-user’s machines. Numerous advantages abound:

o Testing is simpler.
Because the existing application shell hasn’t been touched, that code doesn’t need
to be retested before releasing the new report. Your QA department will like you
better if they dont have to retest the entire application every other week and
your customers will like you even better because of a faster release cycle.

* Development can be ‘parallelized.”
Individual developers (perhaps more junior than would otherwise be required)
can be given tasks that involve writing the individual reports. Work can proceed
in a more parallel fashion, potentially speeding up the release cycle. In addition,
the junior developers won’t be able to get into the application shell code where
they might introduce additional bugs or violate the basic application design.

* Promotes encapsulation.
If the only way the report can interact with the application is through this well-
defined API, then the application knows nothing about the internals of the
report, and vice-versa. This promotes encapsulation and allows later mainte-
nance to take place without concern for what else might break.

* Power-user flexibility.
If you happen to have a user who is more technically knowledgeable than his/her
peers, he/she can be given the APT documentation to allow creation of their own
reports without having to bother the developers.

In short, by allowing this kind of drop-in flexibility in your applications, you
allow the users to be better served.

The plug-in concept
A class, when loaded, registers itself with some sort of manager which is responsible
for calling on the registered class instances when applicable. Usually, in order to sup-
port type-safety (and avoid having to use Reflection to discover the plug-in’s meth-
ods), the plug-in class will implement a common interface that defines the basic
behavior required of each plug-in class.

As an example, consider a scripting engine/interpreter. In order to maximize the
interpreter’s flexibility, we want to allow the engine to interpret different languages

THE PLUG-IN 105

based on the script file’s extension—.js for JavaScript, .vbs for VBScript, and so on.
Each language-interpreter class will implement a basic Languagelnterpreter interface,

which will look like this:

public interface Languagel nterpreter

{
public bool ean canlnterpret(String filenane);
public int interpret(String filename, String[] args)
throws Exception;
}

(The t hr ows declaration is just a cheap way to allow the Languagelnterpreter-
implementation class to pass exceptions back to the engine; a production-level
application should define more clear-cut exception types, such as SyntaxException,
ExecutionException, etc.) The first method, canl nt er pr et , is called to see if the
Languagelnterpreter-implementation class can, in fact, interpret the given script
file. This allows a single Languagelnterpreter-implementation to support more than
one scripting language. The second method, i nt er pr et , is where the Languagelnter-
preter-implementation does the actual work of parsing and executing the script file.

Having done this, the ScriptingEngine class becomes ridiculously straightforward.
When told to execute a file, it simply iterates through its list of Languagelnterpreters,
asking each if it can interpret the file, and if so, orders it to do so. We define the
ScriptingEngine class as:

public class ScriptingEngi ne

{
private Languagelnterpreter[] interps;
/! How this is populated is explained |ater
public int interpret(String scriptFile, String[] args)
{
for (int i=0; i<interps.length; i++)
{
if (interp[i].canlnterpret(scriptFile))
return interp[i].interpret(scriptFile, args);
}
return —1; // Nobody recognized it
}
public static void main(String[] args)
{
ScriptingEngine engine = new ScriptingEngine();
engine.interpret(args[0], args);
}
}

The ScriptingEngine is trivial; the only question mark comes in regard to the array of
Languagelnterpreter instances, i nt er ps. How does it get initialized?

106 CHAPTER 4 EXTENSIONS

44.2

Conventional design would have each Languagelnterpreter-implementation class
defined and stored within the application, and the array initialized within the
Scri pti ngEngi ne code as follows:

public ScriptingEngine

{
private Languagelnterpreter[] interps =
{
new JavaScriptlnterpreter(),
new VBScriptlnterpreter(),
new REXXI nterpreter()
b
}

Unfortunately, this means that ScriptingEngine now has the sum total of all lan-
guages supported by the engine, and cannot be reconfigured at run time to accom-
modate new languages. This means that if we need to support a new language, we
have to ship out an entirely new application. Ick.

Alternatively, we could provide a properties file that the ScriptingEngine exam-
ines, parses, and executes Cl ass. f or Nanme() on each line:
| anguages. properties file
JavaScriptlnterpreter

VBScriptlnterpreter
REXXI nt er pr et er

Then, the ScriptingEngine parses this languages.properties file (which, presumably, is
stored on the user’s hard disk) to establish which languages the engine knows about:

public ScriptingEngine

{
private Languagelnterpreter[] interps;
static
{
// Open | anguages. properties
/1 For each line, call O ass.forNanme().new nstance() and
[/l store it into the returned array
}
}

While attractive, this approach suffers from one critical flaw: if the languages.proper-
ties file is corrupted, deleted, or otherwise rendered unusable, the Scri pti ng-
Engi ne is paralyzed. Now it knows about no languages, and will fail every script file
handed to it. There must be a better way.

Enter plug-ins

What we really want is for each intalled language interpreter to register itself with
the scripting engine. Ideally, this registration (which takes place when we initialize
the ScriptingEngine with the array of Languagelnterpreter instances) would be

THE PLUG-IN 107

108

code-independent, so that users could add new Languagelnterpreters without hav-
ing to modify code.

This approach isn’t a new one. For example, Adobe Photoshop uses this notion
of plug-ins extensively, and even built an industry (dominated mostly by Kai’s Power
Tools) around plug-ins for Photoshop. OLE began life looking to do this sort of plug-
in capability, as well, by providing interfaces that allowed those objects to place them-
selves on the menu bar, provide context-sensitive help, and more. The Emacs text edi-
tor is perhaps the crowning glory of this concept, with plug-ins ranging from email
clients to full-fledged development-and-debugger modules for just about any lan-
guage. Jeff Nelson, in his book Programming Mobile Objects in Java, shows how even
mobile objects can participate in this sort of extend-the-app process by having the
extensions download themselves into a text editor.

In a C++ environment, with an operating system that supports shared libraries,
we can iterate through a directory that we designate as a plug-in directory, and explic-
itly load each library into the process’ address space. Because each OS provides a
method that is called when the shared library is loaded into the process space (DlIMain
or DIIEntryPoint under Win32, for example), the Languagelnterpreter instance can
be registered with the ScriptingEngine within this method.

Within Java, however, we have a few hangups. Because Java is already a dynamic-
loading system, we don’t have to build a custom approach for each platform—the
ClassLoading mechanism is already there and in place. Unfortunately, that’s the only
part that Java gives us; the rest gets tricky.

Remember that one of the Java ClassLoading buzzwords is lazy. This means that
even if a .jar file or directory containing .class files is specified in the user’s CLASS-
PATH, the classes stored within that .jar or directory aren’t loaded until the system
needs the class. Recall, also, that needing a class comes when another class depends on
the class in question, or the class is explicitly loaded using Cl ass. f or Nare or Class-
Loader.loadClass.

In the case of our ScriptingEngine, we could get each Languagelnterpreter to reg-
ister itself with the ScriptingEngine as follows:

public class ScriptingEngine

{

/1 Everything else, as before

private static List interps = new Vector();
public static void register(Languagel nterpreter interp)

{
interps.add(interp);

}

public int interpret(String scriptFile, String[] args)
{

for (Iterator i = interps.iterator(); i.hasNext();)

{

Languagel nterpreter interp =

CHAPTER 4 EXTENSIONS

(Languagel nterpreter)i.next();
if (interp.canlnterpret(scriptFile))
return interp.interpret(scriptFile, args);

}

return —1; // Nobody recognized it

}
}

Now, all we need to do is get each Languagelnterpreter to register an instance of itself
with the ScriptingEngine. Usually, this means that the ScriptingEngine (or, more
generically, the plug-in manager, where the Languagelnterpreter is the plug-in) is a
Singleton, or else uses a static list of plug-ins, as demonstrated in the code snippet
above. Within the Languagelnterpreter-derived classes, one of two approaches can be
used: either register the instance in a base class,

public abstract class LanguagelnterpreterBase
implements Languagelnterpreter

{

public LanguagelnterpreterBase()

{

/I ... other initialization, as necessary

ScriptingEngine.register(this);
}
}

or the derived class can register an instance of itself in a static initializer block:

public class Perlinterpreter
implements Languagelnterpreter

{

static

{

ScriptingEngine.register(new Perlinterpreter());

}
}

I prefer the second approach, since the first approach requires that the class in ques-
tion must be loaded, and then a new instance of it created, before the registration
with the plug-in manager takes place. In the second approach, the registration takes
place as soon as the class (PerlInterpreter, in this case) is loaded into the JVM.

Furthermore, if a single plug-in can handle more than one type of call, the plug-
in’s static initializer block can make as many registrations as necessary:

public class Shelllnterpreter
i mpl enents Languagel nterpreter

{

static

{
ScriptingEngine.register(new Shellinterpreter(), “.bat");
ScriptingEngine.register(new Shellinterpreter(), “.cmd”);

THE PLUG-IN 109

443

110

ScriptingEngine.register(new Shellinterpreter(), “.sh”);
/I ... and so on

}
}

In this way, we're preserving the encapsulation of the plug-in by not having to know
anything about what needs to happen to register it with its manager—the plug-in
does that as soon as it’s loaded into the VM.

If we designate a given directory into which plug-ins must be dropped in order
to be loaded, we’re going to run into two problems in short order. Remember that Java
.class files are stored in directories corresponding to package names, so if we want to
allow plug-ins to be packaged like other Java classes, we have to recursively scan
through all directories under our plug-in directory.

The greater problem is that most plug-ins of a nontrivial nature are going to use
more than one .class file to implement their behavior. Unfortunately, when they’re all
stored in the same directory, we’re not going to know which ones are the plug-in class,
and which ones are the supporting class. As a result, we'll have to load each and every
one of them—whether or not they’ll be used—into the VM. This violates one of the
basic precepts of Java’s ClassLoading mechanism—if you don’t use it, it never gets
loaded. It also means a huge performance hit as each and every one of those classes is
loaded at plug-in registration time.

If, on the other hand, we require the plug-ins to come in a .jar or .zip file, we have
another option.

Marking a .jar file as a plug-in

One of the little-known facts about .jar files (or their ancestors, the .zip file) is that
every class used to open, examine, retrieve, and create a .jar file is already part of the
JDK run-time library. The j ava. util.zip and java. util.jar packages con-
tain all of the code used by the jar utility and the java.net. URLClassLoader class. To
examine the contents of a .jar’s Manifest file, it’s as simple as the following:

i mport java.io.*;

import java.util.*;

inport java.util.jar.*;

inport java.util.zip.*;

public class JarlLister

{
public static void main (String args[])
throws Exception

{

JarlnputStreamfin =
new Jar | nput St reanm(new Fil el nput Strean{args[0]));

We need to open the .jar file, so we use the JarInputStream class, which, like all Java
stream classes, decorates (as in the Decorator pattern sense) another InputStream,
which in this case will be a FileInputStream.

CHAPTER 4 EXTENSIONS

444

Mani f est mani fest = fin.getMnifest();
if (manifest !'= null)

{

Next, we obtain the .jar's “META-INF/MANIFEST.MF” file, if it exists. Note that not
all .jar files have a Manifest file, since .zip files are technically .jar files and many, if not
all, .zip files created before the release of JDK 1.1 (and many long after that) didn’t have
a Manifest file. Hence, we have to check for a nul | return value from get Mani f est .

Attributes attribs = nmanifest.getMainAttributes();

Attributes is the class representing the attributes that can be attached to either the .jar
file or each of the entries within it. By calling get Mai nAt tri but es, we're asking
for the attributes that apply to the .jar file itself (such as the Main-Class or Created-
By attributes discussed earlier).

Set set = attribs. keySet();
for (Iterator i = set.iterator(); i.hasNext();)

{
Attributes. Name key = (Attributes. Nane)i.next();

Systemout.println(key + ": " +
attribs. get Val ue(key));

}

And, as you might guess, the last block of code iterates through each of the entries in
the Attributes object, printing each one out to the console. Note that the Iterator
returned from the Set obtained from the Attributes object is not iterating over String
objects, but instead over Attributes.Name objects. If you attempt to cast the returned
object from the Iterator to a String, you'll get a ClassCastException.

Now that we know how to get the attributes of the .jar file’s manifest, we can intro-
duce our own custom .jar tags. We'll create a custom tag within the manifest, Plugin-
Class, that contains the class name (fully qualified) of the plug-in class itself. Then the
PluginClassLoader only needs to find this attribute, get the name of the class, and do
aC assLoader. | oadd ass using that value. This will load the plug-in class, which
will fire off the plug-in’s static initializer block(s), which will in turn register the plug-
in with its manager.

PluginClassLoader
The code for PluginClassLoader, from the com.javageeks.classloader package, follows:
package com j avageeks. cl assl oader;

i nport java.io.*;

i mport java.net.*;
import java.util.*;
inmport java.util.jar.*;

THE PLUG-IN 111

112

/**
* Plugi nCl assLoader is not an actual C assLoader, but serves a role
* of preloading "plugin" classes into the JVM so that the Plugins
* can register thenmselves with whatever "plugin nanager" they use.
*
* See Chapter 4 of Server-Side Java for a detailed
* description of howit all works together.
*/
public class PluginC assLoader
{
/**
* Interface to allow interested clients to be notified each
* time a new plugin class is |loaded into the JVM

*/
public static interface Listener
{
public void pluginLoaded(String plugi nNane) ;
public void exception(Exception ex);
}

Listener is simply an interface that allows interested parties, when they construct the
PluginClassLoader, to be called back when a new plug-in is loaded. This allows GUISs,
for example, to display a status bar that flashes “loading plugin XYZ...” to the user
while starting up. The excepti on method is called when an exception is thrown
during the load-up process.

/'l Private data

/1
private URLC assLoader url Cl assLoader;

We use a URLClassLoader to load the classes from the list of .jar files we’ll be building
later in the code because it already has that functionality built within it. By not
extending URLClassLoader, and instead containing an instance of it, we can also drop
the URLClassLoader (and, implicitly, any classes loaded by it if they’re not referenced
elsewhere) and reload the plug-ins.

/**
*/
public PluginC assLoader (String dir)
{
this(dir, new Listener()
{
public void pluginLoaded(String plugi nNarme) { }
public void exception(Exception ex) { }
1)
}
/**
*/

public PluginC assLoader(String dir, Listener listener)

{

CHAPTER 4 EXTENSIONS

File file = new File(dir);

reload(file, listener);
}
/**
*/
public PluginC assLoader(File dir)
{
this(dir, new Listener()
{
public void pluginLoaded(String plugi nNane) { }
public void exception(Exception ex) { }
B
}
/**
*
*/
public PluginC assLoader(File dir, Listener listener)
{
rel oad(dir, listener);
}

These four constructors are really just convenience wrappers around the r el oad
method. Where no Listener is passed in, the constructor builds a NullObject7 Listener,
which does nothing when called on; that way, the actual implementation in r el oad
needs never to check for a null Listener object, and can call on it without worrying.
[
* Reload the plug ins; note that the old URLC assLoader held

* internally is released, so if the plug-in classes |oaded
* earlier aren’t in use within the app, they' Il get GC ed.

* HOMNEVER, if an instance of an earlier-I|oaded

* plugin class is still in existence, it will remain an

* entirely separate and distinct type fromthe type | oaded
* in on this plass, even if the .class files are identical!
* This is because cl asses |oaded into two separate (non-

* parentally-related) C assLoaders are considered separate
* and unrel ated types, even if their contents are identical.

*/
public void reload(String dir, Listener |istener)
{
rel oad(new File(dir), listener);
}
/**

* Rel oad the plugins; note that the old URLC assLoader held
* internally is released, so if the plugin classes | oaded
* earlier aren't in use within the app, they' |l get GC ed.

*

7 This is called the NullObject pattern (Pattern Languages of Program Design 3, p. 5).

THE PLUG-IN 113

114

* HOWEVER,
* plugin class is still in existence, it will remain an

* entirely separate and distinct type fromthe type | oaded
* in on this plass, even if the .class files are identical!
* This is because cl asses |oaded into two separate (non-

* parentally related) Cl assLoaders are considered separate
* and unrelated types, even if their contents are identical.

*/

if an instance of an earlier-Ioaded

public void reload(File dir, Listener |istener)

{

The r el oad method is the heart-and-soul of the entire PluginClassLoader, so we'll

take it in easy chunks.

String[]

contents = getPlugi nDirContents(dir);

The get Pl ugi nDi r Cont ent s method simply obtains a list of all the .jar and .zip
files in the directory specified by the File object dir. As we'll see later, it guarantees
that it will always return a String array of some length, even if that length is zero, so

no null-check is necessary.

Vect or
Vector plugins = new Vector();

for (int

{

try
{

}

urls

= new Vector();

i =0; i<contents.length; i++)

File jarFile = new File(dir, contents[i]);

Attributes attribs =

new JarFile(jarFile).getMnifest().getMinAttributes();

if (attribs.getValue("Plugin-Cass") !=null)

{

}

String pluginCass =
attribs. getVal ue("Pl ugi n-C ass");

urls.add(jarFile.toURL());
pl ugi ns. add(pl ugi nC ass.trim));
/1 Need the trin(); getValue() has the
/1 annoying habit of leaving a trailing
/'l space on the end of the class, which will
// cause the |oadC ass() to fail later.

catch (I CException i 0Ex)

{
}

/1 Just continue; ignore the file and nove on

catch (Nul | Poi nt er Excepti on npEx)

{
}

/1 No manifest, perhaps?

CHAPTER 4 EXTENSIONS

This seemingly complex piece of code is doing one thing: checking each .jar/.zip file
for that Plugin-Class manifest entry we talked about earlier. If it’s found, we add the
URL of the .jar/.zip file to the Vector urls, and the value of the Plugin-Class
attribute to the Vector pl ugi ns. We need the URL of the .jar/.zip file to pass into
the URLClassLoader constructor, and we’ll need the name of the class so that we can
preload it into the JVM (which will force it to register with the rest of the system).

url G assLoader =
URLC assLoader . newl nst ance(
convert Url Vect or TOArray(urls),
get Cl ass().get Cl assLoader());

This is simply another way of calling a new URLClassLoader(...) . The convert-
UrlVectorToArray method is a convenience method to convert the Vector urls
to an array of URL objects, which is what URLClassLoader expects. Notice also how
we explicitly pass in the ClassLoader that loaded this (the PluginClassLoader) class as
our delegating parent—again, this is because we want to preserve the parent-child
ClassLoader relationship appropriately, as discussed in chapter 2.

/1 Preload each of the plugins, giving themthe chance to

/1 register (in their static initializer block) wth whatever
/1 "Plugi nManager" they choose to.

/1
for (int i=0; i<plugins.size(); i++)
{
String plugin = (String)plugins.elementAt(i);
try
{
Cl ass. forName(plugin, true, urld assLoader);
| i stener. pl ugi nLoaded(pl ugi n);
}
catch (Exception ex)
{
|'i stener. exception(ex);
}
}

}

Now that we've constructed the URLClassLoader around the Plugin-Class-marked .jar/
zip files, we need to load each plug-in class into the JVM, which in turn allows those
classes, in a static-initializer block, to register instances of themselves with the appropriate
plug-in manager. Notice, as the comment points out, that we have to call new nst ance
on the loaded class before it is loaded into the JVM; this requires that the plug-in has a
default constructor that can be called by outside clients, or an Exception will be thrown.

/ * %

* Rel eases the handl e on the URLC assLoader used internally;
* this will have the effect of allowing all the plug in classes,
* if not referenced anywhere else within the application, to be

THE PLUG-IN 115

* GC ed the next tine GC takes place.

*/
public void unl oad()
{
url d assLoader = null;
}
/**

* Returns a String array of filenanes in the directory which are
* potential plug-in files.

*

* @aramdir The File object representing the directory to iterate

* t hr ough

*/
private String[] getPluginDirContents(File dir)
{

/'l sanity-check--does the directory exist?
if (('dir.exists()) ||
(!dir.isDirectory()))

{
return new String[0];
}
String[] contents = dir.list(new FilenameFilter()
{
public bool ean accept(File dir, String nane)
{
if (nane.endsWth(".jar") ||
nanme. endsWth(". zip"))
{
return true;
}
el se
return fal se;
}
1)
return contents;
}
/**

* Returns a String array of filenanes in the directory which are
* .class files.

*

* @aramdir The File object representing the directory to iterate

* t hr ough

*/
private String[] getPluginDirC asses(File dir)
{

String[] contents = dir.list(new FilenanmeFilter()

{

publ i c bool ean accept(File dir, String nane)

{
if (nane.endsWth(".class"))
return true;

116 CHAPTER 4 EXTENSIONS

el se
return false;

s

return contents;

}

/**
* Sinple hel per method to convert a Vector of URL objects into an
* array of URL objects (required by URLC asslLoader)

*/
private URL[] convertUrl VectorToArray(Vector urls)
{
URL[] urlArray = new URL[urls.size()];
for (int i=0; i<urlArray.length; i++)
{
url Array[i] = (URL)urls.elenentAt(i);
}
return url Array;
}
/**

* Test suite--just |oad whatever plugins happen to be in the
* current directory.
*/
public static void main(String[] args)
throws Exception

{
Pl ugi nCl assLoader pcl =
new Pl ugi nCl assLoader (".", new Listener ()

{
public void pluginLoaded(String plugi nNane)

{

System out. println(plugi nNane + " |oaded.");

}

public void exception(Exception ex)

{
System out. println("Exception:");

ex. printStackTrace();
1)
}

The remainder of the code entails the convenience methods mentioned earlier, and a
mai n method for testing. Mai n simply builds a PluginClassLoader on the current
directory, where presumably a collection of some plug-in .jars can be found and loaded.®

8 The Extensions directory contains three .jar files, PluginOne.jar, PluginTwo.jar, and PluginThree.jar,
all of which register themselves with the PluginManager class; they simply spit a string to the console
when they’re registered, just to prove that they are, in fact, loaded and registered.

THE PLUG-IN 117

445

118

Example: PluginApp

Let’s demonstrate the concept by building a simple, useless GUI application that can
be extended by plug-in .jars; by itself, the application does absolutely nothing—it dis-
plays a File menu and a Help menu. The File menu has two options: Exit, which is
self-explanatory, and Reload, which will call the PluginClassLoader’s method to
reload the plug-ins found; this will allow us to test PluginClassLoader’s dynamic-
reload capability. The Help menu has just one option, About.
There’s not much to it. The code to produce this application, complete with

plug-in support, is also not very large or complicated:
inport java.aw.*;
i mport java.awt.event.?*;
import java.util.lterator;
i mport java.util.Vector;
i nport javax.swi ng. *;
i mport com j avageeks. cl assl oader . Pl ugi nCl assLoader;
/ * %

*/
public class PluginApp
{

/1 Private data

11

private JFrane frane,

private static Vector plugins = new Vector();

private transient bool ean canQuit;
/1 State variable used in nethod exit(); should be nodified
/1 *only* within that context and not used el sewhere.

These are the privat e data members of PluginApp; of these, only one is of real
importance—pl ugi ns is the Vector of registered plug-ins that the application will
use during its run. The f r ane object is the JFrame this application uses as its main
window, and canQui t is a state variable used later.

/ * %

* Plug ins nmust inplenent this interface; the app will call
* the plug in when appropriate.

*/
public static interface Plugin
{
public void addToMenuBar (JMenuBar nenu);
public bool ean canQuit();
}

The Plugin interface, here, is the basic interface any of our sample plug-ins should use if
they want to “hook into” this application—it defines two methods, addToMenuBar,
which gives each plug-in a chance to add a menu item or menu to the application’s
menu bar, and canQui t , which gives each plug-in a chance to cancel a user’s request to
quit. (This is where the traditional “File is not saved—still quit?” message would go.)

CHAPTER 4 EXTENSIONS

/**

* Plug ins make thensel ves known to the App by calling this

* met hod.

*/
public static void registerPlugin(PluginApp. Pl ugi n pl ugin)
{

/1 Just keep a reference to it for future use
pl ugi ns. add(pl ugi n);

}

/**

* This is an interface to ease calling across all the plug ins
* in the system

*/
protected static interface PluginAction
{
public void action(Plugin plugin);
}
/**

* General - purpose nethod for calling an action across all the
* currently registered plugins.

*/
private void doPl ugi ns(Pl ugi nActi on pl ugi nActi on)
{
for (lterator iter = plugins.iterator(); iter.hasNext();)
{
Plugin p = (Plugin)iter.next();
pl ugi nActi on. action(p);
}
}

This is a shorthand version for iterating across all plug-ins to do something. When we
want to make a call across all the registered plug-ins on this application, we create an
anonymous PluginAction class/object on the spot, and pass it into doPl ugi ns; we'll
see this used in just a bit.
/ * %
*
*/
public Pl ugi nApp()

{
}

/**
*
*/
public PluginCl assLoader. Li stener get Pl ugi nLi stener ()

{

return new Pl ugi nCl assLoader. Li stener ()

{
public void pluginLoaded(String plugi nNare)

{
System out . println(plugi nName + " | oaded.");

THE PLUG-IN 119

120

}

public void exception(Exception ex)

{

System out. println("Exception:");
ex. printStackTrace();

}s
}

This method creates the usual console-output PluginClassLoader.Listener that we've
seen before. In a production-quality application, however, this is where you would
update the splash screen or status bar with messages such as “Loading plug-in XYZ....”
/ * %
* Display the application
*/
public void show()

{
frame = new JFrane("Pl ugi nApp Exanple");
frame. addW ndowLi st ener (new W ndowAdapt er ()

{
public void w ndowd osi ng(W ndowEvent e)

{
exit();

}
3

JPanel contentPanel = new JPanel ();
cont ent Panel . add(" North", createMenubar());

frame. get Cont ent Pane() . add(cont ent Panel) ;

frame. pack();
frame. show();

}

The show method is unremarkable, with one exception—the call to creat e-
Menubar, which will iterate across all the plug-ins asking them if they wish to mod-
ify the menu bar.
/ * %
*/
public void exit()
{

canQuit = true;
doPl ugi ns(new Pl ugi nActi on()

{
public void action(Plugin plugin)
{
if (plugin.canQuit() == false)
{

canQuit = false;

CHAPTER 4 EXTENSIONS

}
B
if (canQuit)
{
System exi t(0);
}

}

This is the first of two samples demonstrating how doPl ugi ns works. We create an
anonymous PluginAction class that calls each plug-in’s canQui t method, setting the
PluginApp state variable canQui t to f al se if any indicate that we cant quit yet. (Pre-
sumably this is the user telling us this, but perhaps we want to allow plug-ins the capa-
bility to prevent the user from quitting without performing some necessary task first.)
/ * %
* Build the application-shell’s nmenu bar; just "File" and "Hel p"
*/
private JMenuBar createMenubar ()

{
final JMenuBar nb = new JMenuBar () ;
JMenu nenu;
JMenultem m ;

/1 "File"--"Rel oad"

menu = new JMenu("File");

m = new JMenul t en{" Rel oad");

m . addAct i onLi st ener (new Acti onLi stener ()

{
public void actionPerformed(Acti onEvent e)
{

pluginCL.reload(*.”,getPluginListener());

}
b

menu.add(mi);

/I "File"--"Exit"
mi = new JMenultem("Exit");
mi.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent e)
{
exit();
}
bk

menu.add(mi);
mb.add(menu);

/l "Help"--"About"

menu = new JMenu("Help");

mi = new JMenultem("About");
mi.addActionListener(new ActionListener()

THE PLUG-IN 121

122

public void actionPerformed(Acti onEvent e)
{
}

s

menu. add(m) ;

nmb. add(menu) ;

/1 Alow the Plugins to register thenselves
doPl ugi ns(new Pl ugi nActi on()

{
public void action(Plugin plugin)
{
pl ugi n. addToMenuBar () ;
}
1)
return nb;

}

Finally, the cr eat eMenubar method builds the JMenuBar instance that will be
added to the application’s main window. Notice, however, at the end of the method,
that we iterate through each installed plug-in, calling on its addToMenuBar method
(passing in the JMenuBar we just created). This is the mechanism by which the plug-
ins can allow themselves to be invoked within this application; within other systems,
plug-ins may be called with some discriminatory information to discern which plug-
in to load (as in the scripting engine example above), or may simply be tried, round
robin, until one is found that works.”

/**
*/
public static void main (String args[])

{

/1l Create the basic app object
Pl ugi nApp app = new Pl ugi nApp();
/1 Display the app

app. show();

}

And mai n, of course, creates an instance of the application and invokes its show method.
Next, let’s examine a simple example plug-in for this application:
import java.awt.*;

i mport java.awt.event.*;
i mport javax.sw ng.*;

9 This is what James O. Coplien called the “exemplar idiom”; Advanced C++ Programming Styles and
Idioms (Addison-Wesley, 1992).

CHAPTER 4 EXTENSIONS

The usual necessary-for-Swing imports. Nothing new here.

public class Plugi nOne
i npl enents Pl ugi nApp. Pl ugi n
{
static
{
Pl ugi nApp. r egi st er Pl ugi n(new Pl ugi nOne());
}

As discussed before, when PluginOne is loaded into the JVM, it registers an instance
of itself with the Pl ugi nApp class.

public Pl ugi nOne()
{1}

public void addToMenuBar (JMenuBar nenuBar)

{
System out . println("addToMenuBar called");
final JMenuBar nmenu = nenuBar;

// Put us into the "File" nenu
for (int i=0; i<menu.getMenuCount(); i++)
{

JMenu m = nenu. get Menu(i);

Systemout. println(mgetText());
if ("File".equals(magetText()))
{
Systemout. println("Found File nmenu; adding self");
JMenultem m = new JMenul t en(" Pl ugi nOne");
m . addAct i onLi st ener (new Acti onLi stener ()
{
public void actionPerformed(Acti onEvent e)
{
int result = JOptionPane. showConfirnDi al og(
nul |,
"Do you like Plugi nOne?",
"information",
JOpt i onPane. YES_NO_CANCEL_OPTI ON,
JOpt i onPane. | NFORVATI ON_MESSAGE) ;
if (result == JOptionPane. YES_OPTI ON)

{
JOpt i onPane. showMessageDi al og(
null, "I"mglad");
}
else if (result == JOptionPane. NO OPTI ON)
{
JOpt i onPane. showMessageDi al og(
null, "I"msorry to hear that");
}
else if (result == JOptionPane. CANCEL_OPTI ON)
{

JOpt i onPane. showessageDi al og(

THE PLUG-IN 123

44.6

124

null, "Operation cancelled");

}
el se
{
/1 How is this possible? ? Swing is broken!
}
}
1)
m add(m) ;
}
br eak;

}

This long snippet of code is an exercise in Swing mechanics; for those who arent
Swing gurus, the code simply adds a menu item to the bottom of the File menu,
called “PluginOne”. When the user picks “PluginOne” from the File menu, a “Yes/
No/Cancel” dialog box will be displayed, and a second dialog box will display “I'm
glad,” “I'm sorry to hear that,” or “Operation canceled,” depending on which button
the user pressed. Nothing overly exciting here.

public bool ean canQuit ()

{
System out. println("Plugi nOne sez yes, you may quit");
return true;

}

Lastly, the canQui t method spits a message out to the console, informing us that Plug-
inOne was given a chance to cancel the Fi | e- Exi t command, and chose not to do so.

Uses for plug-ins

The plug-in concept can extend in many directions. As discussed eatlier, a scripting
language engine could use plug-ins as the interpreters of the various script lan-
guages it understands, allowing users to drop in support for new languages by sim-
ply copying in the appropriate script-language .jar file. A web server could support
servlets in much the same way—instead of a Plugin-Class tag, requiring the .jar file
to contain a Servlet-Class tag, indicating the Servlet class to load.!® An application, as
demonstrated above, could allow sophisticated end users to create additional func-
tionality for the application. A graphics conversion (or any kind of file-conversion
application, for that matter) can use plug-ins to manage each file format the appli-
cation wants to handle, so long as there is a good interim format that can be handed
between the formatters. Even games can make use of this concept. A basic card

10 The Java2 Enterprise Edition specification uses XML “Deployment Descriptors” instead of attributes
in the .jar file, but it’s the same concept.

CHAPTER 4 EXTENSIONS

4.5

SUMMARY

game shell can implement the rules of various card games (cribbage, gin rummy,
and poker) as plug-ins loaded when the game shell starts up.

The plug-in concept represents a good marketing strategy, as well—customers
can be given the basic application shell for free (available for download, for example),
with a simple demo as their only available plug-in. Then, as customers begin using the
application and demand greater functionality, more powerful plug-ins can be made
available, which customers buy and copy into the application’s plug-ins directory.
This approach has the advantage of giving the user a free, non-timing-out version of
the application that may be good for lightweight use, but requires purchase for heavier
use. Customers who require support outside of the existing realm of plug-ins can con-
tact the company for a custom plug-in, which the company can then turn around and
resell to other customers, as well.

SUMMARY

Developers would be well-advised to think of Javas extension mechanism as under
the same rules as developing reusable libraries in other languages such as C++. Many
of the same concepts, and trade-offs apply. For example, development of code with-
out using libraries means the entire code base can be assumed to be the same version.
Breaking up the code into separate, modular, libraries means now that each library, as
well as each application, must be versioned, tracked, and tested against the entire
application suite before it can be released. Using the library concept also means that
developers will be restricted from wholesale replacement of components, since other
applications may be dependent on the particular structure and/or usage of compo-
nents in the library, which restricts developers.!!

For all its drawbacks, the Java extension mechanism is the first step Java has
shown toward building reusable component libraries and toolkits other than those
shipped as part of the JDK. It may be argued that the .jar file was the critical step, but
the modification of the CLASSPATH necessary to use a given .jar file made it awkward
to use .jar files, especially when large numbers were used. CLASSPATHs over 500 char-
acters long aren’t uncommon when making use of a half-dozen .jar files at once, which
is not unreasonable in any moderately-sized project. The Java extension mechanism
makes the modification of the CLASSPATH almost completely unnecessary now.

15 an ideal world, each component would have its publ i ¢ interface fixed and immutable, but this is
an unattainable target. As needs within the development team change, use of particular components
grows, and initially acceptable and elegant designs grow more and more unworkable, and wholesale
replacement of the design becomes necessary.

125

5

Threads

5.1 Why threads? 127

5.2 Java threads 130

5.3 Thread implementations in Java 146
5.4 Summary 148

5.5 Additional reading 148

The Java language is the only popular development language or environment to pro-
vide native, intrinsic support for threads and the necessary related concurrency control
constructs. Not only are Java threads a built-in, inherent part of the language and exe-
cution environment, they simplify the concurrent programming model significantly
from native alternatives. Consider the Win32/C++ environment. Here, threads are
OS-level constructs that must be created through a Win32 API call, Cr eat eThr ead
with its associated half-dozen or so parameters. Because this is an API call, its interface
is designed for a C development environment; as a result, trying to tie the notion of
object in C++ to thread in Win32 is not trivial. It requires an arcane hookup using
static methods of C++, thunk layers, or equally mystical manipulation of assembly
code in order to get C++ objects that look, feel, and act like threads. In fact, Java’s sup-
port for threads has enamored C++ developers to the point that a company, Object-
Oriented Concepts (www.ooc.com), has gone so far as to create a Java-like threads
library for C++ developers.

Threads, while not directly moving us toward zero development, zero deploy-
ment, or zero administration, are key building blocks toward all three goals. By build-
ing Thread constructs in a reusable manner, we reduce necessary development costs
for the next project, moving toward zero development. By judiciously spinning off

126

5.1

5.1.1

threads in key areas, we can make it possible to perform more than one task at once,
such as configure the application during its execution (zero administration). Further-
more, threads are critical to good performance, when used properly.

But for all its simplicity, concurrent programming in Java is still overly intimidat-
ing to a number of Java developers. They feel that threads will somehow mysteriously
lock up their application, or cause it to hang without warning, without reason, and
without any way to debug the problem. As with most things, there is an element of
truth to this belief. And if that’s the case, why bother using them?

WHY THREADS?

Threads and concurrent design provide possibilities that simply wouldn’t be available
in a single-threaded environment. Threads allow you to continue execution in another
portion of your code while the CPU is blocking on something, or providing service on
the behalf of another, unrelated client. Threads, in fact, are to your process what mul-
tiprocessing is to a single machine—the ability to provide services to more than one
client at a time, without imposing overly complex restrictions on those clients.

Concurrent processing

The use of threads permits an application to perform two actions simultaneously
without having to execute them sequentially. The classic example given is the notion
of printing while you work. In a user application, such as a word processor, threads
can be fired off to take care of background tasks, such as checking spelling or print-
ing, while the user continues to work in the foreground. One particularly interesting
application of threads is the use of a background thread to perform compilation in
development environments such as Microsoft Developer Studio or Borland C++.

The use of threads in this manner raises some interesting design questions, how-
ever. What if a user modifies a file during the middle of a compilation on that file?
Should the compiler use the file as it existed when the build sequence began or should
it use the most recent contents? If the compiler uses the file as it existed, then what
point is there to being able to edit the file during compilation? If the compiler uses
the current contents, how does it guarantee that the contents of the file at #his second
is the same as it was when it built the previous unit?

Where the use of threads in user applications has some dubious applications in
certain areas, the use of threads in server applications is an essential requirement for
performance and scalability. A server that can process only a single client at a given
moment is unnecessarily restrictive; this means that to control two concurrent users,
two machines must be purchased. This is unnecessarily wasteful, especially when the
tasks being performed are identical. For example, a web server fundamentally executes
the precise same sequence of steps for each and every web request it receives:

* Darse the HTTP header to determine the URL requested
* Locate the resource on the server, after appropriate validation (if any) is passed
* Return the resource to the waiting requester and prepare to receive the next request

WHY THREADS? 127

5.1.2

128

This would almost seem to be a throwback to procedural development—execute
a sequence of steps, in fixed order, starting at the top of the flow and moving through
to the bottom, only to go back to the top again. In a single-threaded server, the first
client to come in would be serviced in fast fashion, but other clients coming in with
requests during the processing of the first request would have to queue up until the
server could react to them. With web sites and internal corporate intranet sites look-
ing to handle upward of thousands of concurrent requests, this is obviously not
acceptable.

One alternative to the use of threads would be to run multiple instances of the
single-threaded application, each one performing its actions independently of the
others. (UNIX systems have used this approach for years, and, in fact, the Apache
web server still makes use of it.) This approach carries two problems, however. The
first is resource management; in most operating environments, only a single process
may have access to certain scarce resources (such as sockets, or printers, or even disk
space). Attempting to coordinate requests and contentions between independent
processes can be a complex and overly arduous task. Using the web server example,
a separate process must do the listening on port 80, and in turn farm out the
requests to other processes listening on a range of internally known ports. The sec-
ond problem is that of process independence: in most operating environments, pro-
cesses are prevented from seeing another process space. This means that each copy
of a given file, object, or resource must be loaded, stored, and used. Caching algo-
rithms to help speed up the access of frequently accessed pages become useless across
process boundaries.

Threads share the same process space, but receive their own execution stack; each
thread carries its own set of registers, allowing it to execute independently of the oth-
ers. Since they share the same process space, however, one thread can access a resource
loaded in by another thread. Since they share the same process space, one thread can
access a network resource (such as a socket) even as another thread finishes up its work
with it. This means a lower footprint for the same functionality, since a given resource
need only be loaded once.

Scalability per machine

Without threads, attempting to serve more than one client request concurrently
requires either multiple processes, or multiple machines. The use of multiple pro-
cesses carries additional run time overhead, since the entire process footprint must
be duplicated multiple times. Multiple machines lead to different problems, such as
the coordination of processes or avoiding the duplication of data across two
machines, especially common where database environments (or any other read/write
server) are used. This is painful, especially when you realize that the CPU spends
about 90 percent of its available time waiting for something—disk I/O, network /O,
user input, and so forth.

CHAPTER 5 THREADS

The use of threads allows the server to serve the needs of a number of clients
simultaneously and still preserve operating system process independence. Most impor-
tantly, the Java scheduler (or the native scheduler, depending on whether this is a
green or native threads platform) can allow other threads to execute while a particular
one is blocked, waiting for I/O or other time-consuming tasks to complete.

In fact, this is where much of the notion that threads improve your application
performance originates. Threads inherently do not improve the performance of an
application; in fact, they slow it down! If this seems ludicrous, consider the following:
In order to support the independence of two threads, the entire CPU register set and
execution stack must be saved off and restored each time this thread is swapped out
and back in again. This is known in thread parlance as a context switch. This switch
does not occur in a single-threaded application. So, in a given sequence of operations,
all of which are CPU-intensive, if you break it up into multiple threads, instead of
improving performance, you may actually degrade it, on a single-CPU system.

However, for most server-side development, the majority of the CPU is not spent
in heavy-CPU computation, but heavy I/O operation. This means that the CPU has a
tremendous amount of idle time, where it blocks on a response from a request or an
operation. It is this time that threads can reclaim for you, thereby appearing to
improve your application’s performance. It becomes even more positive when the
application can delegate all of its disk I/O requests (such as writing logging informa-
tion) to a different thread, leaving the delegating thread to continue with its CPU-
intensive tasks. The goal in this case is to make use of 100 percent of the CPU’s avail-
able time, leaving no time spent in idleness.

About multiple-CPU machines and performance: it would seem that using a
multiple-CPU machine would only improve performance. This is not necessarily true,
unfortunately. Under certain circumstances, this can actually reduce performance, as
most OSs do not simply map a thread to a CPU, as many threading-proponents would
claim. Instead, the OS scheduler typically swaps a thread into a CPU for a time slice,
then maps it back out when the time slice is finished. Considering that simply booting
into NT 4.0 Workstation fires off at least seventy threads just to run Explorer and var-
ious behind-the-scenes services, I also wouldn't expect to see machines that have one
CPU per thread, either.

Encapsulation

Because Java sees threads as objects, thread objects can not only encapsulate behavior,
but also the data and state variables that go along with that behavior. A web request-
response thread, for example, needs to store the URL which the request is trying to
access, and ensure that the response sent back is specific to that URL. It also needs to
store the socket on which the request came, so that it knows where to send the
response. Database requests carry an SQL statement that must be executed and results
returned. They need to track the state of open cursors or iterators as clients investi-
gate the result sets returned.

WHY THREADS? 129

5.1.4

5.2

130

Because of Java’s threads-as-objects approach, it becomes trivial to associate data
with a thread. Any time we can wed behavior to data and remove requirements to
understand the interaction between the two from the public domain we have simpli-
fied the system. Less work will be required to maintain it, improve it, or understand it.

Design and implementation

The ability to create, use, and otherwise treat threads as objects in]awa1 leads to a
number of design possibilities and approaches. Several of these are immediately intu-
itive—cancelable operations threads, and so forth. Several are not. Consider, for
example, the Fagade pattern from the Design Patterns book. Facade encapsulates a
subsystem made up of many additional objects behind a single object interface. The
example used in the book is that of a compiler. Threads can be integrated into the
design in either a subtle or obvious approach—subtle, in that threads can be used
within the Fagade, away from the client’s perceptions, to help improve the Facade’s
responsiveness, or obvious, in that the Fagade can be treated as an asynchronous sys-
tem. Either way, the use of threads within the pattern allows for additional flexibility,
customization, and opportunity for reuse.

Threads can also make the implementation of other systems trivial or simpler
than in sequential systems. For example, finite state machines were commonly used
in single-threaded systems (such as MS-DOS or very early versions of UNIX) to allow
multiple actions to take place concurrently—a task was given the chance to execute
one stage of its state machine, then it returned to the central scheduler to allow other
tasks to execute. The advent of thread capability within the system allows developers
to unroll the finite state machines into a single-dimensional sequence of steps, which
can be easily represented as simple, straightforward procedural logic.

JAVA THREADS

While Java’s thread support is impressive in its flexibility and simplicity, the concept
of suddenly having two things happening at once may be confusing for Java develop-
ers who may not have run into the concept before. Fortunately, the widespread accep-
tance of Java as a server-side development language reduces the mystery and myth
that surrounds the subject; as more and more experience, knowledge, and skill are
brought to the topic, it becomes easier and easier for developers to pick up the neces-
sary details.

There are a number of books on programming for Java that cover the rudimentary
aspects of Threads, so it would be tempting to simply tell you to check out one of those
books for your basic introduction to the subject. However, I believe that threads are
such an important concept to understand that I'm going to go back over the Thread

' Or any other language that supports the notion of threads-as-objects, even C++ (once you build it
yourself, of course, since C++ has no inherent support for Threads, as does Java).

CHAPTER 5 THREADS

API (j ava. | ang. Runnabl e,j ava. | ang. Thread,j ava. | ang. Thr eadG oup
and the assorted Exception classes associated therewith) in some detail, to make sure
we're all on the same page.

5.2.1 java.lang.Thread and java.lang.Runnable

The core of Java’s threading API comes in these two classes; while you may be able to
dodge some of the Thread classes for a while, like ThreadGroup, you cant do any-
thing with threads without touching these two.

If you simply start at the top of j ava/ | ang/ Thr ead. j ava and start reading
down, once you get past a number of internal fields and methods (and a curious entry
labeled I nheritabl eThreadLocal Entry, which we’ll get to later), you run
across these constants:

public final static int MNPRIORITY = 1;
public final static int NORMPRIORI TY = 5;
public final static int MAX PRIORITY = 10;

As you might well guess, these are the priority settings for threads. Each thread fired
from within Java has a corresponding priority level, ranging from 1 to 10. These
numbers are not absolutes—they don't correspond to a certain number of millisec-
onds for time slices, and so forth. They are only useful in how they relate to one
another. Thus, if you set all of your threads to be MAX_PRIORITY, all you'll do is
starve other threads in the system, such as the garbage-collection thread. Priorities are
set using the Thread’s get Pri ority and set Pri ority methods.

Continuing farther down, we run across a few native methods:

* current Thread returns the Thread object corresponding to the Thread cur-
rently executing

* yi el d surrenders control of this time slice to another Thread (determined by
the JVM or OS scheduler, not you)

* sl eep parks your thread for a number of milliseconds (or milliseconds and
nanoseconds, depending on the version of sl eep you use).

These are all well-documented and intuitive to understand, so I won’t go over
them in any greater detail.

Next (after skipping a pri vat e method), you run into a block of Thread con-
structor methods. Summarized, they look like:

public Thread()

publ i c Thread(Runnabl e target)

public Thread(ThreadG oup group, Runnable target)

public Thread(String nane)

public Thread(ThreadG oup group, String nane)

public Thread(Runnabl e target, String nane)

public Thread(ThreadG oup group, Runnable target, String name)

JAVA THREADS 131

132

If you examine them as a group, you see a pattern—each constructor is one variation
on the (target, group, nane) tuple. Threads can be constructed with a nanme
argument, which is nothing more than an identification tag for your own use, a
tar get argument, which we’ll discuss momentarily, or a gr oup argument, which
we'll discuss in a later section. Or you can construct a Thread with nothing at all,
which is typically not very useful unless you extend Thread in a subclass, which I do
not recommend. If you leave out a nane argument, Thread will set a default name
of “Thread-” plus an incremental thread-count, and you can retrieve or modify this
name with the get Name and set Nane methods. The gr oup parameter indicates
that this Thread is to be made part of the ThreadGroup gr oup.

Thet ar get parameter, however, is by far the most important. Without it, when
the Thread’s st art method is called, the created thread calls Thr ead. r un() , which
by default does nothing. If you pass in a t ar get , however, Thread. start () will
actually call the Runnable’s r un method. For example, these two snippets of code
accomplish the same thing:

public class ThreadSubcl ass extends Thread

{

public ThreadSubcl ass() { }

public void run()

{ Systemout.println("ThreadSubcl ass.run() called"); }
}

Thr eadSubcl ass t = new ThreadSubcl ass();
t.start();

public class Runnabl eObj ect
i npl enents Runnabl e

{

public Runnableject() { }

public void run()

{ Systemout.println("Runnabl eQoject.run() called"); }
}

Thread t = new Thread(new Runnabl eCbj ect());
t.start();

While both print " <cl assnanme>. run() cal | ed! " to the console window, these
are two very different approaches—one relies on the time-honored tradition of using
inheritance for reuse, the other uses the more recent approach of componentry.

When object-orientation first became widespread, one of its key features was
inheritance, and the reuse that could be obtained by its use. Simply write a base class,
developers were told, and any class that inherits from that base class can use its behav-
ior by default. This implementation inberitance, as it is now known, became common-
place and led to the deeply-nested type hierarchies that were characterized by Smalltalk
and early C++ environments and libraries.

Componentry, on the other hand, seeks to avoid implementation inheritance
wherever possible—instead of extending a type, you use the type, and plug in various
other components to customize its behavior. In the example, we don’t extend Thread;

CHAPTER 5 THREADS

instead, we plug a Runnable component, with which Thread knows how to work, into

the Thread object itself.

Why two different approaches? It turns out that componentry more closely
achieves the goal of black-box reuse than implementation inheritance. One problem
with implementation inheritance is that of preserving base-class semantics. For example,
if we extend Thread’s r un method, do we need to call the base class version in order
to make sure everything still runs correctly? If so, do we need to call it before we do
our custom behavior, after, or some time in between? A classic case of this comes up
in the Java AWT 1.0. If we extend handl eEvent in a Component, do we need to
call the base class version? (Yes.) When? (Depends.) And what if we handle the event,
and don’t want to pass it up the chain—will that break something? (Possibly.)

As developers continued to work with implementation inheritance-based sys-
tems, they found that they needed to know a tremendous amount about the system’s
internals in order to make certain they didn’t accidentally break something. This
directly violates another precept of object-oriented development, that of encapsula-
tion. I shouldn’t have to know information about a particular class in order to use it,
but in an implementation inheritance design, I often have to, both to extend its behav-
ior as well as to simply preserve its current behavioral semantics.

Another problem arose as these libraries continued to evolve. Library coders
wanted to make changes, either in response to bug reports or to improve certain
classes. They found they couldn’t because users of the library were counting on (in
their derived class code) certain member variables to be set before they were called, or
were changing the value of those member variables in order to influence the behavior
of the base class, and so forth. This led to less flexibility both on the part of the library

developers as well as the library users.

The last problem with this approach centers on what Peter Coad referred to as
the principle of perpetual employment.? Each new behavior required in an implemen-
tation inheritance-based system requires an entirely new subclass to be constructed,
with all of the required knowledge about the base class to go with it. For example,
assume you purchased a UI library that provides a TextEditor component. The fol-
lowing week, you receive the requirement to create a hex-edit editor window. In an
implementation-inheritance model, you subclass TextEditor, and override its behav-
ior to put out hex numbers instead of single characters, react to keystrokes by replacing
the current hex number at the cursor location with a new hex number, and so forth.
The week following, you receive the requirement to create an HTMLEditor compo-
nent. So, you fire up your trusty development environment, and proceed to subclass
TextEditor again, this time with appropriate HTML tags and editor commands. The
week after that, you’re asked to create an XMLEditor component. You get the idea.
Under certain circumstances, it’s possible to use one of your derived classes as a base

2 From Object-Oriented Programming, by Peter Coad and Jil Nicola (Prentice Hall/Yourdon Press 1993).

JAVA THREADS 133

134

from which to start working (such as XMLEditor from HTMLEditor). You can some-
times factor common code from the two into an interim base class (XMLEditor and
HTMLEditor—both inherit from MarkupLanguageEditor, perhaps?). As soon as a
request comes for a class that reaches across the inheritance chain (an XMLHexEditor
view?), though, you’re in trouble.’

Componentry seeks to avoid this sort of need for internal knowledge and still
allows for infinite extension without requiring an unending number of corresponding
subclasses. Rather than force me to extend a class (which, remember, in Java gives me
access to all of its internal fields not marked pr i vat e), a component developer creates
a well-defined collection of classes that I can plug in to achieve certain specific effects.
A wonderful example of this is the JEC GUI code, also known as Swing. With the JTree
and JTable classes, I can plug in a Model class that tells the GUI component how to
build itself—with JTree, with nodes and leaves, with JTable, with columns and rows.
JTable goes even further with this concept. If I want to create the ability to edit data
within the cell, I can implement the TableCellEditor interface, provide the necessary
methods that JTable promises to call in well-defined ways, and I can effectively cus-
tomize this JTable instance without knowing anything about JTable’s internals. More
importantly, those internals remain the sole knowledge of the component creator,
which means the creator can continue to improve or radically change the way JTable
works under the hood without concern of breaking my code.

Bringing the discussion back to Thread and Runnable: remember that the two
code snippets above are behaviorally equivalent. However, suppose I create a new and
improved Thread class. ThreadSubclass (from the example above) cannot make use of
this new Thread-based class without changing its ext ends clause, which in turn
breaks other parts of the code. RunnableObject, however, can be plugged into the new
Thread class, since Threads interact with Runnables in a very well-defined way.

NewAnd! npr ovedThr ead newThread =
new NewAndl nprovedThr ead(new Runnabl eCbj ect());
newThread. start();

In effect, we've made use of the new behavior of NewAndImprovedThread without
having to modify a single line within RunnableObject. This is one of the principal
benefits of componentry.

Some may argue that this is unnecessary, since Thread is already a well-defined

class with little room for improvement. I disagree. Let’s examine two common usages

3 Tt was to support this concept (“a SeaPlane IS-A Plane 274 IS-A Boat”) that led Bjarne Stroustrup to
introduce multiple inheritance into C++, a decision which was hotly contested for years, and has since
fallen out of favor.

CHAPTER 5 THREADS

of Thread: to perform a particular action at a given time, and to periodically perform
an action (every 7 seconds) (listing 5.1).

Listing 5.1 Code for Thread

/**

* PeriodicThread is a specific type of Thread that fires off its
* associ ated Runnabl e evry <code>i nterval </code> nilliseconds.

*/

public class PeriodicThread extends Thread

{

JAVA THREADS

private Periodi cThread()

{
/1 This prevents instantiation w thout an associ ated Runnabl e;
// 1 don't want to allow the possibility of this code from
/1 ever conpiling:
/1
/1 new PeriodicThread().start();
/1
}
/**

* Constructor taking the Runnabl e whose run net hod we
* wish to call every interval mlliseconds.

*/
public Periodi cThread(Runnable r, int interval)
{
super () ;
m runnable = r;
m.interval = interval;
}
/**

* The run nmethod spins in an infinite loop, calling

* run on the owned Runnabl e instance every interval

* mlliseconds (as specified in the constructor). The tinme spent
* in the Runnable’s run nethod is not taken into

* account in the period spent sleeping.

*/
public void run()
{
try
{
while (true)
{
Thread. sl eep(m.i nterval);
m_runnabl e. run();
}
}
catch (InterruptedException iEx)
{

return;

135

}

private int minterval =0
private Runnable mrunnable = null
/**
* Test driver for the PeriodicThread component
*/
public static void main(String[] args)
t hrows Exception

{
Peri odi cThread pt = new Peri odi cThread(new Runnabl e()
{
public void run()
{
Systemout.printin("Fired!'");
}
}, 10 * 1000);
pt.start();
Peri odi cThread pt2 = new Peri odi cThread(new Runnabl e()
{
public void run()
{
Systemout.printin("Hred!");
}
}, 15*1000);
pt2.start();
Systemout.printin("Use Ctrl-Cto quit.");
pt.join();
pt2.join();
}
}
/**
* Schedul edThr ead
*/
public class Schedul edThread extends Thread
{
private Schedul edThread()
{
/'l Prevent "new Schedul edThread().start()"
/1
}
public Schedul edThread(Runnabl e runnabl e, java.util.Date when)
{
m runnabl e = runnabl e
m when = when
}
public void run()
{

136 CHAPTER 5 THREADS

try

{
/1 Make sure "when" is after now
/11
while (mwhen.after(new java.util.Date()))
{
Thr ead. sl eep(1000) ;
}
/1 |If the above test failed, it's tine
/1 to run our target
/1
m runnabl e. run();
}
catch (InterruptedException intEx)
{
return;
}

}

private java.util.Date mwhen;
private Runnabl e mrunnabl e;

Now, any Runnable object can be fired off right away, fired off every 7 seconds, or
fired off at a specific time. Or any combination of the three:
Thread t =
new Schedul edThr ead(
new Peri odi cThr ead(
new Runnable() { . . .}, 15 * 1000),

new Date(/* sonme date here */));
t.start();

This creates a Thread that, when the Date given occurs, will fire off a PeriodicThread
to perform some action every (15 * 1000) milliseconds, or every fifteen seconds. Try
to combine the two thread concepts into a single subclass, and you'd need to create a
new subclass from Thread called PeriodicScheduledThread. Then, if you want to
reverse the use (a PeriodicThread that fires off a new ScheduledThread every 7 sec-
onds), youd need a new ScheduledPeriodicThread... you get my drift.

5.2.2 Starting threads

The next set of methods in Thread deals with starting the thread itself. Actually, only
one method really deals with starting the Thread, the st art method. This method,
when called, creates an underlying thread (either an OS native thread, or a green
thread), starts it, and returns to the caller.

When the new thread is started, it does not continue execution within the st ar t
method, as users of UNIX’s f or k system call would expect, nor does it execute a par-
ticular function, as users of Win32’s Cr eat ePr ocess system API would expect.

JAVA THREADS 137

138

Instead, the starting point for any started Thread is always the same—the Thread
object’s r un method:
public void run() {

if (target !'=null) {

target.run();

}
}
As you can see, if the Thread has no t ar get instance within it (which it will only
have if a Runnable instance were specified in a constructor), then the Thread’s r un
method is effectively a no-op. Correspondingly, when the r un method returns, the
created thread dies.

The method after st ar t, called exi t, sounds intriguing, as does the comment
attached to it: “This method is called by the system to give a Thread a chance to clean
up before it actually exits.” Unfortunately, it’s pri vat e, meaning we can’t override
it, correct? Not true—the JDK 1.2 has a particularly strange hole regarding this
method; despite the fact that private methods are not supposed to be dynamically
bound, the Thr ead. exi t method appears to be just that. The following code not
only compiles, but executes in an entirely different manner than it should:

public class ThreadExit

{
public static void main(String[] args)
throws Exception
{
Thread t = new Thread()
{
private void exit()
{
Systemout.println("Thread.exit()");
}
b
t.start();
t.join();
}
}

When run, " Thread. exi t ()" appears on the console window. This might seem
like an opportunity for some thread cleanup, but be wvery careful here. Because
Thread. exi t () is marked pri vat e, you can’t call up to it from the derived class,
and the implementation of exi t yields some disturbing thoughts:

private void exit() {
if (group !'= null) {
group. remove(this);
group = null;
}
/* Aggressively null object connected to Thread: see bug 4006245 */
target = null;

CHAPTER 5 THREADS

It’s that last comment that bothers me: “see bug 4006245.” The bug in question was
found in Java 1.0, and marked fixed in Java 1.1, and deals with the garbage collector
taking a long time to collect Thread instances. In an effort to force garbage collection
to occur earlier, Sun chose to aggressively null-out the references held within Thread.
The fact that we're unable to call back up to the base version of exi t means we cant
take advantage of the fix.

If we can’t make use of this information without running some risks, why bring
it up at all? The fact is that per-Thread cleanup is a useful concept, especially since
exi t, unlike finalizers, has some well-defined context regarding its cleanup. Having
this ability open to us is a useful one. Be careful if you use it, and if your JVM suddenly
appears to be requiring a much larger footprint than you would expect, look to see if
this is the culprit.

Having discussed how to start threads, let’s talk about how to stop them.

5.2.3 Stopping threads

To go along, it would seem, with Thread. start is Thread. st op. This makes
sense—if st art creates and launches the thread, then st op must stop and destroy
the thread. JavaSoft has chosen to mark st op as deprecated, subject to removal in
future versions of Java (From jdk1.2/docs/api/java/lang/Thread.html):

This method is inherently unsafe. Stopping a thread with Thread.stop
causes it to unlock all of the monitors that it has locked (as a natural conse-
quence of the unchecked Thr eadDeat h exception propagating up the stack).
If any of the objects previously protected by these monitors were in an incon-
sistent state, the damaged objects become visible to other threads, potentially
resulting in arbitrary behavior. Many uses of st op should be replaced by code
that simply modifies some variable to indicate that the target thread should
stop running. The target thread should check this variable regularly, and
return from its run method in an orderly fashion if the variable indicates that
it is to stop running. If the target thread waits for long periods (on a condition
variable, for example), the i nt err upt method should be used to interrupt
the wait.

For more information, see “Why are Thr ead. st op, Thr ead. suspend

and Thr ead. r esune Deprecated?” (jdk1.2/docs/guide/misc/threadPrimi-
tiveDeprecation.html).

The central problem with st op is that it is an immediate and terminable action;
objects used by this thread have no opportunity to react to the termination of the
thread, and as a result, may be in a damaged or inconsistent state. What the JDK doc-
umentation suggests, instead of the use of st op to shut down a thread, is to code
something as follows:

JAVA THREADS 139

140

public class Stoppabl eThreadhj ect
i npl enents Runnabl e

public void run()

{
while (!stopped)
{ do_sone_work(); }

}

public void stop()
{ stopped = true; }

private vol atile bool ean stopped = fal se;

}

St oppabl eThr eadCbj ect sto = new St oppabl eThreadbj ect () ;
Thread t = new Thread(sto);

11 . . . later

sto.stop();

Code written in this manner allows objects used by StoppableThreadObject to clean
themselves up before the thread completely goes away. However, this approach has
one particular flaw: If the Thread gets wrapped up in an infinite loop or other simi-
larly busy action, it cant check the st opped flag to see if it’s time to quit. This
approach also relies on the developer being a good citizen and checking his flag every
so often to see if it’s time to quit. If the developer decides to be stingy, or simply for-
gets to check the flag in a long sequence of code, it could be a very long time before
the st op takes effect. This may not be acceptable in some situations.

The st op method comes in two versions, one which takes no arguments, the
other which takes a single Except i on argument. Both perform the same operation—
wake up the Thread, force it to throw either (in the no-arg version of st op) a new
Thr eadDeat h object, or the Exception argument specified. Usually, if you need to
call st op, you’ll call the no-arg version, because there are some special semantics asso-
ciated with Thr eadDeat h that you won’t get otherwise.4

One alternative approach to st op is the i nt errupt method. This method
causes the current Thread to immediately cease its current action (under specific cir-
cumstances’) and throw a new | nt er r upt edExcept i on, which then propagates
back up the chain, all the way back to the r un method of the Runnable or Thread
that was called by this thread. User code can check to see if either throw an interrupt

If the Thread propagates the ThreadDeath exception all the way back to the JVM’s native implemen-
tation, the JVM knows to destroy the underlying thread at the OS/JVM level. Accordingly, if you catch
the ThreadDeath exception, make sure you re-t hr owit, or the thread will never actually die!
Specifically, the thread needs to be in a sl eep orwai t —a thread blocking for any other reason won’t
cause it to be interrupted

CHAPTER 5 THREADS

by calling the i sl nterrupt ed method.® We can then recode the preceding Stop-
pableThreadObject as:

public class Stoppabl eThreadbj ect
i mpl enent's Runnabl e

{
public void run()
{
try
{
while (!Thread. current Thread().islnterrupted())
{ do_sone_work(); }
}
catch (InterruptedException interruptedException)
{
/1 Clean up here
}
}
}

St oppabl eThreadObj ect sto = new St oppabl eThreadj ect () ;
Thread t = new Thread(sto);

/1. . . later
t.interrupt();

This way, we still get the semantics we desire (immediate cessation of the Thread),
but also allow any owned objects to clean themselves up appropriately. An alterna-
tive implementation would use a finally clause to the try block in run to
allow the StoppableThreadObject to clean itself up on any Excepti on thrown,
not just interruptions.

You may also notice that the Thread methods suspend and r esune were also
deprecated starting in JDK 1.1. The reason for this was similar to the reasons given for
deprecating st op; this sort of immediate action on the Thread can lead to situations
where the Thread still holds resources that can mess up other Threads. In this case, sus-
pending a Thread while it holds a monitor inside of a synchronization block (see below)
means no other Threads can enter that block while the first one is suspended. This can
lead to deadlock. (If the Thread that made the suspend call is itself blocked from ever
calling r esun®e on that same Thread, those two Threads are infinitely deadlocked.)

One other thing to note is that almost all of the Thread methods that involve
manipulating a Thread’s current status involve a check to the Java SecurityManager
before continuing,.

® Which, unfortunately, clears the interrupted flag in the Thread, so that if the first call to i sI nt er r upt -
ed returns t r ue, any subsequent calls will return f al se, at least until the Thread is interrupted again.

JAVA THREADS 141

5.2.4

142

Daemon threads

One of the interesting features of Javas thread support is that an application doesn’t
exit the JVM until all created threads have terminated. To prove it, let’s try the follow-
ing code:

public class Wit

{
public static void main(String[] args)
{
new Thr ead(new Runnabl e()
{
public void run()
{
try
{
Thread. sl eep(15 * 1000);
Systemout.printIn("Exiting run() thread");
}
catch (InterruptedException iEx)
{
i Ex. printStackTrace();
}
}
}).start();
Systemout.println("End of main()");
}
}

If you run this, you'll get

C:\ Proj ect s\ SSJ\ cd\ src\ chap3>j ava Wit
End of main()
Exiting run() thread

C:\ Proj ect s\ SSJ\ cd\ src\ chap3>

with the "Exi ting run() thread" text appearing on the console fifteen seconds
after "End of main()".

Certain tasks make better sense performed as a background task in a separate thread,
such as garbage collection or spelling checker in a text editor. Unfortunately, this
behavior of the JVM would seem to make these operations impossible. If the JVM isn’t
going to quit until all threads are terminated, then constantly spinning tasks, like gar-
bage collection, will keep the JVM active until the user explicitly kills it (via CTRL-C
in the console window, “kill” on UNIX, or the Task Manager under NT).

Fortunately, the Java Thread model offers a solution—set Daenon allows us to
mark the thread as a daemon thread. In UNIX parlance, a daemon process is one that
starts when the machine is first booted, and runs continuously in the background until
the machine is shut down, or the process is explicitly teminated by a user. Java makes
the same analogy to threads—marking a thread as a daemon thread means that it

CHAPTER 5 THREADS

intends to run continuously in the background, and, more importantly, doesn’t count
against the “all Threads must die for the JVM to quit” condition. If we modified the
previous code snippet to read:

public class Wit

{ public static void main(String[] args)
{ Thread t = new Thread(new Runnabl e()
{
public void run()
{
try
{
Thr ead. sl eep(15 * 1000);
Systemout.println("Exiting run() thread");
z:at ch (InterruptedException iEx)
{ i Ex. printStackTrace();
}
}
b
t.set Daenon(true);
t.start();
Systemout.printIn("End of main()");
}
}

then we execute the code, and we see

C:.\ Proj ect s\ SSJ\ cd\ src\chap3>java Wit
End of main()

C:\ Proj ect s\ SSJ\ cd\ src\ chap3>

In other words, mai n exits as soon as it is finished, because all other executing Threads
are daemon threads. The created Thr ead never gets a chance to write its output,
because it’s still s| eeping when mai n quits and the JVM decides to shut down.

Note that if you try to call set Daenon after the Thread starts, Java will throw
an IllegalStateException; you must set daemon status on the Thread before it starts.
The method i sDaenon can be used to ask a Thread if it is set to daemon status or not.

5.25 Threads and ClassLoaders

One of the quiet changes the JDK 1.2 made to the Thread API was the addition of
two potentially useful methods: set Cont ext Cl assLoader and get Cont ext -

Cl assLoader. Remember, associated with each class is a reference to the Class-
Loader that loaded it. The thread’s context ClassLoader will be the one used to find
new classes and resources for this thread. If you don’t set a context ClassLoader, then

JAVA THREADS 143

5.2.6

144

it will default to the ClassLoader used to create the Thread object representing the
new thread. The context ClassLoader can be loaded at any time during the Thread’s
lifetime, unlike the thread’s daemon status.

The thread’s context ClassLoader has a unique role within the Java system. When
the JVM is first started, a Thread object is created, to call the main class’s mai n
method. As part of that initialization at JVM-start, the AppClassLoader is set as the
primordial Thread’s context ClassLoader. However, that having been said, the context
ClassLoader, under normal circumstances, is never consulted as a ClassLoader in the
chain. This means that if a Class can’t be found by the App- or ExtClassLoaders (or
any custom ClassLoaders that were called before it got to App- and ExtClassLoader),
the thread’s context ClassLoader is never called.

This naturally leads into the question, “Why include it then, if it’s not called any-
where?” It’s provided there for use by packages that wish to make use of a particular
(mutable) ClassLoader, without having to hard-code knowledge about a particular
ClassLoader into the package. In other words, certain packages (namely, RMI) will
consult with the thread’s context ClassLoader to find classes that they require, but that
this must be coded for explicitly within those certain packages—if you don’t call
Thr ead. get Cont ext Cl assLoader to obtain the ClassLoader from which to load
a class, it will never be called.

All of the above essentially boils down to this: for the most part, unless you are
doing dynamic class-loading, you don’t have to worry about the Thread’s context
ClassLoader. Having it available, however, opens up some powerful functionality, espe-
cially in regard to the discussion of ClassLoaders and dynamically upgrading systems
on the fly from the last chapter. For example, a web server providing Servlet support
might create a ServletClassLoader to load the servlet class from disk, spin off a Thread
in which to allow the servlet to execute, and set the ServletClassLoader as the Thread’s
context ClassLoader, thus ensuring that any RMI-calls within the servlet also use the
ServletClassLoader (and its parent chain, as well) as part of the class-search process.

java.lang.ThreadGroup

It's not uncommon for groups of threads to work together in some fashion. A web
server, for example, may wish to have a group of threads on hand to farm out socket
requests; FTP or mail servers may do the same. Al systems using multiple threads to
explore different paths of decision-making may want to group certain threads
together to allow them to interact with one another in a neural-net approach. A diag-
nostic message tracer may keep one thread per diagnostic message sink (file, window,
and so on). However, these groups of threads in turn have nothing to do with other
groups of threads within the system (such as the garbage-collection thread(s), and so
forth). It would be nice to be able to refer to a logical group of threads, without refer-
ring to the entire set within the system.

CHAPTER 5 THREADS

Java provides this capability with the class j ava. | ang. Thr eadG oup, a spe-
cialized collection class for Threads. ThreadGroup contains a variety of methods to
control, access, and hierarchically group collections of threads.

Constructing a ThreadGroup can take one of several forms:

public ThreadG oup(String nane)
publ i c ThreadG oup(ThreadG oup parent, String name)

ThreadGroups have a name and a parent ThreadGroup. If you don’t specify a parent,
the code assumes that the ThreadGroup of the current thread is to be the parent. You
can retrieve the parent of a ThreadGroup by calling get Par ent , the name by calling
get Nane, the maximum priority of all threads within the ThreadGroup by calling
get MaxPriority, and set this maximum priority with set MaxPriority. You
can mark all threads within this ThreadGroup by calling set Daenon on the Thread-
Group, and when the last thread or ThreadGroup owned by this ThreadGroup is
destroyed, the ThreadGroup will die with it.

Threads and ThreadGroups can be added or removed via the add and r enpve
methods. The | i st method writes out (to System.out, and nowhere else, unfortu-
nately) a list of all Threads and ThreadGroups owned by this ThreadGroup. Of more
interest are the enuner at e and acti veCount methods. Calling acti veCount
returns the current number of Threads executing as part of this ThreadGroup, and
enuner at e populates an array of Thread references with references to the threads
owned by this ThreadGroup. Thus, to iterate across all threads in a given Thread-
Group and print out their t 0St ri ng representation, the code looks like this:

ThreadGoup tg =. . .; // obtain ThreadG oup we want to query
int count = tg.activeCount();
Thread[] |ist = new Thread[count + count/2];

/1 allow sonme paddi ng since the count could change in
/1 between the calls to activeCount() and enunerate()
tg.enunerate(list);

for (int i=0; i<list.length & list[i] != null; i++)
Systemout.printin(list[i].toString());

Because Threads could be added to the ThreadGroup in between calls to
activeCount and enunerate, [artificially bump up the count returned by
acti veCount by 50 percent just to accommodate this possibility. The reason I do
this is given in the ThreadGroup documentation for the enunerate method
(Jdk1.2/doc/api/java/lang/ ThreadGroup.html#enumerate()):

An application should use the act i veCount method to get an estimate
of how big the array should be. If the array is too short to hold all the threads,
the extra threads are silently ignored.

JAVA THREADS 145

5.3

146

Because enuner at e promises to silently ignore any extra Threads if room isn’t
provided for them in the passed-in array of Thread references, I make extra room and
test for nul | , just to be safe.”

ThreadGroups owned by this ThreadGroup can also be retrieved, in the same
way, using the acti veGroupCount and the versions of enuner at e that take an
array of ThreadGroup references. The ThreadGroup version of enuner at e also has
one more possible parameter, r ecur se, which indicates whether the caller wishes to
know all ThreadGroups owned by this or any owned-in-turn ThreadGroups. Passing
true in for recur se will return a count or list of ThreadGroups from t hi s on
down to the very bottom of the ThreadGroup tree.

ThreadGroup, like Thread, also has a number of methods that were deprecated in
JDK 1.1. The methods st op, suspend and r esune were all deprecated in Thread-
Group for the same reasons they were deprecated in Thread. If you choose to use them,
however, be aware that they will in turn call the same method on every Thread and
ThreadGroup owned within this ThreadGroup. ThreadGroup also has i nt errupt,
which does the same thing. Note that while dest r oy within ThreadGroup will actually,
in turn, call destroy on each Thread and ThreadGroup within it, the destr oy
method of Thread simply throws a NoSuchMethodError to indicate it is a no-op method.

THREAD IMPLEMENTATIONS IN JAVA

Within the Java environment, a developer never creates a thread. This may sound
ludicrous, but hear me out. Within Java, the code
new Thread(new Runnabl e() {

public void run()

{ Systemout.println("Vw"); }
}).start();

does not, in fact, create a thread. It constructs a java.lang. Thread object, which in
turn instructs the Java virtual machine to create a thread of execution, and in that
thread of execution, invokes the r un method of the owned Runnable object.

It may seem to be splitting hairs, but this is an important distinction. In native
C/C++ development, you can create threads directly via the various OS threading APIs.
In Java, however, you do not create threads—the JVM does this for you. This leads
to an important distinction between Java and C++ development: You cannot assume
you have a native OS thread for every Thread object.

The JVM requires very little when it comes to threading support. This is done inten-
tionally—Java was originally intended as an embedded systems development language
for the development of code on cable-TV set-top boxes. It could not be assumed that the
underlying chip (or OS, as it turned out) had the capability to support multiple threads.

7 Why not return a Thr ead[] , or a Vect or containing the Thr ead references? Why force me to pass
in a preallocated array? Java added the implicit .length field to arrays just to avoid this sort of “C-ism.”

CHAPTER 5 THREADS

5.3.1

5.3.2

5.3.3

Asa I'CSLllt, VM thread im lementations fall into one Of two categories: « reen”
S g
and “native.”

Green threads

Green threads are effectively a figment of your imagination; they do not exist as OS-
level constructs, but are scheduled by the JVM itself in a nonpreemptive format.
Essentially, the JVM has a single thread of execution, and it manages the context-
swapping by hand between Java Thread objects, the same arrangement as under 16-bit
Windows. This has dangerous implications for your code. It means that one poorly
constructed thread can bring down the entire JVM.

Remember, that not all Java acts remain exclusively within the JVM. Occasionally
we do have to run out to the native OS to accomplish certain tasks. A classic example
is file management. If you look inside of java.io.File, you’ll find that actual implemen-
tation of most methods defers to a class called java.io.FileSystem, which in turn is
made up of nothing but nat i ve methods that do the actual work of calling the var-
ious OS-level file-management calls. The problem is that most (if not all) of these calls
will block when called, not returning control back to the thread that called them until
they are complete.

If I create a thread to perform a long blocking I/O call, another thread to do GUI
updates, and expect the GUI thread to remain responsive during the blocking I/0O call,
I’m in for a big disappointment. Even worse, if the garbage-collection mechanism for the
JVM, which typically runs in its own thread, is poorly constructed, I could be in for a
long wait at the point in my application where I suddenly need to recycle unused objects.

This is less of a problem than I make it out to be until you start making your own
native calls. JVM implementors, on platforms that lack native thread support (such as
Windows 3.1, MS-DOS or older versions of the MacOS), can write their native imple-
mentations of classes such as java.io.FileSystem to be friendly, yielding control back
to the JVM scheduler periodically while performing large I/O operations. And because
the JVM scheduler has the opportunity to switch a thread away before or after any
bytecode instruction, there is no concern for yielding the CPU as there was in 16-bit
Windows operations.

Native threads

Native thread JVMs, on the other hand, match OS threads to Java threads on a one-
to-one basis (or fairly close to it). These implementations are by far easier to work
with, since any native calls performed by the thread will block within its own thread,
leaving the other threads within the process to execute normally.

Hybrids

Combinations in between green and native threads are possible. For example, Java-
Soft’s own Solaris Reference Implementation for JDK 1.2 uses a hybrid model, where
Java threads are given to a pool of native POSIX threads for execution in scheduled

THREAD IMPLEMENTATIONS IN JAVA 147

5.3.4

54

5.5

148

fashion; while not single-threaded, as most early green JVM implementations were,
it’s also not single-thread-per-Java-thread, either.

Implications

This leaves Java developers in something of a predicament. Java advocates a platform
independent development model, where the particulars of a given operating system
or environment are shielded from you by the JVM principle: Write Once, Run Any-
where. Unfortunately, this holds less effectively in practice, especially in areas where
the JVM specification is not clear, such as thread support.

In practical terms, this boils down to a complete violation of the Java write/run
principle: know your targets. If you know that code you write will be run on a green-
threaded platform, make certain that any native calls don’t block indefinitely. At the
very least, you can forewarn users before undertaking long blocking operations that
will hang the JVM until they return.

As I stated before, this is less of an issue than first consideration might make it
appear to be. Most JVM implementations will use native threads, where available, and
environments in which threads are not available (embedded systems for microchips,
for example) will typically not be environments on which Java servers (not applica-
tions) will execute. In those environments, the JVM scheduler will usually suffice for
thread management. After all, embedded systems probably don’t have to make much
in the way of native calls, since there’s no layer between them and the hardware. They
are the hardware!

SUMMARY

If youve never done Thread coding before, you may be a bit apprehensive about
jumping into this concurrent programming thing. The horror stories about develop-
ers spending entire weeks (or even months) trying to track down these subtle timing-
dependent bugs in multithreaded applications are legendary. That having been said,
however, I also have to point out that the horror stories about developers spending
entire weeks (or even months) trying to track down a bug due to a misplaced semico-
lon are also legendary. The point is that Threads are simply too powerful a program-
ming practice to ignore due to fear, uncertainty, and doubt. Threads are your
friends—learn them, live them, love them.

ADDITIONAL READING
* Scott Oaks and Henry Wong, Java Threads (O’Reilly, 1997).

Part of the O’Reilly Java series, this is a great introduction to Java threads. While
not JDK 1.2-friendly, the book is stocked to the brim with incredibly useful
information, including an appendix on how to debug multithreaded applica-
tions using the Java debugger jdb.

CHAPTER 5 THREADS

CHAPTEHR 6

Threading issues

6.1 Synchronization 150 6.4 GJAS 166
6.2 Exception-handling with multiple 6.5 Summary 173
threads 153 6.6 Additional reading 173

6.3 Thread idioms and patterns 158

Firing off Threads helter-skelter is never an answer to a problem. Threads introduce a
new problem into the developer’s life, that of concurrency. Most developers see con-
currency only within the context of multiple threads, but the problem itself extends
much further than that. Take, for example, a collection of processes all operating
simultaneously, working together as part of a single system. If two processes need
access to the same file, either the processes must rely on the operating system’s native
support for concurrency, or they must work out a concurrent-access system of their
own to ensure that the two processes aren't stepping on one another’s toes.

Introducing Threads into a Java application/applet/servlet/Bean simply magnifies
this problem. Now, not only does a process need to synchronize access to resources
outside of the boundaries of the process, but also to resources inside it. If two Threads
attempt to modify the same element or member simultaneously, there is no guarantee
as to which one will ultimately succeed—if either one does.

Note that Threading and concurrency are not always hand-in-hand; under the
classic definition of concurrency, no multithreaded application executing on a single
CPU system is ever running concurrently. Instead, they are all executing serially, in a
time-sliced fashion. True concurrent execution is only possible on multiple-CPU sys-
tems when two threads may be executing on two different CPUs at the same time.
And, as stated before, it is possible to have concurrency without multiple Threads. For
the most part, however, Java developers must think of Threads as being concurrent,

149

6.1

150

since the JVM itself (and the vagaries of “Write Once, Run Anywhere”) means we will
never know if we’re on a 1-CPU or a 64-CPU system.

SYNCHRONIZATION

If threads are executing in a concurrent fashion, there runs the risk that they can also
access or modify object or type instances concurrently, as well. More dangerously, it
also means that threads can be executing within the same method simultaneously.
This has serious implications for how you write your code; for example, a naive
implementation of a dynamic-array class (similar in concept to Java’s Vector class)
could be written as:

public class Dynam cArray

{
/1 other methods omitted for clarity
public void add(Object obj)
{
oj ect[] tenmp = new hject[mdata.length]; // 1
System arraycopy(mdata, 0, tenp, O, mdata.length); // 2
mdata = new Object[tenp.length + 1]; // 3
System arraycopy(tenp, 0, mdata, O, tenp.length); // 4
m data[mdata.length] = obj; // 5
}
}

Unfortunately, this code is not thread-safe. If two threads of execution happen to
enter the add method at the same time, serious problems will result. Assume that we
have two threads, A and B, that are attempting to both add an Object to a single
DynamicArray instance, which currently holds five items. Thread A enters add and
executes line 1. We're all right so far—t enp now holds an empty array of five Object
references. Thread B now enters add, and executes line 1. The m dat a array still
holds only five references, so t enp in thread B now holds an array of five empty
Object references. Thread A gets control, and executes lines 2 through 5. The array is
copied over and back, with no problems. Unfortunately, when B executes line 2,
m_dat a will hold six items, not five, and you'll get an IndexOutOfBoundsException
from System arraycopy.

There are a dozen different ways this scenario could play itself out; because the
order of scheduling is nondeterministic, we have no way of knowing precisely in which
order the two threads execute each line. Remember, too, that threads can be switched
in or out between bytecode instructions, and each line above will compile down to
more than one bytecode instruction each. This raises the possibility that the threads
could be switched out and in the middle of the line, leaving even more possibilities
for chaos to occur.

CHAPTER 6 THREADING ISSUES

This problem has plagued every concurrent development environment yet
invented. Entire languages have been invented, solely on the basis of concurrency syn-
chronization, and reams of paper are sacrificed to the subject. Java, however, boils it
down to a single keyword: synchr oni zed. By marking a method as such, Java will
block other threads from entering that method until the current thread within that
method exits. Similarly, if a synchr oni zed block is entered within a method, the
JVM will guarantee that no other thread will enter that block until the current thread
finishes it. This means that we could rewrite the add method above as:

public class Dynam cArray

{
/1 other nethods omitted for clarity
public synchroni zed voi d add(Cbj ect obj)
{
oj ect[] tenmp = new bject[mdata.length]; // 1
System arraycopy(mdata, 0, tenp, 0, mdata.length); // 2
mdata = new Object[tenp.length + 1]; // 3
System arraycopy(tenp, 0, mdata, O, tenp.length); // 4
m data[m data.length] = obj; // 5
}
/*
* O, we could wite it this way:
public void add(Cbject obj)
{
synchroni zed
{
oject[] tenmp = new hject[mdata.length]; // 1
System arraycopy(mdata, 0, tenp, O, mdata.length); // 2
m data = new Object[tenp.length + 1]; // 3
System arraycopy(tenp, 0, mdata, O, tenp.length); // 4
m data[m data.length] = obj; // 5
}
}
*/
}

The two methods are identical in operation—thread B will now be prevented from
entering add until thread A has finished executing line 5 completely.

This is probably the worst part of concurrent development. Knowing where to
synchronize, why to synchronize, and when not to synchronize remains more art than
science for most developers. Even worse, trying to debug synchronization problems
(such as the one above) can be frustrating and elusive, since the problem may only
occur under very specific circumstances. In that example, a problem would only be
detected when the IndexOutOfBoundsException was thrown, and that exception
would only be thrown when two threads manage to enter the same method at almost
exactly the same time. With several hundred thousand method calls from which to

SYNCHRONIZATION 151

6.1.1

152

choose, and several million clock cycles in which to choose them, getting two threads
to hit the same method in the same order in a consistent manner to allow for testing
and debugging is a truly aggravating experience.

Determining when to synchronize, and how to prove (or disprove) that a method
is fully thread-safe is a subject that easily encompasses entire volumes on its own. It’s
this very subject that provides most of the rumors surrounding how difficult it is to
program with threads. What's worse, there is no quick and easy way to determine if
your code is thread-safe. The best advice is to err in your code on the side of caution,
preferring to oversynchronize the code rather than the opposite, and that you test like
crazy for long periods of time.

Thread-local storage

One way to avoid thread synchronization code is to give each thread its own copy of
particular variables and objects. This is called thread-local storage, and comes in two
forms in Java.

The first is the easier to understand, although it uses no linguistic features to
enforce it. Whenever possible, associate the data required by the thread with the thread
by wrapping it up into the Runnable object being executed by the thread and marking
it privat e. If only one thread has access to the data in question, then no synchro-
nization is necessary. (This assumes that a new Runnable object would be created for
each new Thread fired off.) Alternatively, make the run method of the Runnable class
completely stateless, with no dependencies on internal or external state, even within
the class itself.

This is an overly simplistic solution, however, and doesn’t cover all cases. There
will be objects (particularly Singleton objects accessed from multiple threads) that
have to maintain separate data per thread within themselves. For these situations,
Java 1.2 offers the second alternative, the java.lang. ThreadLocal class, which wraps a
generic Object, one per thread.

public class \Watever

{
public ThreadLocal mthreadLocal = new java.l ang. ThreadLocal () {
protected Object initialValue() { return new Integer(5); }

h
}

This creates a ThreadLocal object that wraps an Integer object, initializing its initial
value to 5. If you don’t override the i ni ti al Val ue method of ThreadLocal, it will
contain nul | .

When thread A calls What ever. m threadLocal . set (new String-
(“Five”)) , this value will only be seen by that thread. Any other thread calling Sys-
tem.out.printin(Whatever.m_threadLocal.get().toString()) will see
the original Integer object created by the initialization block. Thread A cannot see
thread B’s version of m t hr eadLocal , and vice versa.

CHAPTER 6 THREADING ISSUES

Thread-local storage won’t solve a// your synchronization problems, but it cer-
tainly can help with some.

6.2 EXCEPTION-HANDLING WITH MULTIPLE THREADS

Threads raise some questions regarding standard exception-handling behavior.
Within Java, when an exception is thrown and not caught within the method that
threw it, it filters upward. Specifically, it propagates back to the caller of the method
until either it is caught, or it is thrown back out of mai n. This assumes that mai n
declares itself as throwing some (or all) Exception types, as I frequently do with exam-

ples found in this book:
public class Sanple
{
public static void main(String[] args)
throws Exception /'l cheap way of avoiding try/catch bl ocks
/1 within nmain()
{
/1
}
}

If this is the behavior expected of the main thread’s entry point (mai n), it might seem
intuitive to expect this same behavior from any secondary threads created during the
execution of your Java code—that exceptions thrown out of a Thread’s or Runnable’s
r un method would pass back out to the caller.

The problem with this idea is that it confuses the compile-time model with the
actual run-time model; a thread, once started, has no relation to the physical proximity
of the code that started it. A naive approach to catching an exception might look like this:

try
{
Thread t = new Thread(new Runnabl e()
{
public void run()
{
while (!Thread. current Thread().islnterrupted())
doSon®et hi ng();
}
}).start();
/1 Later .
t.interrupt();
}
catch (InterruptedException intEx)
{

System.out.printin(“Interrupted!”);

}

EXCEPTION-HANDLING WITH MULTIPLE THREADS 153

154

This doesn’t work. Specifically, if this code does compile (which would only hap-
pen if a method declared to throw InterruptedException is called within the try
block, since Thr ead. st art doesn’t itself declare t hr ows | nt er r upt edExcep-

tion), you will never receive the InterruptedException thrown when the Thread
is interrupted. Javas threading system is nondeterministic—execution of the
thread that created the secondary thread may have moved completely outside of
the try block when the i nterrupt finally finishes. For a more exaggerated
example of this, consider:

try
{
Thread t = new Thread(new Runnabl e()
{
public void run()
{
Thread. sl eep(24 * 60 * 60 * 1000);
/'l sleep for one day
doSonet hi ng();
}
}).start();
}
catch (Exception intEx)
{
System.out.printin(“Interrupted!”);
}

In this case, the started thread is sleeping for twenty-four hours before attempting its
doSonet hi ng method. It’s foolish, however, to believe that the thread that created
the doSonet hi ng thread will be patiently awaiting the start of t’s execution. The
JVM will have long since moved beyond the try/cat ch block that enclosed the
start call.

Instead, when an exception propagates out of r un, the JVM finds the Thread-
Group instance that parents the Thread that threw the exception, and passes the
Thread and the Exception to its uncaught Excepti on method. By defauls, if the
exception object thrown is anything other than a ThreadDeath object, uncaught Ex-
cept i on prints the stack trace and exits. Throwing a ThreadDeath object, however,
is the normal way to terminate a thread, so uncaught Except i on does nothing.

In some cases, however, the caller (or creator) of a thread wants to know if the
Thread terminated abnormally. One approach, which I call last error approach, is
to have each thread store the Exception it throws within its associated Thread
object, and have callers check the status of the Thread and the associated Exception
when the Thread terminates:

public class ExceptionRunnabl e i npl ements Runnabl e

{

public void run()

{

CHAPTER 6 THREADING ISSUES

try

{

/1
}
catch (Throwable t)
{

lastError =t;
}

}

public Throwabl e getlLastError()
{ return lastError; }

protected Throwabl e |astError;

}

Problems with this approach are:

* [Its nonstandard Java.
This get-last-error idiom is not one used anywhere else within Java, and so won't
seem right to developers accustomed to working with Java-like constructs.

o It requires clients to actively check the status of the thread before checking the value of
| astError.
Simply checking to see if get Last Error returns anything other than nul |
won’t work, since that doesn’t indicate when the thread has terminated. This
could be worked around by setting | ast Error to some benign non-nul |
value at initialization.

* In line with the point above, it also requires clients to check this repeatedly until the
Thread terminates.
Clients must either j oi n with the Thread object until it terminates, and then
check the status of | ast Er r or, or repeatedly poll the get Last Err or method
(which is definitely unfriendly to the rest of the Threads in the JVM scheduler).
Clients that j oi n with the Thread are then blocked from taking further action
until the thread terminates, but if these two threads are to act in this sort of serial
fashion, perhaps a rethink of the design or implementation is in order.

Another approach might be to define a customized ThreadGroup class that, when
uncaught Except i on is called, in turn propagates the exception to the main (or
another secondary) thread, but this approach suffers from the original—no one
Thread has the ability to call into another.

ThreadGroups can, however, take other approaches within uncaught Excep-
tion (listing 6.1). One approach might be to use a callback, or event listener
approach, where interested parties implement a particular interface, register them-
selves with the ThreadGroup, which in turn calls on them when an exception is
thrown from the Thread.

EXCEPTION-HANDLING WITH MULTIPLE THREADS 155

156

Listing 6.1 Code for ExceptionListener

public interface ExceptionListener

{
}

import java.util.Enuneration;
i nport java.util.Vector;
public class ThreadG oupEx extends ThreadG oup

public void exceptionThrown(Thread t, Throwabl e e);

{
publ i c ThreadG oupEx(String namne)
{
super (nane) ;
}
publ i c ThreadG oupEx(ThreadG oup parent, String nane)
{
super (parent, nane);
}
public void registerlListener(ExceptionListener |)
{
m |isteners. add(l);
}
public void renpveli stener (ExceptionListener 1)
{
m |isteners.renmove(l);
}
public void uncaught Excepti on(Thread t, Throwable e)
{
for (Enuneration enum = mlisteners.elenments();
enum hasMor eEl enents();)
{
Excepti onLi stener el =
(Excepti onLi st ener) enum next El ement () ;
el . exceptionThrown(t, e);
}
super . uncaught Exception(t, e);
}
private Vector mlisteners = new Vector();
}

Problems with this approach come when clients must now deal with the asynchro-
nous nature of the callback or event-notification call. The caller can’t simply block on
the thread using j 0i n or wai t, because the exception-notification will in turn be
trying to call on a blocked thread, which results in deadlock. The asynchronous call
could come on a third thread, but there are other approaches to using the third thread
to wait for the exception that would be more intuitive or straightforward to use.

CHAPTER 6 THREADING ISSUES

Another version is to create a shim Runnable class that acts as an Adapter class
and in turn calls a version of Runnable whose r un method is declared to throw Excep-
tions (listing 6.2).

Listing 6.2 Code for ExceptionableRunnable

public interface ExRunnabl e

{
public void run()
throws Throwabl e;

}

public class Exceptionabl eRunnabl e
i npl enents java. | ang. Runnabl e

{
publ i c Excepti onabl eRunnabl e(ExRunnabl e t arget)
{
mtarget = target;
}
public void run()
{
try
{
mtarget.run();
}
catch (Throwabl e t)
{
throwmn = t;
}
}

public Throwable throwmn = null;
private ExRunnable mtarget = null;

public static void main(String[] args)
throws Exception
{
Excepti onabl eRunnabl e er =
new Excepti onabl eRunnabl e(
new ExRunnabl e()
{
public void run()
throws Throwabl e

{
Thr ead. sl eep(5*1000);
t hrow new Exception("Generic Exception");
}
s
Thread t = new Thread(er);
t.start();
t.join();

EXCEPTION-HANDLING WITH MULTIPLE THREADS 157

6.3

6.3.1

158

if (er.thrown !'= null)

{

System out. println("Exceptionabl eRunnable threw ");
er.thrown. printStackTrace();

This approach allows clients to continue execution while waiting for the running
thread to exit, without having to worry about an asynchronous notification. In addi-
tion, it’s a reusable component—it can be used repeatedly without modification in a
variety of situations and systems. There are drawbacks: it’s not a Runnable anymore
and clients now have to poll the t hr own member when the Thread is finished. This
is awkward for clients to use and unfriendly to the JVM scheduler, as already noted.

THREAD IDIOMS AND PATTERNS

“Design patterns,” writes Doug Lea,! “are used to help organize the wealth of techniques
available for structuring concurrent programs. A pattern describes a form, usually an object
structure (also known as a micro-architecture) consisting of one or more interfaces, classes,
and/or objects that obey certain static and dynamic constraints and relationships.”

Patterns are one of the best ways by which to examine a new and (potentially) unfa-
miliar territory or technology. The next section presents several patterns culled from a
variety of resources, including pseudo-patterns of my own experience. Patterns specifi-
cally relating to concurrent programming can be found in Lea’s book and various papers
by Douglas Schmidt (at htep://www.cs.wusl.edu/-schmidt/patterns-ace.heml).

Client-Dispatcher-Server

“When we need to distribute software components over a network of computers, the
location-transparent communication between them becomes an important aspect of
their design. In the Client-Dispatcher-Server pattern, an intermediate layer between
clients and servers is introduced: the dispatcher component. It provides location
transparency by means of a name service and hides the details of establishing the
communication connection between client components and their servers.”?

In a Client-Dispatcher-Server system, contrary to traditional client/server sys-
tems, clients do not attempt to communicate with the server directly; instead, they
first contact a Dispatcher component, which then in turn reroutes to (or internally
makes the request of) the server (figure 6.1).

1 See “Additional reading.”

2 Pattern Languges of Program Design 2, p. 476. The pattern itself is Copyright © 1995 Siemens AG. All
Rights Reserved.

CHAPTER 6 THREADING ISSUES

6.3.2

Client Server

X;

Dispatcher

Client Server
/ Figure 6.1
| Client-Dispatcher-Server diagram

At first glance, this may not seem to be a concurrent pattern as much as a dis-
tributed one, and more suitable for chapter 11, in which we talk about sockets. How-
ever, with a bit of embellishment, it’s not difficult to see how this pattern is applicable
to a concurrent architecture more than a distributed one. For example, most web serv-
ers (which includes the one we will build in chapter 11) will follow this model, using
a single thread to listen on port 80,% and farming out each actual request/connection
received to a separate thread as the requests come in. The applicability of the pattern
also increases when services begin to accept requests from communication mecha-
nisms other than sockets.

Two such sources that come to mind are files or databases—a service could fire
off a Polling thread to check a given directory for a file, and undertake action based
on its contents. Here, the Polling thread would be the Dispatcher, and the thread
which actually parses the file and performs the actions is the Server. Databases can
be polled, as well, looking for particular data to come through, and particular
actions taken based on the content of the data scanned. For example, a salesperson
may request that an email be fired to him/her as soon as a sale is made for any cus-
tomer within a particular sales territory. The Dispatcher thread is the one which
scans the database, and the Server thread is the one which examines the data in
detail, determining if an email is required, and performing the actual work of firing
the email.

Our GJAS will be acting as the Dispatcher in the system, acting as the interme-
diary between client components (those attempting to use the Services hosted by
GJAS) and their servers (the Services themselves). Because we’ve not yet gotten to sock-
ets and networks, GJAS remains a single-machine system, but the concept holds even
in that case. Once we get into more interactive services via sockets (chapter 11) or RMI
(chapter 15), we’ll see how GJAS fits this pattern like a glove.

Fire-and-forget

One common idiom in threading, especially with Java’s first-class support for threads
and anonymous classes, is the fire-and-forget model of threading. Threads are fired
off, and the thread itself is not tracked afterward:

3 The port for the HTTP protocol.

THREAD IDIOMS AND PATTERNS 159

6.3.3

6.3.4

160

new Thread(new Runnabl e() {
public void run()

{

}
}).start();

/1 Do sonething here

The Thread object’s handle isn’t held because there is no further need to access it. It is
“forgotten.” No attempt will be made to pause, suspend, or interrupt the Thread. It is
expected to either complete its assignment, or throw an exception out of r un and ter-
minate. Either way, the Thread runs to completion and dies.

ActiveObject

ActiveObject is an object instance that has its own thread of execution on its behalf.
In this pattern, the creator of the object often has no knowledge of the thread created
on behalf of the object:

public ActiveObject
i mpl enents Runnabl e

{
public ActiveObject()
{
new Thread(this).start();
}
public void run()
{
/1
}
}

In pseudo-real-time simulation systems, or systems where independent objects are
interacting within an environment, this can be particularly useful. Users of ActiveOb-
ject need not worry about the peculiarities of the thread-to-object relationship, or
about setting priorities appropriately; the object encapsulates all of that information
within itself.

The lifetime of the thread is intimately tied to that of the object; if the object ever
leaves its r un method (due to exception or voluntary exit), the thread dies, taking the
object with it. The two are inseparable, since ActiveObject offers no way to obtain the
Thread it encapsulates.

SpinLoop

In a SpinLoop thread, the thread spends most of its execution time constantly check-
ing some condition, taking action only when (if ever) that condition changes. This is
the classic busy-wait loop, often coded as:

while (mflag != fal se)

{
// do nothing

CHAPTER 6 THREADING ISSUES

6.3.5

}
doSonet hi ng();

In most cases, this sort of loop is inefficient and a tremendous waste of the CPU—
there is no attempt to give the CPU any hints about when it might be safe to leave
this thread alone. Moreover, most of the time the constant checks are unnecessary—
do you really need to know the precise nanosecond the m f 1 ag variable changes?
Most of the time, it’s not necessary, and a 100 millisecond sl eep call in between
checks can drastically improve performance for other threads in the system.

Polling (PeriodicThread)

Akin to the SpinLoop is the PollingThread idiom. This is a particular type of Spin-
Loop that, instead of constantly checking the value of the condition, waits a certain
period of time, checks a condition, and either acts or waits again. PollingThreads are
particularly useful in areas where the condition can take more than trivial amounts of
time or resources, such as checking a database to see if a particular type of record has
come in, or watching a directory to see if a file has been placed there or otherwise
modified since the last check.
PollingThreads usually take the form:

public class RDBMSCheck i npl enents Runnabl e

{
public void run()
{
try
{
Thread. sl eep(60 * 1000); // check every mnute
if ((ResultSet rs = get_database_records()).next())
{
/| Take sone action here
}
}
catch (InterruptedException intEx)
{
}
}
}

Because this is such a common idiom, however, it can be factored back into a compo-
nent that manages the wait and action:
/**
* PeriodicThread is a specific type of Thread that fires off its
* associ ated Runnabl e evry <code>i nterval </ code> nilliseconds.
*/
public class Periodi cThread extends Thread

{

private Periodi cThread()

{

THREAD IDIOMS AND PATTERNS 161

162

/1 This prevents instantiation without an associ ated Runnabl e;
/1 1 don't want to allow the possibility of this code from
/'l ever conpiling:

/1
/1 new PeriodicThread().start()
/1

}

/**

* Constructor taking the Runnabl e whose run nethod
* we wWish to call every interval mlliseconds.

*/
public Periodi cThread(Runnable r, int interval)
{
super () ;
m runnable = r;
m.interval = interval;
}
/**

* The run nmethod spins in an infinite |oop, calling run on
* the owned Runnabl e instance every interval mlliseconds
* (as specified in the constructor). The tine spent

* in the Runnable’s run method is not taken into

* account in the period spent sleeping.

*/
public void run()
{
try
{
while (true)
{
Thread. sl eep(m.interval);
m runnabl e. run();
}
}
catch (InterruptedException iEx)
{
return;
}
}
private int minterval = 0;

private Runnable mrunnable = null;

}

Another interesting aspect of the PeriodicThread class is that the no-arg default con-
structor is declared pri vat e. Because a PeriodicThread is useless without a target
or time interval to wait, I prevent users from being able to instantiate one without
those arguments.

CHAPTER 6 THREADING ISSUES

6.3.6

DelayedFire (ScheduledThread)

In a DelayedFire thread, the execution of the behavior desired is delayed by some
period of time, similar to the cron utility of UNIX or at in Windows NT. This is
useful in situations where action needs to be taken after giving the user a window of
opportunity to take action. For example, in an interactive service, users need to be
notified of impending shutdown if the administrator of the service needs to take the
system down. While this could be coded to simply wait the one or five minutes or so
on the current thread, it can make coding easier if the shutdown implementation is
coded within its own thread. This way, if the shutdown needs to be stopped, the only
action required is to destroy the shutdown Thread object, instead of complicated
shutdown-OK flags and state-machine logic.

Delaying a thread’s execution can come in one of two forms—clients may want
to delay execution for 7 seconds, or have the thread fire off at the absolute time “12:00
midnight today.” Coding the first is the far simpler case (simply have the thread
sl eep for the » number of seconds), but the second case is not difficult, given Java’s
rich support for Date comparisons (listing 6.3).

Listing 6.3 Code for ScheduledThread

public class Schedul edThread extends Thread

{
private Schedul edThread()
{
/1 Prevent "new Schedul edThread().start()"
/1
}

publ i c Schedul edThread(Runnabl e runnabl e, java.util.Date when)
{

m_runnabl e = runnabl e;
m when = when;

}
public void run()
{
try
{
/'l Make sure "when" is after now
11
while (mwhen. after(new java.util.Date()))
{
Thr ead. sl eep(1000) ;
}
/1 1f the above test failed, it's tine
/1 to run our target
11
m runnabl e. run();
}

THREAD IDIOMS AND PATTERNS 163

6.3.7

164

catch (InterruptedException intEx)

{

return;
}
}

private java.util.Date m when;
private Runnable mrunnabl e;

Within the ScheduledThread’s r un method, the Date’s af t er method is used to
determine if the current time stamp (obtained from Date’s default constructor) is
after the time given. If it is, then the Runnable’s r un method is executed.

Again, as with PeriodicThread, the default constructor of the ScheduledThread
is declared private. This is done to prevent users from instantiating a Sched-
uledThread without a Runnable, a time stamp, or delay argument.

Futures

Futures, or FutureReplies, as they’re also called, allow you to call a method asynchro-
nously, perform other tasks in the meantime, and obtain the result of the call if it’s
ready. For example, it’s common in web browsers to download the specified text and
images separately, allowing users who don’t care to see the images to view the text
without having to wait. Futures fit into this very nicely—as the web browser is pars-
ing the returned HTML, each image (which must be downloaded separately, as per
the HTTP specification) can be requested in a Future, and the web browser can then
continue to parse the text. As each image-thread returns with the complete graphics
file, the browser can then take the time (presuming it’s done with the text by this
time) to place the image in the browser window appropriately.

Futures are also useful within enterprise scenarios. A database query, for example,
is a terrific candidate for a Future idiom—the query is carried out in the Future thread,
and the user interface can continue to perform other tasks (such as preparing the GUI
to display the results) until the time in which it needs the results.

Futures typically appear similar to the following:

I/l Fire off the query in a Future

FutureThread ft = new FutureThread(
new Fut ur eRunnabl e()

{
public Object run()
throws java.sql.SQLException
{
Statement stnt = aJDBCConnection. createStatemnent();
return stmt.executeQuery(“SELECT * FROM . . .");
}
i
ft.start();

CHAPTER 6 THREADING ISSUES

/1 . . . Bring up the QU elenment associated with the query

ResultSet rs = (ResultSet)ft.getResult();
/'If the query isn't finished yet, we block here waiting for
/l'it to return

while (rs.next())

{
...

}

This approach also allows users to cancel the query at any time if they so desire.
Notice that in the foregoing, the FutureThread class takes a different type Runnable
class as its parameter—FutureThread could easily take a standard Runnable as its tar-
get, but would then need to have some way within the Runnable object of setting the
results object so that the user could obtain it via FutureThread.

One possible FutureThread implementation looks like that in listing 6.4.

Listing 6.4 Code for a FutureThread implementation

public interface FutureRunnable

{
public Object run();
}
public class FutureThread extends Thread
{
publ i c FutureThread(FutureRunnabl e run)
{
mtarget = run;
start();
}
public void run()
{
mresult = mtarget.run();
}

public Object getResult()
throws InterruptedException

{
if (Thread.currentThread() != this)
this.join();
return mresult;
}

public Object getResult(long tineout)
throws |nterruptedException

{
if (Thread.currentThread() != this)
this.join(tinmeout);
return mresult;
}

THREAD IDIOMS AND PATTERNS 165

6.4

166

private Qbject mresult;
private FutureRunnable mtarget;

public static void main(String[] args)
throws Exception
{
FutureThread ft = new FutureThread(
new Fut ur eRunnabl e()
{
public Object run()
{
try
{
Thr ead. sl eep(5*1000);

return new String("Finished!'");
i:at ch (InterruptedException intEx)
{
return null;
}
}
B

Systemout.println("OK we’'re waiting now. ...");
String result = (String)ft.getResult(10 * 1000);
if (result !'= null)
Systemout.println("Result: " + result);
el se
Systemout.println("W didn't finish in 10 seconds.");

One curiosity about this implementation is that if the FutureThread fails to come
back within the timeout specified in the get Resul t method, no attempt is made to
terminate the thread via st op. This means that if you change the timeout parameter
in the supplied mai n to be one second, instead of ten, the JVM won't exit immedi-
ately after printing “We didn't finish in 10 seconds....”. Instead, because the JVM
must wait until all user threads are finished, it will wait until the FutureThread is fin-
ished before exiting. Fixing this behavior is as easy as calling set Daenon(true) in
the FutureThread constructor.

GJAS

Talking about thread support for GJAS at this point falls into the category of a philo-
sophical discussion, because as of yet GJAS doesn't exist as a system. However, we
want to at least think about how we're going to use multiple Threads (if at all) within
the GJAS code, and a little jaunt down Abstract lane will give us a better sense of pre-
cisely what we need to do once we get to the point of writing code.

CHAPTER 6 THREADING ISSUES

6.4.1

GJAS

Adding thread support to GJAS could be a matter of requiring Services to, when
start is called, fire off a Thread for their own use and return immediately thereafter.
In fact, this would be a workable system and function adequately for some time. How-
ever, this is not a robust, or stable, mechanism. At some point a developer will create
a Service that fails to adhere to this rule, perform behavior that blocks in st art , and
wonder why the entire system hangs.

We could, therefore, remove Service as the base from which clients derive, and
make it the point to which all user code must extend, with base functionality dealing
with the creation of Threads. This fails on two points. First, any method in a class can
be overridden, and users will just as easily forget to call super.start() or
super . stop() in their derived-class as they would to fire off the thread from Ser -
vice.start in the first place. Second, this imposes large restrictions on what can
now be plugged into our system; because Java is a single-inheritance language, we have
now arbitrarily imposed the base class on users of our system. Using Service allowed
us to give users the flexibility to hook in third-party products and code into our system
without huge overhead.

We can’t, it would seem, enforce the requirement that Services fire off a thread,
and we can’t do it for the user. What's left?

Actually, we don’t have to require that Services fire off a thread in order to remain
robust and stable. In fact, some Services may not require an additional thread at all,
as we'll see in the chapter on Threads, when we start writing some actual Services,
ExecSer vi ce, a Service that executes an arbitrary command-line, is one such case.
ExecSer vi ce fires off a command-line when st art is invoked, and does nothing
for the remainder of its lifetime.* If a Service needs to fire off a thread to do its work,
then it must do it within st ar t . ServerManager still needs to ensure that a rogue Ser-
vice doesn’t bring the entire JVM to a halt, however.

Adding thread support to GJAS

One of the first things we'll do to improve on GJAS’s current configuration is prevent a
single rogue Service from bringing down the entire system. Consider this: we start a
Service to bring up your favorite text editor, and another Service line after that to print
“We're back!” to the screen. If we were to run the system without such antirogue Ser-
vice protection, then the system will hang when the text editor comes up, and refuse to
continue until the text editor is closed. The reason, of course, is that our first Service is
blocking, waiting on the text editor to complete its execution before returning,.

Fixing this is a matter of applying the Future pattern to the various Service calls.
We'll use a Future to call the Service’s st art method, for example, and wait for fif-
teen seconds; if the call to st art hasn’t returned by then, we’ll assume the Service

4 We could add code to the end of the ExecSer vi ce. st art () method to remove itself from the Serv-
erManager when its created process completes, so as to remove its overhead from the system once it
completes its required task.

167

168

has either hung itself or is still working, and return to our caller. We have, however,
two places where we can apply this improvement. We could do it inside of Server-
Manager, or inside of the corresponding Server instance.

Here again is a decision based largely on personal choice; I choose to make the
improvement in Server, since it is intended to be my wrapper around a Service. I'm also
thinking down the road, where I may wish to expose Server objects to controllers other
than ServerManager. If I place this Future code inside of Server, then others can simply
call on Server’s versions of these methods without needing to understand (or worry)
about what to do if the Service simply runs away with the call and never returns.

One other note before we dive into the next chapter: you may well be surprised
to notice that rather than use the classes I demonstrated for you previously, I choose
to use Lea’s concurrent library. His library is far more extensive and well-written than
anything I could write on my own and this is one place where a buy decision carries
no risk. Lea has released his code into the public domain (making it freely available
to anyone who want to download it), and he has released the source for the library at
the same time, meaning that the other risk of buy decisions is now reduced. If I find
a bug, I can correct it on my own, assuming Lea cannot get it fixed before I need it.

You are, of course, free to use whichever approach (buy or build) works best for
you in your system. Remember, GJAS is not intended to be a production-quality sys-
tem out of the box, but a proof of concept system that in turn leads to something
stronger, more robust, and more tailored to your (and your company’s) needs.

Given that, we’ll modify the Server. start method (listing 6.5):

Listing 6.5 Code of a modified Server.start

/**

* Start the wapped Service instance. Services have 15 seconds in
* which to either initialize, or else start a thread to perform

* the necessary initialization and return. If a Service fails to
* respond within 15 seconds of the start of its start

* call, the Server and/or ServerManager are free to destroy it.
*/
public bool ean start ()
{
/1 W& want to fire off a Thread to make the start() call, and wait

/1 up to 15 seconds to see if we return. If we don't by the tine
/1 the 15 seconds are up, we assune the Service has run off into
/1 Linmbo and needs to be killed. (Mst Services of any conplexity
/1 will need to fire off their own Thread to do their work, so
/1 their start() methods shoul d come back pretty quickly.)
/1
try
{

FutureResult futureResult = new FutureResult();

Runnabl e cnmd = futureResult.setter(new Call abl e()

{
public pject call()

CHAPTER 6 THREADING ISSUES

GJAS

try
{
m service.start();
}
catch (Exception ex)
{
m exception = ex;
Server Manager. i nstance().l og(ex);
}
return null

}
1)
new Thr eadedExecut or (). execut e(cnd)
futureResult.timedGet (15*1000);

/1 we want to wait 15 seconds, no nore

return true;

}
catch (Ti nmeout Exception tEx)
{
m exception = tEx;
/1 The Service ran out of time starting up; kill it, note the
/Il failure to start, and return
/1
Server Manager . i nstance() .1 og(t Ex);
}
catch (InterruptedException iEx)
{
m exception = i Ex;
/1 For some reason, the thread doing the call failed; note the
|/l failure to start, and return
/1
Server Manager . i nstance() .1 og(i Ex);
}
catch (lnvocationTarget Exception itEx)
{
m exception = itEx;
/1 Java Reflection failed; note the failure, and return
/1
Server Manager . i nstance() .l og(itEx);
}
catch (Exception ex)
{
m exception = ex;
Server Manager . i nstance() .| og(ex);
}

return false

169

170

What seems to be a tremendous increase in complexity turns out to be mostly cat ch
handlers. The core of what we want to do occurs in the first third of the listing:

FutureResult futureResult = new FutureResult();
Runnabl e cnmd = futureResult.setter(new Call abl e()

{
public Object call()
{
try
{
m service.start(args);
}
catch (Exception ex)
{
m exception = ex;
Server Manager . i nstance() .| og(ex);
}
return null;
}
b

new Thr eadedExecut or (). execute(cnd);
futureResult.tinmedGet (15*1000);
/1 we want to wait 15 seconds, no nore.

return true;

We create a FutureResult (imported from EDU. oswego. cs. dl . util.concur-
rent), and set it to hold an anonymous Callable instance, one which, in its cal |
routine, creates a t ry block, makes the call to Servi ce. start, and catches all
Exceptions thrown out of there.

This looks a bit different than expected, given the code I listed above for Futures.
The reason is simple—Lea’s code is much more flexible and componentized than
mine. Listing 6.6 is FutureResult.

Listing 6.6 Code for FutureResult(Lea)

/*
File: FutureResult.java

Oiginally witten by Doug Lea and rel eased into the public donain.
This may be used for any purposes whatsoever without acknow edgnent.
Thanks for the assistance and support of Sun M crosystens Labs,

and everyone contributing, testing, and using this code.

Hi story:
Dat e Who What
30Jun1998 dI Create public version
*
/

package EDU. oswego.cs.dl.util.concurrent;
import java.lang.reflect.*;

/1 Comments have been stripped for brevity

CHAPTER 6 THREADING ISSUES

public class FutureResult {

protected Cbject value_ = null;
protected bool ean ready_ = fal se;
protected I nvocationTarget Excepti on exception_ = null;

public FutureResult() { }

public Runnable setter(final Callable function) {
return new Runnabl e() {
public void run() {

try {
set(function.call());

}

cat ch(Exception ex) {
set Excepti on(ex);

}
}s
}

protected Cbject doGet() throws |nvocationTarget Exception {
if (exception_ != null)
throw exception_;
el se
return val ue_;

}

publ i c synchroni zed Object get()
throws | nterruptedException, |nvocationTarget Exception {
while (!ready_) wait();
return doGet ();

}

public synchroni zed Object timedGet(long nsecs)
throws Ti meout Exception, |nterruptedException,
I nvocat i onTar get Excepti on {
long startTine = (nsecs <= 0)? 0 : SystemcurrentTimeMI1is();
I ong wai t Ti ne = nsecs;
if (ready_) return doCet();
else if (waitTine <= 0) throw new Ti meout Excepti on(nsecs);
el se {
for (5:) {
wai t (waitTinme);
if (ready_) return doCet();
el se {
wait Time = msecs - (SystemcurrentTineMIlis() - startTine);
if (waitTime <= 0)
t hrow new Ti neout Excepti on(nsecs);
}
}
}
}

publ i c synchroni zed void set(Obj ect newal ue) {

GJAS

171

172

val ue_ = newval ue;
ready_ = true;
notifyAll();

}

public synchroni zed voi d set Exception(Throwabl e ex) {
exception_ = new | nvocati onTar get Excepti on(ex);
ready_ = true;
notifyAll();

}

publ i c synchroni zed | nvocati onTar get Excepti on get Exception() {
return exception_;

}

public synchroni zed bool ean i sReady() {
return ready_;

}

public synchroni zed Object peek() {
return val ue_;

}

publ i c synchronized void clear() {
value_ = null;
exception_ = null;
ready_ = fal se;

Lea’s version allows us to peek at the returned value to see if the call has returned yet;
my version didn’t. Furthermore, FutureResult itself acts merely as a Factory, creating
Runnable instances around the Callable instances passed in, allowing clients to either
use the returned Runnable within its own Thread, if they choose to take control over
the threading mechanism, or within his ThreadFactory system (as I choose to do).
His approach is more componentized than the one I proposed, since FutureResult is
now completely disconnected from, and not dependent on, the actual threading sys-
tem used. My approach assumed that each Future would want its own thread, which
may not always be the case.’

Once the Runnable instance has been returned, we pass it into ThreadedExecu-
tor, which places the Runnable into its own Thread and executes it. This is no differ-
ent than had it been written as:

new Thread(runnabl e).start();

> Tt may seem odd that I disparage my own code while extolling Lea’s. I do this to show that any code, no
matter how well-written, can usually be improved and that componentization can sometimes be a dif-
ficult thing to get right without tens, if not hundreds, of iterations and possible scenarios to draw from.

CHAPTER 6 THREADING ISSUES

except that ThreadedExecutor implements the concurrent library’s Executor inter-
face, which all of Lea’s thread factory classes implement. This allows clients to, if they
choose, select a given Executor type at startup and use it generically:

/1 At startup, we wite
Ser ver Manager . set Execut or (new Thr eadedExecutor());

/1 . . . Later .
Server Manager . get Execut or () . execut e(cnd) ;

Again, this may seem like splitting hairs. The consistent use of a single method of
doing things, however, makes code simpler to maintain and easier to understand. It
may require that adopters of this code need to spend a few days looking over and
experimenting with Lea’s concurrent library, but once that learning curve is applied,
any code that uses the concurrent library will be easily understandable.

6.5 SUMMARY

As you can see, Threads offer impressive opportunities for successful partitioning of
work and logic. By spinning off separate Threads to accomplish tasks in an asynchro-
nous fashion, for example, we can isolate particular functionality of the application in
well-encapsulated classes. For example, you might spin off a Thread to do some poll-
ing over an RDBMS table to keep watch on records being inserted into the database.
Or you might spin off a Thread to handle a user request that the user may wish to
cancel if the operation takes too long. And so on, and so on.

Threads also offer an opportunity to build some robustness into a system in which
user-configured actions are taking place. Normally, it is unacceptable for a server-side
process to hang due to external-resource delays; by placing the call or the access to the
external resource in a separate Thread, we avoid the potential danger of a slow legacy-
system call blocking the entire JVM.

6.6 ADDITIONAL READING

e Douglas Lea, Concurrent Programming in Java: Design Princivles and Patterns
g g 74 4

(Addison-Wesley, 1997).

Part of the JavaSoft “Java Series,” this is the best reference on concurrent Java
programming, bar none. If you work with threads in Java, you owe it to yourself
to read this book at least twice. Martin Fowler, author of Refactoring, sums it up
best: “The compiler ought to require that anyone who implements Runnable
must read this book.” (Note: the code examples for this chapter are from the first
edition; as this book was going to press, a second edition became available.)

ADDITIONAL READING 173

7

Control

7.1 GJAS 175

7.2 Testing the LocalServer implementation 187
7.3 ExecService 189

7.4 HelloAgainService 193

Applications, unfortunately, are not autonomous entities—they very rarely contain
enough intelligence to configure themselves (both initially and as circumstances
change within the execution environment), monitor themselves, and know when to
add or remove services within them. Asking an HTTP server, for example, to reread
its configuration settings is a bit much—if it constantly rereads the settings, it will be
taking adverse performance hits. But if it caches them, then it runs the chance that it
may be out of sync with what the user has specified in the server’s configuration file
or, on Win32 machines, in the Registry.

As a result, humans must be able to control the applications we write. Note that
I use the term humans and not system administrators or users. Who gets to control
the application is, more often than not, a policy decision of the corporation or the
departments within it. Far be it from me to lay down a blanket generalization about
which group should get control. Instead, we’ll simply leave it at “humans,” or the more
accurate term “application administrators” (or administrators, for brevity).

Despite this obvious requirement to allow administrators to control the applica-
tion, many, if not all, custom server-side applications are analyzed, designed, imple-
mented, and released without a thought or concern for how the application is to be
controlled. Unfortunately, this leads to serious problems once the application is
released. It doesn’t take long for the lack of control facilities to become obvious, and

174

71

711

GJAS

developers are often bewildered by the subsequent requests for modification or out-
right rejection of the software.

This is, again, an area where a generic overserver helps. By designing a generic
control and configuration interface for all Services running within the server, devel-
opers can focus more on the meat of the application, and less on the necessary trap-
pings for controlling it. Less time spent on the tedious necessity of control interfaces
means quicker turnaround time during development, but additionally, standardiza-
tion of the control interface also means less learning curve for the administrators who
must use the application.

One thing to understand before we begin: application security and application
control are two very different subjects. Security is about who gets to control the appli-
cation, in addition to who may use the application or administer the application. Con-
trol is about what an individual user or administrator can do to the application, such
as reconfigure or restart or stop it. The two are somewhat intertwined, since security
may be required to ensure that only authorized users are able to control the applica-
tion, and control may in turn mean configuring who has what security rights to the
application. No discussion of cryptography, secure sockets, or the Java cryptography
extensions is presented here.

GJAS

The first several chapters have given us basic tools; now it’s time to start putting them
together into a coherent system. We know how to load classes from anywhere, we
know how to ensure that when a class is loaded it always picks up the latest version of
the code, and we know how to use multiple threads to ensure that the entire system
isn’t blocked waiting on one errant Service.

Recall from chapter 2, that we discussed the | Ser ver Manager interface and its
static-method cousin, the ServerManager class. It’s now time to provide a basic imple-
mentation of that class, functioning at the local JVM level. This LocalServerManager,
in turn, will need an | Ser ver -implementing class to control its Services, which we’ll
call LocalServer. Finally, we’ll create some sample Services to demonstrate how well
it all works.

Let’s start with the LocalServerManager and LocalServer implementation.

Local implementation

The LocalServerManager.java code is long, but understanding LocalServerManager is
crucial to understanding how the whole system is supposed to work together. This
class, more than any other, is GJAS; everything else serves as an adjunct or assistant to
the LocalServerManager.

/ * %

* This class presents a local-to-this-JVMonly ServerManager.
* It is useful for localized testing, and for | oading/running
* Services within their own JVM Note that use of this

175

176

* Server Manager does not inherently prevent object-sharing or

* prevent inter-JVM conmunication of Services, since it does

* nothing to bl ock sockets or any other |IPC conmunication. For

* exanple, nothing prevents us fromrunning a Local Server Manager
* with a Socket Control Service that allows us to renmotely (through
* the SocketControl Service) start, stop, and otherw se control

* the Services listed within this JVM

* Note that Local ServerManager, by default, uses the |ocal
* (default) O assLoader schene to load and find its classes,
* so any classes |loaded will need to be found on the CLASSPATH
* and/ or as an extension.
*/
public class Local Server Manager
i mpl enent s | Server Manager

{
public Local Server Manager ()
{
Server Manager . i nstance(this);
/1l Set log & error streans
try
{
m | ogStream = new Fi | eQut put St rean{ " Ser ver Manager . | 0og");
m errStream = System out;
mlog = new PrintWiter(m.l ogStrean;
merr = new PrintWiter(merrStrean);
}
catch (Exception ex)
{
ex. printStackTrace();
Systemexit(-1);
}
}

To start, the LocalServerManager constructor first registers itself as the | Ser ver Manager -
implementing Singleton instance within this JVM; to do this, it calls the ServerMan-
ager i nst ance method, passing in itself as the argument. At this point, we haven’t
seen the ServerManager class, but its implementation is straightforward, enough so
that I won’t present the code here, but refer you to the ServerManager.java code in the
com j avageeks. gj as package for details. In summary, the key to ServerManager
is in two parts: the Singleton methods, and the static helper methods that ease getting
to the Singleton | Ser ver Manager instance. The Singleton methods, both named
i nst ance, one marked publ i ¢, returning an | Ser ver Manager, the other made
package-friendly (so that no one outside of com j avageeks. gj as can call on it)
taking an | Ser ver Manager instance, provide the basic get/set behavior. The set
i nst ance method also performs a quick check to ensure that it hasn’t been called
before. If it has, that’s a definite programmer error, and it throws a RuntimeException
to that effect.

CHAPTER 7 (CONTROL

GJAS

We've also added a few additional helper methods that provide commonly used
functionality for ServerManagers—par sel nput St r eamparses an InputStream for
a class name and its associated arguments, and par seAr g parses a String argument
for the class name and any contained arguments within it. This allows us to fire off
the ServerManager from the command line as

java com.javageeks.gjas.LocalServerManager “HelloAgainService 5 Hello!”

or by creating a servers.loader file, and placing the directives in there:

/*

* servers.loader: Load a HelloAgainService instance
*

HelloAgainService 5 “Hello, world, from GJAS!”

Supporting both approaches gives us additional flexibility, and since it’s all refactored
into ServerManager.java, it comes along for free for all | Ser ver Manager instances.

/1
/1 1ServerManager-inherited methods (inplenmentations)
/1

| **

* Shut the entire systemdown, usually in preparation for terminating
* this VM (or perhaps for doing a conplete shutdown/restart cycling).
* Effectively, this is the same as calling getServices to get all

* Servers’ instancelDs, then calling renpveService on each one.

*/

public void shutdown()

{
| og("Entering ServerManager. shutdown()");

/Il Get alist of all the running instances, and try to
/1 renoveService on each one.
/1
String[] svcs = getServices();
for (int i=0; i<svcs.length; i++)
{
| og("Shutting down " + svecs[i]);
renoveServi ce(sves[i]);

}

| og("Exiting ServerManager. shutdown()");
}

The shut down method iterates through every | Ser ver in the m servers dictio-
nary, calling r empveSer vi ce on each one. Shut down, in and of itself, does noth-
ing to terminate the JVM in which LocalServerManager is running—the only way the
LocalServerManager can completely exit is either by a call to Syst em exi t, or by
the last active non-daemon Thread terminating. If fired from LocalServerManager’s
mai n method, this is not an issue—stopping all Services will kill their associated
Threads, and mai n’s Thread will die as soon as the code that called shut down quits.

177

/**

* Add the | oaded Service to the list of Servers and start it

*/
public |Server addService(Service svc, String[] args)
{
| og("Entering ServerManager.addService()");
try
{
log("Service " + svc.toString() + "(" +
svc.getC ass().getName() + " " +
svc. get G ass().get Cl assLoader().toString() +
") created");
/1 Wap our Service up in a Local Server wr apper object
| Server svr = new Local Server(svc);
/! Drop it in our Dictionary of Servers....
m servers. put (svr. getlnstancel D(), svr);
/1 Start it; if the start fails, renmove it
if (svr.start(args))
{
| og("Service started");
return svr;
}
el se
{
// Log the exception (if any) that caused the Service to fail
PrintWiter pw = new Print Witer(getLogStrean());
svr.getlLastError().printStackTrace(pw);
pw. flush();
renmoveServi ce(svr.getlnstancel D());
return null;
}
}
catch (Throwabl e ex)
{
// Somet hing "wong" happened; in a production system you
// probably want to do something a bit nore proactive here.
PrintWiter pw = new Print Witer(getLogStrean());
ex. printStackTrace(pw);
pw. fl ush();
return null;
}
finally
{
| og("Exiting ServerManager.addService()");
}
}

The addSer vi ce method, when called, wraps the Service instance into an instance
of I Server ; in this case, Local Server. We'll get to the LocalServer class later; for
now, accept that it provides the standard | Ser ver access to the Ser vi ce instance it

178 CHAPTER 7 (CONTROL

GJAS

wraps. We then put the | Server instance into a dictionary of | Servers (called
m ser ver s), identified by the Ser vi ce’s get | nst ancel D return value. This is all
that’s necessary to hold the Service—we call the | Ser ver’s st art method (which in
turn passes directly into the Service’s st art method), passing in the array of Strings
that was passed in to addSer vi ce, and all should be well. In the event that the Ser-
vice fails to start, we note it, and call r enbveSer vi ce on it to get rid of it.

/ * %

* Attenpt to stop (if necessary) and renpve an instance of a Server.

* Because it's possible that nultiple Servers of a given type can be
* running simultaneously (for exanple, sockets-based Services |istening
* on multiple ports), we need to have the user identify which Server

* they wish shut down by using the Server instance’s instancelD.

*/
public void renpveService(String instancel D)
{
try
{
| og("Entering ServerManager.renoveService()");
/1 Find the service given by 'instancel D
/1
| Server svr = getService(instancelD);
if (svr !'=null)
{
/1 1f it's still running, order it to stop
/1
String svrState = svr.getState();
if (svrState != Service. STOPPED && svrState !=
Ser vi ce. PAUSED)
svr.stop();
/! Renpbve it fromthe Dictionary
/1
log("Removing " + instancelD + " fromsystem");
m servers. renove(i nstancel D);
}
}
finally
{
| og("Exiting ServerManager.renoveService()");
}
}

The renpveServi ce method takes the String passed in, uses it to retrieve the
| Server instance from the m servers dictionary of | Servers, and removes it
from the dictionary. Before removing it, it calls st op on the | Ser ver, giving the
Service a chance to perform any shutdown processing necessary.

/ * %

* Try to kill the Service--don't try to stop() it
*/

179

180

public void killService(String instancel D)

{

m servers. renove(instancel D);
System gc();
}

Theki I'| Servi ce method, however, is the mean-and-nasty version of r enoveSer -
vi ce. Instead of calling st op on the Service, it removes it from the m servers dic-
tionary, and makes a call to the gc method of System, to force a garbage collection in
an attempt to reclaim the now-garbage Service and | Ser ver instances. While gc is
not guaranteed to reclaim the Service on this pass (which means that Service-writers
can’t depend on this when building Services), there’s a likely chance the Service will get
finalized here and now, thus removing the Service for all time. The ki | | Servi ce
method is intended as a last-resort method, only. Terminating a Service like this, even
with the presence of finalizer methods, can do serious damage to the JVM’s ability to
reclaim resources over time, and should always be viewed as an only-if-absolutely-
necessary decision, in much the same manner as the Thread st op is.
/ * %

* Obtain a list of every Server instance running in the system
*/

public String[] getServices()

{

| og("Entering ServerManager. get Services()");
String[] svrArray = new String[mservers.size()];

int ctr = 0; String list = new String("{\n");
for (java.util.Enumeration e = mservers. keys(); e.hasMreE enents();)

{
svrArray[ctr] = (String)e.nextEl enent();
list +=" " + svrArray[ctr++] + "\n";

}

list +="}";

log("Exiting ServerManager.getServices(); list =" + list);
return svrArray;

}

The get Ser vi ces method, on the other hand, requires a bit more work. It uses an
Enumeration returned from m server s to build an array of Strings to be returned
to the caller. Note that it also echoes this list of Servi ces to the log, providing a
convenient debugging aid. The array of Strings is then returned.

/ * %

* Obtain a reference to a Server instance by ID. If it can't be found
* (perhaps it’'s shut down since the user obtained the ID?), then return

* a null instance.
*/
public |Server getService(String instancel D)

{

CHAPTER 7 (CONTROL

GJAS

return (| Server)mservers. get(instancel D);

}

The get Ser vi ce method, given what we saw in addSer vi ce, is about as simple
as they come—it takes the passed-in St ri ng, and asks the dictionary of | Ser ver s
for the | Server instance answering to that title. The dictionary either returns
nul |, indicating it’s never heard of the | Server by that name, or it returns the
| Ser ver instance.

public void log(String nsg)

{
if (mlog !'=null)
{
StringBuffer m= new StringBuffer();
m append(new Date());
m append(" [");
m append(Thr ead. current Thread().toString());
m append("]: ");
m append(Q) ;
m | og.println(m;
Systemout.printin(m;
m_| og. fl ush();
}
}
public void | og(Exception ex)
{
if (mlog !'=null)
{
| og("Exception raised: " + ex.toString());
PrintWiter pw = new Print Witer(getLogStrean());
pw. println(new Date() + " Exception raised: " + ex.toString());
ex. print StackTrace(pw);
pw. fl ush();
}
}
public void error(String nsg)
{
if (merr !'=null)
{
StringBuffer m= new StringBuffer();
m append(new Date());
m append(” [");
m append(Thread. current Thread().toString());
m append("]: *** ERROR *** ");
m append(nsg) ;
merr.println(n;
merr.flush();
}
}

public void error(Exception ex)

181

if (merr !'= null)
{
error(": Exception raised: " + ex.toString());
PrintWiter pw = new Print Witer(getErrStrean());
pw. println(new Date() + " Exception raised: " + ex.toString());
ex. printStackTrace(pw);
pw. fl ush();
}
}
11
/1 Local Server Manager - speci fi c nmet hods
/1
/**

* Return the QutputStreamused for witing to the Iog.

*/
public Qutput Stream get LogStreant)
{
return ml ogStream
}
/**

* Set the QutputStreamused for witing to the Iog.
*/
public void setLogStreanm(QutputStream os)
{
m | ogStream = os;
if (mlogStream!= null)
mlog = new PrintWiter(m.l ogStreamn;
el se
mlog = null;
}

/**

* Return the QutputStreamused for witing errors.

*
/
public QutputStream getErrStrean)
{
return merrStream
}
/**

* Set the QutputStreamused for witing errors. On your head
* be the consequences if you set this to null!
*/
public void setErrStreanm QutputStream os)
{
merrStream = 0s;
if (merrStream!= null)
merr = new PrintWiter(merrStrean;
el se
merr = null;

182 CHAPTER 7 (CONTROL

GJAS

The | 0og and err or methods write String and Exception objects to their respective
OutputStreams. LocalServerManager also provides get LogSt r eam set LogSt r eam
get Error Stream and set Err or St r eam methods to get and set the | og and
error OutputStream objects, so that users within the JVM in which the LocalServ-
erManager is running can redirect output where desired.

// main not shown here; see Local Server Manager.java for details

Finally, LocalServerManager provides a mai n method as a means of using LocalServ-
erManager directly from the command line; however, we'll see later other (more effec-
tive and/or efficient) ways of kicking off the GJAS backplane.

/1 Internal data

/1
private Dictionary mservers = new Hashtabl e();

private QutputStream m|ogStream = null;

private QutputStream merrStream = Systemerr;

private PrintWiter mlog = null;

private PrintWiter merr = new PrintWiter(merrStrean;

}

There’s nothing really earth-shattering about LocalServerManager.java; note that, as
pointed out in the javadoc class comment block, this implementation uses the normal
system ClassLoader to load all Services, so that the dynamic upgrade on-the-fly
approach isn’t possible, since we cant unload the system ClassLoader. We'll see how
to make use of that later in this chapter.

To go along with the LocalServerManager, listing 7.1 shows LocalServer class,
some of which we talked about in chapter 4:

Listing 7.1 Code for LocalServer

/**
* Server wraps the Service instance, using Future calls to help preserve
* the responsiveness and robustness of the Server Manager.
*/
public class Local Server
i mpl enents | Server

{ /1 Prevent no-arg object instantiation
I
private Local Server ()
{}
/**

* Construct a Server around a Service instance.

*/
public Local Server(Service svc)
{
m service = svc;
}

183

/**
*
*
*
*

*

*/

Start the wapped Service instance. Services have 15 seconds in
which to either initialize, or else start a thread to performthe
necessary initialization and return. If a Service fails to respond
within 15 seconds of the start of its start call, the Server and/or
Server Manager are free to destroy it.

public bool ean start(final String[] args)

{

184

/1 W want to fire off a Thread to nmake the start() call, and wait
/1 up to 15 seconds to see if we return. If we don't by the tine
/1 the 15 seconds are up, we assune the Service has run off into
/1 Linbo and needs to be killed. (Mst Services of any conplexity
/1 will need to fire off their own Thread to do their work, so

/'l their start() methods should come back pretty quickly.)

/1

try

{

FutureResult futureResult = new FutureResult();
Runnabl e cnmd = futureResult.setter(new Callabl e()
{
public Object call ()
{
try
{
m service.start(args);
Server Manager . i nstance() .| og(
m service.getC ass().getNane() + ": started");
}
catch (Exception ex)
{
m exception = ex;
Server Manager . i nstance(). | og(ex);
}
return null;
}
1)
new Thr eadedExecut or (). execut e(cnd);
futureResult.timedGet (15*1000);
/] we want to wait 15 seconds, no nore.

return true;

}

catch (Ti meout Exception tEx)

{

m exception = tEx;

/1l The Service ran out of time starting up; kill it, note the
I/l failure to start, and return

11

Server Manager . i nstance() .l og(tEx);

}
catch (InterruptedException iEx)

CHAPTER 7 (CONTROL

GJAS

m exception = i Ex;

/'l For some reason, the thread doing the call failed; note the
/] failure to start, and return

/1

Server Manager . i nstance() .l og(i Ex);

}
catch (I nvocationTarget Exception itEx)
{
m exception = itEx;
/1 Java Reflection failed; note the failure, and return
/1
Server Manager . i nstance() .l og(itEx);
}
catch (Exception ex)
{
m exception = ex;
Server Manager . i nstance() .| og(ex);
}

return fal se;

}

/1 stop(), pause(), resune(), getState() and getlnstancel IX)
/1 all are sinple variations on start(), above, and are not
/1 shown here

public void kill()

{ m service = null;
System gc();
}
public Exception getlLastError()
{ return mexception;
}
/1 Internal data
I

private Service mservice = null;
private Exception mexception = null;

If you look at the LocalServer.java code in the com j avageeks. gj as package,
you'll notice that most of the length deals with using Threads (via Lea’s FutureResult
class from the Concurrent class library) to isolate the calls into the Service without
blocking the entire system should the call hang or disappear. Everything else is either
straightforward, or scaffolding to support the Service operations.

At this point, we’ve presented the basic skeleton for a running GJAS system, with
one notable exception: we have no Services with which to test it!

185

71.2

186

Example: HelloService

We start with the GJAS-equivalent of the canonical first program written for any
new system. HelloService simply writes “Hello, world!” to the console when it is
started (listing 7.2).

Listing 7.2 Code for HelloService

package com j avageeks. gj as. servi ces. sanpl e;

i nport com j avageeks. gj as. *;

public class HelloService

{

}

i npl enents Service

public Hell oService()
{1}

public void start(String[] args)
t hrows Exception
{
/Il W're starting
/1
m state = STARTI NG

/I Print out “Hello, world!”
I

System.out.printin(“Hello, world! —From, HelloService”);

/I We write the contents of args to the console, one line
/I per element in the array
1
for (int i=0; i<args.length; i++)
System.out.printin("\t" + argsl[i]);

/I We're running
1
m_state = RUNNING;

public void stop()

{

}

throws Exception

/l We're stopping
1
m_state = STOPPING;

System.out.printin("HelloService: stop()");

/I We've stopped
I
m_state = STOPPED,;

public void pause()

{

throws Exception

CHAPTER 7 (CONTROL

/1 We're pausing
I
m state = PAUSI NG

System out. println("HelloService: pause()");

/1 W’ ve paused
/1
m state = PAUSED;

public void resune()
throws Exception

{
/1 We're resum ng
/1
m state = RESUM NG
System out. println("HelloService: resunming()");
/1l We've started up again
/1
m state = RUNNI NG

}

public String getState()

{
return mstate;

}

public String getlnstancel D()
throws Exception

{

return getCass() + ":" + "1.0";

}
private String mstate = STOPPED;

The code is fairly simple—the member m st at e holds our current status, the
method st art iterates through the ar gs array, writing each argument to the con-
sole, and st op, pause, and r esune write out a message to the console, just so we
know it’s being called correctly, before returning. In fact, the majority of the code is
spent shifting the various values of m st at e to reflect the status of the HelloSer-
vice instance.

Having written it, we need to test it.

72 TESTING THE LOCALSERVER
IMPLEMENTATION

Testing LocalServer is as simple as executing the following from the command line:

TESTING THE LOCALSERVER IMPLEMENTATION 187

188

C:\> java com j avageeks. gj as. Local Server
com j avageeks. gj as. servi ces. sanpl es. Hel | oServi ce
Tue Jun 01 03:53:19 PDT 1999 [Thread[main, 5, main]]:
Enteri ng Local Server Manager . mai n()
Tue Jun 01 03:53:20 PDT 1999 [Thread[main, 5, main]]:
Ent eri ng Server Manager. addSer vi ce()
Tue Jun 01 03:53:20 PDT 1999 [Thread[main, 5, main]]: Service
com j avageeks. gj as. servi ces. sanpl es. Hel | oServi ce@4f f 6010(
com j avageeks. gj as. servi ces. sanpl es. Hel | oServi ce
sun. m sc. Launcher $Appd assLoader @5f 606f) created
Hell o, world! --From HelloService
Tue Jun 01 03:53:20 PDT 1999 [Thread[Thread-1,5, main]]:
com j avageeks. gj as. servi ces. sanpl es. Hel | oServi ce: started
Tue Jun 01 03:53:20 PDT 1999 [Thread[nmain, 5 main]]: Service started
Tue Jun 01 03:53:20 PDT 1999 [Thread[main, 5, main]]:
Exiti ng Server Manager. addServi ce()
Tue Jun 01 03:53:20 PDT 1999 [Thread[main, 5, main]]:
Exiting Local Server Manager. mai n()

There, right in between all the Server Manager. | og() output, is the “Hello,
world!” message from HelloService.

One concern is the ClassLoader report we get from the LocalServerManager
when it adds the Service. In the example, the ClassLoader used to load the Service was
a bootstrap (Launcher$sun.misc.AppClassLoader). If the system ClassLoader is used
to load the Service, once the Class is defined within that ClassLoader, it will never get
reloaded if the .class file changes on disk.

The reason for this is obvious, once you look into the ServerManager’s addSer -
vi ceFronLocal method:

public static | Server addServiceFronlLocal (String svcNanme, String[] args)
{

try
{
Service svc = (Service)d ass. forNanme(svcNane). newl nstance();
return addServi ce(svc, args);
}
catch (Exception ex)
{
error(ex);
return null;
}

}

When the class name is finally determined, we use the f or Name method of Class to
retrieve the compiled bytecode; as pointed out in chapter 2, if no other ClassLoader is
used to load the Class, then f or Name uses the ClassLoader for the currently loaded
class. In this case, the bootstrap ClassLoader was used to load LocalServerManager, so
it is also used to load the HelloService class. This is bad, since it prevents the dynamic
updates mechanism we discussed in chapter 2 from working.

CHAPTER 7 (CONTROL

For now, this oversight is acceptable, since we now know about it, but solving the
problem is a bit trickier than you might first imagine. For those who can’t wait, how-
ever, change the previous code to read instead:

String loaderDir = System getProperty("gjas.loaderDir");

if (loaderDir == null)
LoaderDir = System get Property("user. home");
Cl assLoader cl = new Fil eSystenCl assLoader (| oaderDir);

Service svc = (Service)cl.|loadC ass(cl assnane). new nstance();
Server Manager . addServi ce(svc, argsArray);

This code creates a FileSystemClassLoader (from chapter 2) each time to load the
requested class from disk, thereby placing each Ser vi ce instance into its own Class-
Loader. Make certain you add the appropriate "i nport com j avageeks. cl ass-
| oader. *" statements, too, or the code won't compile.

Let’s try one more sample service, then move on to more sophisticated Services
involving the Threading techniques from the last chapter.

73 EXECSERVICE

At times, it will be useful to have a Service that merely fires off another application
when the system is started. (Examples might include the RMI registry, a CORBA
NamingService daemon, and so on.) ExecService will do just that—accept a single
parameter as its argument, use the Runt i me. exec facilities to create the process,
and pipe its output to the console window (listing 7.3).

Listing 7.3 Code for ExecService

import java.io.*;
public class ExecService
i mpl enents com j avageeks. gj as. Servi ce

{

/1 Internal data

I

private String mstate = STOPPED,
private String mcndLine = null;

public ExecService(String comrandLi ne)

{

}

public void start()
throws Exception

m cndLi ne = conmandLi ne;

{
// W're starting

/1
m state = STARTI NG

/1 W expect at |east one argunment--the text of the conmand I|ine
/1 to fire off

EXECSERVICE 189

/1
if (mcmdLine == null)

{
m state = STOPPED;
throw new I || egal Argunment Exception();
}
/] Start the Process, and capture its output
/1

Process p = Runtine.get Runti nme().exec(m cndLi ne);
| nput St ream procQut = p.getlnputStrean();
I nput St ream procErr = p.getErrorStrean();

while (true)
{
try
{
int exitVal = p.exitValue();
/1 1f we didn't throw an exception on that call, then

/1 the Process has term nated. Capture what rensining
// output mght be in stdout or stderr, display it,
/1 and return

/1
/1 Capture and display stderr output
/1
int errAvail = procErr.available();

byte[] errBytes = new byte[errAvail];
int bytesRead = procErr.read(errBytes);
if (bytesRead > 0)

{
String sb = new String(errBytes);
System out . print(sb);
[lerr.print(sb);
[lerr.flush();
}
/'l Capture and display stderr output
11
int outAvail = procQut.available();

byte[] outBytes = new byte[outAvail];
byt esRead = procCQut.read(outBytes);
if (bytesRead > 0)

{
String sb = new String(outBytes);
System out . print(sb);
[lerr.print(sb);
[lerr.flush();

}

br eak;

190 CHAPTER 7 (CONTROL

catch (Il egal ThreadSt at eExcepti on ex)

{
/1 Not term nated yet, so display output
/1

/1 Capture and display stderr output
/1
int errAvail = procErr.avail able();
byte[] errBytes = new byte[errAvail];
int bytesRead = procErr.read(errBytes);
if (bytesRead > 0)
{
String sb = new String(errBytes);
System out . print(sb);

/lerr.print(sh);
/lerr.flush();
}

/1 Capture and display stderr output
I
int outAvail = procQut.avail able();
byte[] outBytes = new byte[outAvail];
byt esRead = procQut.read(outBytes);
if (bytesRead > 0)
{
String sb = new String(outBytes);
System out . print(sb);

/lerr.print(sb);
[lerr.flush();

}

/1 W&'re running
/1
m state = RUNNI NG
}
public void stop()
throws Exception

{
/1 We're stopping
I
m state = STOPPI NG
/1l W’ ve stopped
I
m state = STOPPED;
}

public void pause()
throws Exception

{
/1 \We're pausing

EXECSERVICE 191

192

11
m state = PAUSI NG

/1 W' ve paused
11
m st ate = PAUSED;

public void resune()
throws Exception

{
/1l We're resum ng
/1
m state = RESUM NG
/1 We've started up again
/1
mstate = RUNNI NG
}
public String getState()
{
return mstate;
}

public String getlnstancel IX)
throws Exception

{

return getCass() + ":1.0:" + SystemcurrentTimeMI1is();

}
|

You can see that a majority of it looks like the HelloService we just wrote. In fact,
except for the st art method, the two Services are almost identical. This is some-
what to be expected, since both are essentially one-shot deals: do your thing when
you start, and spend the rest of the time idling. One noticeable difference comes in
ExecService’s constructor, which expects the command line to execute on startup. !
ExecService’s complexity comes in the st ar t method. We create a Process object
with the constructor-passed String as our command line to execute. We then capture
the Process’s stdout and stderr (standard output and standard error) streams into
java.io.InputStream objects. Next, because we want to reroute the output from the Pro-
cess to our console window, we have to poll the Process object for an exit value. If the
Process object throws an I | | egal Thr eadSt at eExcept i on, it means the Process
is still running so we capture the output and echo it to our local console. If the Process
object honors the exi t Val ue call and returns normally, it means the Process ended.
So we still have to capture the remaining output, echo it, then quit the loop. Note that
while you could capture the Process’s input stream and feed it keystrokes from our local

I This means that, in order to use ExecSer vi ce, you have to subclass it; this is obviously not a feasible
long-term solution.

CHAPTER 7 (CONTROL

console window, this system is intended to be running somewhere in a dark closet, with
no user with whom to interact. That also means we should probably capture the output
to someplace other than the console window, but this works for now. We can always
change it later if we feel the need.

By the way, here’s one additional note for users of ExecService on a Win32
(Win95/98/NT) system. If you want to fire off a series of shell commands (like COPY
or DI R), place the commands in a batch file and fire off the batch file, instead of firing
off the command shell with a/ Cargument and the command to run. Because the Sun
JVM does not deal well with Runt i me. exec calls with arguments of “COMMAND
/C DIR”, you'll effectively hang the system. If you absolutely had to have this behavior,
you’d need to modify ExecService to expect the command in an array of Strings, with
the command in the ar gs[0] position, and any command-line arguments to the cre-
ated process in ar gs[1] and beyond. That, I leave as an exercise for the reader.

74 HELLOAGAINSERVICE

Threads can also be applied on an individual Service level. In fact, this is where most
of the threading work will occur—Services will want their own thread in which to
run, so as to be 100 percent available, instead of only when ServerManager calls into
them. The basic pattern most Services will follow will be to fire off their own thread
in start, kill the thread in st op, and have the thread pause itself when told to by
pause and resume when told to by r esume.

HelloAgainService (listing 7.4), like its ancestor, HelloService, simply serves to
verify that we can, in fact, do these things within the framework given. The code is
as follows:

Listing 7.4 Code for HelloAgainService

/**
* Hel | oAgai nServi ce
*/
public class Hell oAgai nService
i npl enents Service, Runnable

{
/1 Internal nenbers
/1
private int minterval = 5; // in seconds

private bool ean m paused = fal se;
private Thread mthread = null;
private String m_message = “Hello, again!”;

private String m_state = STOPPED;
private static int s_instanceCt = 0;

public HelloAgainService()
{

m_thread = new Thread(this);

}

HELLOAGAINSERVICE 193

/1
/'l Service interface nethods
/1
public void start()
t hrows Exception

{
/1l We're starting
/1
m state = STARTI NG
/1 Start our thread
/1
mthread.start();
/1 W&'re running
/1
m state = RUNNI NG
}

public void stop()
t hrows Exception

{
/1 We're stopping
/1
m state = STOPPI NG
/1 Stop our thread
/1
mthread.interrupt();
mthread.join();

/1 Wit for thread to finish, which rel eases us

/1 W' ve stopped
/1
m state = STOPPED;

}

public void pause()
t hrows Exception

{
/1 We're pausing
/1
m state = PAUSI NG
/1 Set the 'paused’ menber to true, which causes the run() |oop
/Il below to skip its nmessage
/1
m paused = true;
/1 W' ve paused
/1
m state = PAUSED;
}

public void resune()
t hrows Exception

{

194 CHAPTER 7 CONTROL

/1 We're resum ng
I
m state = RESUM NG

/1 Set the 'paused’ nenber to false, which causes the run()
/1 1oop belowto display its message

/1

m paused = fal se;

/1 We've started up again
/1
m state = RUNNI NG

}
public String getState()
{
return mstate,;
}

public String getlnstancel)
throws Exception

{
return getClass() + ":1.0:" + SystemcurrentTinmeMIlis();
}
/1
/1 Runnabl e interface nethods
/1
/**
* Method called by Thread. start()
*/
public void run()
{
try
{
while (! Thread. current Thread.islnterrupted())
{
Thread. sl eep(m.i nterval * 1000);
if (!mpaused)
System out . println(mnessage);
}
}
catch (InterruptedException ex)
{
System out. println("CGoing away now....");
}
}

Most of the HelloAgainService is scaffolding for the Service as a whole:

* the m stat e member to store the Service’s status (started, starting, stopped,
stopping, and so on)
* the m paused member to indicate the pause/resume status of the thread

HELLOAGAINSERVICE 195

74.1

196

e start to initialize and start the thread
* st op to interrupt and wait for the thread to die
* pause and r esune to set the value of m paused appropriately

and so forth. This is code that will need to be written for each and every Service that
wants to make use of threads. Being the disciples of object-orientation that we are,
this should raise an immediate red flag.

ThreadServer

Since this is all the code that any Service that wants to fire off its own worker threads
will need to write, let’s try to create a base class from which we can extend to do some
of this drudgery (listing 7.5). As with any reuse-through-inheritance approach, how-
ever, there’s only so much we can do in the base class with any degree of reliability.

Listing 7.5 Code for ThreadServer

/**

* Thr eadedServer

*/

public abstract class ThreadedServer
i npl enents Service

{
/1 Internal data
/1
private Thread mthread = null;
private Runnable mrunnable = null;
private String mstate = STOPPED,
protected bool ean m paused = fal se;
protected bool ean m shoul dStop = fal se;

public void start()
t hrows Exception
{
/1l We're starting
11
if (!'getState().equal s(STARTING))
set St at e(STARTI NG) ;

/1 Start our thread
/1
if (mthread == null)
m thread = new Thread(new ThreadG oup(this.toString()),
m runnabl e, getC ass().getName());
mthread.start();

/1 W're running
/1
set St at e(RUNNI NG) ;
}
public void stop()
t hrows Exception

CHAPTER 7 (CONTROL

/1 \We're stopping

/1

if (!getState().equal s(STOPPI NG))
set St at e(STOPPI NG) ;

/'l Sanity-check--did the Thread fail to initialize?

/1
if (mthread == null)
return;
/Il First we'll try the easy way
/1

m shoul dStop = true;

/1 Stop our thread; this assumes that the thread is witten to be
/] sensitive to interrupts (that is, it checks islnterrupted() in
I/l a tinely fashion). If it doesn't respond within 10 seconds,
/1 notify the systemso a user can perhaps kill() it.
/1
Ser ver Manager . | og(
"Asking thread " + mthread + " to stop.");
mthread.interrupt();
m thread.join(10 * 1000);
/1 Wait for thread to finish for 10 seconds; if we' re not back
/1 by then, we'll nove on

if (mthread.isAlive())
{
Ser ver Manager . | og(
"ThreadedServer for " + getC ass().getName() + ": " +
"Thread refuses to stop within 10 seconds.");
return;

}

/1 W' ve stopped
/1
set St at e(STOPPED) ;

public void kill()

/] Sanity-check--did the Thread fail to initialize?
/1
if (mthread == null)

return;

/1 1f we tried to stop, or thought we stopped, and the thread

[/ is still alive, kill it. Note that this inplementation WLL

/1 generate deprecation warnings due to the call to stop(); if

/1 this bothers you, coment this entire nmethod out.

if ((getState().equal s(STOPPED) && mthread.isAlive()) ||
(getState().equal s(STOPPING && mthread.isAlive()))

Ser ver Manager . | og(

HELLOAGAINSERVICE 197

"ThreadedServer for " + getC ass().getNane() + ":" +
"Calling stop() on Thread.");
m_ t hread. stop();

set St at e(STOPPED) ;

}
}
public void pause()
t hrows Exception
{
/1 We're pausing
11
if (!getState().equal s(PAUSING))
set St at e(PAUSI NG) ;

/1 Sanity-check--did the Thread fail to initialize?
/1
if (mthread == null)

return;

/1 Set the 'paused’ nenber to true
/1
m paused = true;

/1 1f you prefer a nore decisive approach, and don’t m nd
/| deprecation warnings, then uncomnment the follow ng bl ock
/*
m_ t hr ead. suspend() ;

*/

/1 W' ve paused
/1
set St at e(PAUSED) ;

public void resune()
throws Exception

/1 We're resum ng

/1

if (!'getState().equal s(RESUM NG))
set St at e(RESUM NG) ;

/'l Sanity-check--did the Thread fail to initialize?
11
if (mthread == null)

return;

/1 Set the 'paused’ nmenber to false
/1
m paused = fal se;

/1 1f you prefer a nore decisive approach, and don’t m nd
/1 deprecation warnings, then uncomment the follow ng bl ock
/*

m t hread. resune();

198 CHAPTER 7 (CONTROL

*/

/1 We've started up again
/1
set St at e(RESUM NG) ;

}
public String getState()
{
return mstate;
}
public void setState(String val)
{
mstate = val;
}

public String getlnstancel D()
throws Exception

{
return getClass() + ":" + "1.0" + "
+ SystemcurrentTimeM I 1is();
}
publ i c bool ean i sPaused()
{
return m paused;
}
publ i c bool ean shoul dSt op()
{
return m shoul dSt op;
}
public void set Runnabl e(Runnabl e runnabl e)
throws |l egal ThreadSt at eException
{
if (mthread !'= null &% mthread.isAive())
throw new I || egal ThreadSt at eExcepti on();
m_runnabl e = runnabl e;
}

public void setThread(Thread thread)
throws 111 egal ThreadSt at eExcepti on

{

if (mthread !'= null &% mthread.isAive())
throw new ||| egal ThreadSt at eException();

m thread = thread;

}

public Thread get Thread()

{
return mthread;

}

HELLOAGAINSERVICE 199

200

A large amount of functionality has been factored back into this abstract base class, but
its not quite a cure-all. For example, if a client extends this class, overrides st ar t , but
fails to call up to the ThreadedServer implementation of it, then all bets are off regarding
the state, the thread’s status, and so forth. Additionally, extending this means that a class
can no longer extend any other class, such as RemoteUnicastObject (for RMI servers).

ThreadedServer also provides a number of hooks to allow for customization of its
threading policy. First, it takes a Runnable instance via its set Runnabl e method,
meaning that a ThreadedServer could be used on its own (as opposed to being sub-
classed) to provide this separate-thread behavior. Additionally, the Thread itself can be
specified by calling set Thr ead on the ThreadedServer instance and firing that off,
instead of allowing ThreadedServer to create its own Thread. This can be useful if a par-
ticular system wants to group all of its Threads under a ThreadGroup, for convenience.

To see how to use it, let’s rewrite the HelloAgainService above using the Thread-
edServer as a base class:

i mport com j avageeks. gj as. servi ces. ThreadedSer ver;

public class OneMoreHel | oService extends ThreadedServer

{
private String mnessage = "Hello, once nore!";
private long minterval = 5;
public void start()
throws Exception
{
set Runnabl e(new Runnabl e()
{
public void run()
{
try
{
while (! Thread.currentThread().islnterrupted())
{
Thread. sl eep(m.interval * 1000);
if (!OneMoreHell oService.this.isPaused())
System out . println(message);
}
}
catch (InterruptedException ex)
{
System out. println("Going away now....");
}
}
1
super.start();
}
}

CHAPTER 7 (CONTROL

Not bad. We've managed to cut the code down somewhat significantly. One problem
we still have, however, is that the ServerManager is static and inflexible; we can’t add
new Services after the LocalServerManager has started. Let’s fix that right away.

74.2 Example: ConsoleControlService

One thing we'd like to do is be able to control the ServerManager via some mecha-
nism other than a file (listing 7.6). For example, we'd like to be able to bring the sys-
tem down in some kind of ordered, controlled fashion and not via a break signal
(CTRL-C/CTRL-D to the console window in NT or UNIX). Since we already have a
console window running, why not use it?

Listing 7.6 Code for ConsoleControlService

/**
* Consol eControl Service:
*/
public class Consol eControl Servi ce extends ThreadedServer
i npl enents Runnabl e
{
public void start(String[] args)
throws Exception

{
set Runnabl e(thi s);
super.start(args);
}
public void run()
{
try
{

/1 Set up
Buf f eredReader in =
new Buf f er edReader (
new | nput St reanReader (Systemin));

System out . print (" Server Manager >");
for (String line = in.readLine();
I'line.equal s("quit");
line = in.readLine())

Server Manager.log(this.toString() +
"+ line + ")
if (line.trin().equals("shutdown"))
{
Ser ver Manager . shut down() ;
//return;
}
else if (line.trim().startsWth("start "))
{

/1l Extract classnanme

HELLOAGAINSERVICE 201

String currentlLine =
l'ine.substring(6, line.length());

if (currentLine.indexOr(" ") < 0)

{
/1 O assnanme appeared by itself, so there are
// no additional args to parse
String classname = currentlLine;
Server Manager . | og(
"Consol eControl Service.run(): " +
"Cal ling Server Manager . addService(" +
classname + ", null)");
Ser ver Manager . addSer vi ce(
cl assnanme, null);
}
el se
{
Server Manager . | og(
"Consol eControl Service.run: " +
"Any service started by the this service "+
"cannot have args; sorry.");
}
}
else if (line.trim().startsWth("list"))
{
String[] sves =
Ser ver Manager . get Servi ces() ;
System out.println("Services: {");
for (int i=0; i<svcs.length; i++)
System out. println(" " + sves[i]);
Systemout.printin("}");
}
else if (line.trinm().startsWth("renove "))
{
/| Parse argument, confirmrenoval,
/1 call ServerManager.renpveService()
}
else if (line.trim().startsWth("threads"))
{

// List all threads running in the JVM
/1

// Find the ultimte ThreadG oup parent
ThreadG oup ancestor =
Thr ead. current Thread() . get ThreadG oup();
whi l e (ancestor.getParent() != null)
ancestor = ancestor.getParent();

/1 List all threads

int ct = ancestor.activeCount();
ct += ct/2;

Thread[] array = new Thread[ct];

202 CHAPTER 7 (CONTROL

ancestor.enunerate(array, true);

for (int i=0; i<array.length; i++)

{
if (array[i] !'= null)
{
Systemout.printin(array[i].toString());
}
}
}
el se
{
System out. println("Unrecogni zed conmand: " +
line);
}
System out . print (" Server Manager >");
}
}
catch (java.io.|OException | OEx)
{1

Here we see a slightly different approach from the previous HelloAgainService; instead of

creating an anonymous Runnable class and passing that into set Runnabl e, Console-

ControlService implements Runnable and passes in t hi s. Either way works equally

well, but this approach seems more clear when r un gets more complex, in my opinion.
Going over the code in detail, we find:

* start calls set Runnabl e(t hi s), then calls up the chain to start the thread.

* run creates a BufferedReader around the InputStream Syst em i n, then enters
an infinite f or loop, reading input from the console window. As each line is
entered, r un checks to see if it recognizes the first word, and if so, takes appro-
priate action. shut down calls ServerManager.shutdown. "start" takes the
class name to instantiate and feeds it to ServerManager.addService. "1i st"
writes out a list of each Service currently executing within the system, and
"t hreads" lists all the threads (including system threads) currently running

Why not have ServerManager itself read and write to the console window, instead
of a Service? Principally, because it helps encourage modularization between the com-
ponents in the system. ServerManager is responsible only for managing Servers, and
not the console window. It also validates the idea (which we’ll explore more fully, in
subsequent chapters) that controlling the ServerManager can be done from outside the
ServerManager itself.

One quirk of having this console control as a Service is that because ConsoleCon-
trolService is a user thread, calling Ser ver Manager . shut down doesn’t bring the

HELLOAGAINSERVICE 203

system down completely, because ConsoleControlService is still running.? In order to
bring it down completely, you must first issue a shut down command, followed by a
quit to exit the ConsoleControlService run loop. This gives the administrator the
opportunity to verify that the Services running have completely shut down (or not).

The easiest way to terminate ConsoleControlService during shut down is to cre-
ate a daemon thread to do the input, and have the ConsoleCreateService thread wait
to be interrupted, or to have the daemon thread exit. Once either condition occurs,
it can exit cleanly. You could set the ConsoleCreateService thread itself to be a daemon
thread, without adding the second thread, but this means that the second the other
user threads exit, the JVM terminates without even the kindness of a final message to
the console screen.

The solution, of course, is to use two threads: the one spun off for us by Thread-
edServer, and a daemon thread to do the actual work. (Listing 7.7).

Listing 7.7 Code to terminate ConsoleControlService

cl ass Consol eThread extends Thread
{
publ i c Consol eThread()
{
set Daenon(true);

}

public void run()
{
try
{
/1 Set up
Buf f eredReader in =
new Buf f er edReader (
new | nput StreanReader (Systemin));

System out . print("Server Manager >");
for (String line = in.readLine();
I'line.equal s("quit");
line = in.readLine())

Server Manager.log(this.toString() +
+ line + "' ");

if (line.trin().equals("shutdown"))
{

Ser ver Manager . shut down() ;

//return;
}
else if (line.trinm().startsWth("start "))

{

/1l Extract classnanme

2 Calling i nt er rupt on the thread doesn’t break it out of the r eadLi ne call in the top of the loop.

204 CHAPTER 7 CONTROL

String currentlLine =
l'ine.substring(6, line.length());

if (currentLine.indexOf(" ") < 0)

{
/1 Classname appeared by itself, so there are
/1 no additional args to parse
String classname = currentLine;
Ser ver Manager . | og(
"Consol eControl Service.run(): " +
"Calling ServerManager. addService(" +
classname + ", null)");
Ser ver Manager . addSer vi ce(
classnanme, null);
}
el se
{
Server Manager . | og(
"Consol eControl Service.run: " +
"Any service started by the this service "+
"cannot have args; sorry.");
}
}
else if (line.trim().startsWth("list"))
{
String[] svcs =
Ser ver Manager . get Servi ces();
System out. println("Services: {");
for (int i=0; i<svcs.length; i++)
System out. println(" "+ sves[il]);
Systemout.printin("}");
}
else if (line.trim).startsWth("renove "))
{
/'l Parse argunent, confirmrenoval,
/'l call ServerManager.renopveService()
}
else if (line.trim().startsWth("threads"))
{

// List all threads running in the JVM
/1

/1 Find the ultinmate ThreadG oup parent
ThreadG oup ancestor =
Thread. current Thread() . get ThreadG oup() ;
whil e (ancestor.getParent() != null)
ancestor = ancestor.getParent();

/1 List all threads

int ct = ancestor.activeCount();
ct += ct/2;

Thread[] array = new Thread[ct];
ancestor.enunerate(array, true);

HELLOAGAINSERVICE 205

for (int i=0; i<array.length; i++)

{
if (array[i] !'= null)
{
Systemout.printin(array[i].toString());
}
}
}
el se
{
System out. println("Unrecogni zed command: " +
l'ine);
}
System out . print (" Server Manager >");
}
}
catch (java.io.|OException | OEx)
{1
}
}
/**

* Consol eCont rol Servi ce:
*/
public class Consol eControl Service extends ThreadedServer
i npl enents Runnabl e

{
public void start()
throws Exception
{
set Runnabl e(t hi s);
super.start();
}
public void run()
{
Consol eThread t = new Consol eThread();
t.start();
try
{
/1 Block until the console is closed
t.join();
}
catch (InterruptedException intEx)
{
/1 Do nothing but return
return;
}
}
}

206 CHAPTER 7 (CONTROL

Not bad at all. We now have some black-box reusable code to do independently
threaded Services, and we have a console by which we can control the ServerManager
to load, unload, or list Services.

Now, however, let’s move on from Service implementations, and look at a more
interesting—and useful—I Ser ver Manager implementation.

HELLOAGAINSERVICE 207

CHAPTEHR 8

Remote control

8.1 RMI implementation 209
8.2 Other implementations 218

8.3 Necessary improvements 219
8.4 Additional reading 224

Remember, one of our goals with all this was zero administration and/or zero deploy-
ment. One of the facets of zero administration is the ability to control the server from
anyplace—not just sitting in front of the machine running the server, but from the
administrator’s cubicle, the administrator’s house, even the administrator’s PDA or
laptop, using a cellular link. This sort of remote control normally isn’t something that
a developer would build into a custom server application, but since we're building a
generic server backplane, and since all applications will inherit this functionality if it’s
there, it’s worth the effort.

In this particular case, we can provide generic remote control functionality in a
variety of ways. In the next chapter, we’ll see a SocketControlService that will use a
standard socket to present a text-based menu of options and allow an administrator
to use a command line socket client to connect and drive the server remotely. How-
ever, we can get even more sophisticated than that, using Java’s remote procedure call
technology, RML.

RMI, contrary to most peoples’ beliefs, is not a distributed object technology. It
doesn’t really know anything about objects at all. Instead, RMI is about allowing one
JVM to make remote method calls on an object living within another. The called
object unpacks the arguments, performs the request, marshals up the result, and sends

208

the result back over the socket. This is the same behavior provided by older RPC tech-
nologies, such as ONC RPC and Microsoft/DCE RPC.

Due to RMI’s omnipresent nature within Java, however, it’s an ideal means for
“remote-izing” (for lack of a better word) the ServerManager. Essentially, we’ll make
the ServerManager system RMI-capable by creating a remote interface with a concrete
implementation that in turn wraps an instance of LocalServerManager to do the real
work. We'll also have to create a local proxy to the RMI-exported ServerManager
instance. (Figure 8.1).

java.rmi.Remote

IServerManager |RemoteServerManager

RMIServerManager RMIServerManagerServer IServerManager
m_serverMgr

Figure 8.1 RMIServerManager and RMIServerManagerServer

As you can see, the RMIServerManagerServer instance is the actual RMI-server object
to which instances of RMIServerManager will connect. Using the | Renpt eSer ver -
Manager interface, RMIServerManager clients can perform the same calls on the
remote ServerManager as they could on a local one. What’s more, because the actual
IServerManager instance is buried beneath the ServerManager.java static methods,
any Services or other code that reference the | Ser ver Manager Singleton do not
even know they’re talking to a remote instance.

8.1 RMI IMPLEMENTATION

RMIServerManager, the implementation of IServerManager that clients will use to
call upon a remote IServerManager instance, is essentially an exercise in the Proxy
design pattern.

The pattern’s intent is to provide a surrogate or placeholder with which another
object can control access to it. Things get tricky when we do this; we want the ISer-
verManager-implementing instance to be in the client JVM, so the server version
doesn’t necessarily have to conform to the | Server Manager interface. This is

RMI IMPLEMENTATION 209

210

because the server version will provide its own Remote-extending interface that pro-
vides the same behavior as the | Ser ver Manager interface.

We start by examining the | Renpt eSer ver Manager interface (listing 8.1). I’s
more than just the | Ser ver Manager interface, since it also exposes the methods for
IServer-implementing classes, as well; the reason for this will become clear a bit later
in this section.

Listing 8.1 Code for IRemoteServerManager interface

public interface | RenpteServer Manager
extends java.rm .Renote

{

/1
/'l These nethods provide surrogate access for ServerManager
/1 functionality
public void renoteShutdown()

t hrows Renpt eExcepti on;

public |Server renoteAddService(Service svc, String[] args)
t hrows Renpt eExcepti on;
public void renmoteRenmpbveService(String instancel D)
t hrows Renpt eExcepti on;
public void rempteKill Service(String instancel D)
t hrows Renpt eExcepti on;
public String[] renpteCetServices()
t hrows Renpt eExcepti on;
public |Server renpteGetService(String instancelD)
t hrows RenoteException;

public void renoteDepl oyService(String serviceNane,
Cl assLoader Strat egy strategy)
public |Server renpteAddService(String svcNane,
String[] args)
throws RenoteException;

public void renptelLog(String nsg)
throws RenoteExcepti on;

public void renotelLog(Exception ex)
throws RenoteExcepti on;

public void renpteError(String nsg)
t hrows RenoteExcepti on;

public void renoteError(Exception ex)
t hrows RenoteException;

/1
/'l These methods provide access for |Server
/1 functionality
public bool ean start(long ID, String[] args)
throws RenoteException;
publ i c bool ean stop(long |D)
throws RenoteExcepti on;
publ i c bool ean pause(long | D)

CHAPTER 8 REMOTE CONTROL

t hrows Renpt eExcepti on;
publ i c bool ean resune(l ong |D)
throws RenoteException;

public void kill(long |ID)
t hrows Renot eExcepti on;

public String getState(long |D)
throws RenoteException;

public String getlnstancel D(long |D)
throws RenoteExcepti on;

public Exception getlLastError(long |D)
t hrows Renpt eExcepti on;

public static final String RM _LOOKUPNAME =
"j avageeks. conmf RM Ser ver Manager: 1. 0. 0";

Observant readers will notice that not only does IRemoteServerManager provide
remote versions of all the IServerManager methods, but also the IServer methods
with an added | D parameter. What gives?

One principal problem with many distributed object systems is that of scalabil-
ity—as an object system grows, objects tend to call between each other in an indis-
criminate fashion. This is fine within a local machine, but should a distributed object
system attempt to mimic this behavior, the object system will quickly bog down due
to the high overhead of network traffic and marshaling/unmarshaling of parameters
on both sides of the call.

A naive implementation of the RMIServer class would create and export an
instance of an RMIServerServer object, to correspond directly with the RMIServer
object handed back to the client from an addSer vi ce call. Unfortunately, 99.9 per-
cent of the IServer’s lifetime is spent doing nothing. Most clients hold on to the ISer-
ver return value for potential use in the future, not constant use now. As a result, the
server has now spent valuable resources! to provide an object that will spend most of
its time doing nothing.

Instead, within the RMI ServerManager implementation we’re building here, we
have the server export only a single object—the RMIRemoteServerManagerServer
(which we haven’t seen yet), and that object provides both ServerManager and Server
services. The RMIRemoteServerManagerServer maintains a collection of RMIServer
instances, identified by numeric IDs, and they know about the RMIServerMan-
agerServer instance and its specific ID number. Thus, an attempt by an RMIServer to
st op its wrapped Service turns into a call into the RMIServerManagerServer’s st op
method with an ID parameter of 5, or whatever corresponds to the ID within the
RMIServer instance on the client.

! The most expensive of which is the memory for the object and the CPU cycles to listen on the active socket.

RMI IMPLEMENTATION 211

212

This is a clear violation of the object’s know-how to perform its own behavior’s
principle, which object purists will argue, violates encapsulation. I won’t argue any of
these points, except to say that at times, object purism must be sacrificed on the altar
of actual usability. It’s a sad fact that what usually works out better for the user, is
harder for the developer to do.

Within the RMIServerManagerServer code (which is far too long to be displayed
here), we wrap an instance of the LocalServerManager to do the actual ServerManager
work, and we wrap and “remote-ize” access to this LocalServerManager instance as
appropriate. For example, the RMIServerManagerServer takes the IServer return value
from the LocalServerManager’s addSer vi ce call, puts the IServer into the RMISer-
verManagerServer’s HashMap of Server instances, and hands back an RMIServer
instance (which is fully Serializable, and so doesn’t need to be exported to the client
according to the rules of RMI):

public class RM Server Manager Server extends Uni cast Renpt eObj ect
i npl enent s | Renot eSer ver Manager

{
11

/**
* Add the | oaded Service to the list of Servers and start it.
* W throw away the return value fromthe Local Server Manager call
* (the Local Server instance) because we need to construct an
* RM Server instance to give back to the RM caller.
*/
public |Server renoteAddService(Service svc, String[] args)
t hrows Renpt eException

{

/1 Do the nornmal addService thing

| Server svr = m server Myr. addServi ce(svc, args);

/'l Create our RM Proxy

long ID = mserverCt ++;

RM Server rm Svr = new RM Server(this, ID);

m server Map. put (Long. toString(lD), svr);
/1 Careful readers will note that this has an inherent design
/1 flaw, when we get above the maxi num count of a long, we wll
/1 wap around, with the possibility that an existing Server
// could be overwitten! However, ny experience has led nme to
/1 believe that very rarely, if ever, will this actually occur.
// Consider the mathematics--if a new Server were added every
/'l second, it would take 2764 seconds before overlap occurs,
/1 and the human civilization hasn’'t been in existence that
/1 1ong! Consider the mathematics: 27232 seconds (4,234, 967, 296)
/1 is 71582788 mi nutes, or 1193046 hours or 49,710 days, or 136
/] years! And Java uses 64-bit long types, which is 136 years,
// squared, or roughly 18,500 years!

return rm Svr;

}

CHAPTER 8 REMOTE CONTROL

11

/1 Internal data

/1

private Local Server Manager m server Myr;

private long mserverC = 0;

private HashMap m server Map = new HashMap();
}

Correspondingly, when a call comes in from a remote RMIServer, with the appropri-
ate ID, we need to forward the call on to the appropriate local IServer instance stored
within that map of Servers:

public class RM Server Manager Server extends Uni cast Renot eCbj ect
i mpl enent's | Renot eSer ver Manager

{
/1
/**
*/
public boolean start(long ID, String[] args)
throws Renpt eException
{
| Server svr = (|Server)mserverMap. get(Long.toString(1D));
return svr.start(args);
}
/1
}

Notice how we don't specify that we're using a LocalServer class within the st ar t code,
even though we know that we're using a LocalServerManager implementation as our
ServerManager. We do this deliberately, because we never know when we may want
RMIServerManagerServer to instead wrap an instance of another type of IServerMan-
ager. In fact, the entire RMIServerManagerServer class is built around this lack of
knowledge of the actual IServerManager it is “remote-izing’; the RMIServerMan-
agerServer constructor sets the IServerManager it wraps, and its mai n method passes in
the LocalServerManager instance it will use by default:

public class RM Server Manager Server extends Uni cast Renot eCbj ect
i npl enent s | Renot eSer ver Manager

{
public RM Server Manager Server (| Server Manager svrMr)
throws RenoteException

{

m server Mgr = svrMr;

}
/1

public static void main (String args[])
throws Exception

RMI IMPLEMENTATION 213

214

/1 Create an instance of RM ServerManager Server
RM Ser ver Manager Server svr =
new RM Server Manager Server (new Local Server Manager ());

/1 Bind & export it
Nani ng. bi nd(| Renot eSer ver Manager . RM _LOOKUPNAME, svr);
svr.renot eLog("RM Server Manager Server bound to registry");

}

Because we maintain the encapsulation that IServerManager offers, RMIServerMan-
agerServer can in turn wrap any other type IServerManager instance, even another
RMIServerManager/RMIServerManagerServer pair.

It’s somewhat anticlimactic by this point, but the RMIServerManager class pro-
vides the client-side shim code that forwards the request on to the RMIServerMan-
agerServer instance exported on the server:

public class RM Server Manager
i mpl enents | Server Manager

{

/1 Internal data
/1
| Renot eSer ver Manager m rm Svr Myr;

public RM Server Manager (String host)
throws Exception

{
/1 Set up ServerManager Singleton
Server Manager . i nstance(this);

/1 Connect to server; throw RuntinmeException if that fails
/1 Systemout.println("ln RM Server Manager --attenpting | ookup");

| Renot eSer ver Manager renoteSvrMr =

(I Renot eSer ver Manager) Nami ng. | ookup(
"rm://" + host + "/" + | RenoteServer Manager. RM _LOOKUPNAME) ;

/1 Systemout.println("ln RM Server Manager - - | ookup conplete");

mrm SvrMgr = renoteSvrMr;

}

We do the classic RMI thing in the constructor by taking a String parameter of the
host name to contact, and attempt to find it via the RMI | ookup method of the
Naming class, passing in the RMI URL. This particular sequence of steps may change
in the very, very near future. JNDI is fast becoming the Java-approved way of provid-
ing exported-name services, such as that provided by the RMI Naming class. If the
| ookup call fails, we're in deep trouble as far as the RMIServerManager is concerned,
so we make no pretense at hiding it. We throw the Exception back to the caller.

public void shutdown()
{

try

{

CHAPTER 8 REMOTE CONTROL

m rm Svr Myr. r enot eShut down() ;

}
catch (java.rm .Renpt eException renot eEx)
{
t hrow new Runti meException(renmoteEx.toString());
}
}
public |Server addService(Service svc, String[] args)
{
try
{
return mrm SvrMr. renpt eAddServi ce(svc, args);
}
catch (java.rm . RenoteException renpteEx)
{
t hrow new Runti meException(renmoteEx.toString());
}
}
/1 . . . (Oher methods omitted for brevity)

Notice how all the IServerManager-inherited methods (only one of which,
addSer vi ce, is listed here) simply forward the request on to the IRemoteServer-
Manager instance we got back in the constructor. Notice, in particular, that if we
catch a RemoteException from the client, we don’t really do anything about it
instead, I package up the RemoteException’s message into an instance of Runtime-
Exception, and throw that back out.

This is another point of personal preference and coding style. Unfortunately,
java.rmi.RemoteException extends the standard Java Exception class, instead of the
RuntimeException class, which means that any method that wants to call an RMI
method must either catch the RemoteException type, or declare it as part of its
t hr ows clause. Doing the latter, unfortunately, breaks the IServerManager interface,
since Java (correctly) doesn’t allow inherited methods to throw differing exception
types. The first reaction might be, then, to simply add throws RemoteException to the
methods declared in IServerManager; unfortunately, this would be flat-out wrong.

Remember, RMI is simply one method of making objects distributable across JVMs;
in addition to RMI, we have the option of using JMS, CORBA, or even POS (Plain OI
Sockets) as a middleware alternative. Declaring the IServerManager interface exposes the
fact that we use RMI under the hood, and plainly breaks encapsulation. CORBA servers,
for example, do not throw j ava. r m . Renpt eExcept i ons, but their own, unique,
exception types. Should we declare IServerManager to throw those exception types, too?

Declaring the base interface (IServerManager) to throw any type of communi-
cations-protocol exception forces clients to handle exceptions that they really don’t
care about. The client using IServerManager doesn’t care, and needn’t know, that the
ServerManager in question is over a TCP/IP wire; all the client cares about is whether
or not the request succeeded.

RMI IMPLEMENTATION 215

Let’s continue looking at code.

public static void main (String args[])
throws Exception

{
if (args.length < 1)
{
System out. println("Usage: java RM Server Manager <hostnane>");
return;
}

/1l Create (and register) the RM Server Manager
new RM Server Manager (args[0]);

Server Manager. | og("Entering RM Server Manager. main()");

/1 Parse conmmand-|ine argunents, if any

/1
for (int argc=1l; argc < args.length; argc++)
{
if (args[argc].startsWth("@))
{
// The "@ argunent indicates the file we should
/] parse for services to execute
try
{
String arg = args[argc];
String filename =
arg.substring(arg.indexOr("@)+1, arg.length());
FilelnputStreamfis =
new Fil el nput Strean(fil enane);
Server Manager . par sel nput Strean(fis);
}
catch (Exception ex)
{
/1 lgnore it and nove on
ex. printStackTrace();
}
}
else if ("TEST".equal s(args[argc]))
{
/1 Deploy a Service, then try to add it.
try
{

/1 Look for "TestService.class" in the current
/1 directory
String filename = "Test Service. cl ass";
java.io.FilelnputStreamfis =

new j ava.io. Fil el nput Strean(fil enane);

byte[] bytes = new byte[fis.available()];
fis.read(bytes);

/'l Create a Hashtabl ed assLoader

216 CHAPTER 8 REMOTE CONTROL

com j avageeks. cl assl oader . Hasht abl eCl assLoader
hcl = new Hasht abl eCl assLoader () ;
hcl . put G ass(" Test Servi ce", bytes);

/1 Deploy it
Server Manager . depl oyServi ce(" Test Servi ce", hcl);

/1 Now add the Service
| Server svr =
Server Manager . addSer vi ce(" Test Servi ce",
new String[0]);

if (svr == null)
{
Systemout.printin("Test failed!");
}
}
catch (Exception ex)
{
ex. printStackTrace();
}
}
el se
{
Server Manager . par seArg(args[argc]);
}

}

Server Manager. | og("Exi ti ng RM Server Manager. main()");

}

The mai n method looks fairly straightforward—if " TEST" is not present as an argu-
ment, do much the same thing as we did in LocalServerManager: parse the file
behind the " @ character, and load those services. If " TEST" is present, do a quick
check to ensure that everything works the way it should, and exit.

8.1.1 Analysis

Let’s talk more about the RMI-to-IServerManager adapter methods. Ideally, we should
do something more intelligent with the error condition returned from the RMI call;
however, knowing what to do is highly dependent on knowing whats wrong in the
first place. Even then, having that knowledge doesnt immediately lead to the ability to
affect the outcome. If, for example, the RemoteException was thrown because the
server instance can’t be found on the remote machine, it’s a good indicator that either
the machine isn’t available, or the server process isn't up and running. In either case,
there’s nothing that a client can do about it except exit and try again.

For those developers who believe that the client can and should do some-
thing about the situation, one approach to solve this problem would be to create
a NestedRuntimeException class that extends RuntimeException, and holds the
actual Exception thrown as a parameter within the NestedRuntimeException. Then,

RMI IMPLEMENTATION 217

8.2

218

within the cat ch block of these methods, instead of throwing a RuntimeException,
the RMIServerManager can throw a NestedRuntimeException, with the RemoteEx-
ception passed in. Then, on the client side, the client can catch NestedRuntimeEx-
ceptions, inspect the nested Exception, and decide what action to take from there.

In this case, more work needs to be done within the try/cat ch block of
RMIServerManager. For example, in the current implementation, RMIServerMan-
ager assumes an optimisitic attitude, and attempts to call on the server instance
regardless of what went on before. If the client catches the RuntimeException it
threw because the server wasn’t there a few seconds ago, it doesn’t care—it will try
again when called to do so.

This overly optimistic approach needs to be rethought when attempting to pro-
vide the client with more intelligence regarding remote operations—should the
RMIServerManager zero out the IRemoteServerManager instance and attempt to
reconnect via another call to | ookup? Possibly, but this means more work within
RMIServerManager’s t r y/cat ch blocks, since now the RMIServerManager needs to
test the IRemoteServerManager instance on each call and attempt the | ookup if it’s
null, and set the instance to null in the event of a RemoteException being thrown.

All in all, it’'s been my experience that problems with remote connectivity are
often not correctable by the client, and can only be communicated to the user, as
opposed to being fixed within the client application. Usually this consists of the user
either reattempting the connection, perhaps by firing up the client application again,
or else contacting Tech Support to find out why the server is down.

What is of more importance to the enterprise developer is maintaining a consistent,
location-transparent and protocol-independent interface for interacting with the ISer-
verManager; for that reason, GJAS encapsulates away the knowledge of any Remote-
Exception (or other protocol-specific error type) and keeps its interface pure. Other
developers or development shops may disagree with this approach, especially those
which have already standardized on their middleware protocol (sockets, CORBA, RMI,
and so forth). This is fine, so long as the full import of that decision is realized, in that
making that middleware protocol visible to the client in turn means that the code will
require major reconstructive surgery if and when that middleware decision changes,
as it is likely to do.

OTHER IMPLEMENTATIONS

RMI is not, by any stretch of the imagination, the only remote-method-call technol-
ogy available to Java. For starters, there are CORBA, JMS, and straight Sockets-with-
Serialization. Any of these could be adapted to “remote-ize” the ServerManager sys-
tem in the same way. By creating an IServerManager-implementing subclass that acts
as a proxy to the appropriate server object (as RMIServerManager serves as a proxy to
the RMIServerManagerServer), you could easily create a CORBAServerManager, a
JMSServerManager, a SocketServerManager, and so on.

CHAPTER 8 REMOTE CONTROL

Further, we don’t have to stop with just those technologies available to Java. By
using JNI, as shown in chapter 16, we can make C++-only middleware technologies
available to us, as well—Microsoft named pipes, UNIX shared memory, even MacOS’s
AppleEvents. If it’s a remote-capable technology, we can make it available to us as a
means of controlling or participating in the ServerManager from anywhere.

8.3 INECESSARY IMPROVEMENTS

Unfortunately, making the ServerManager remote capable exposes the flaw we uncov-
ered earlier, but in a worse way. Right now, when a Service is serialized and passed
“over the wire” to the RMIServerManagerServer in the addSer vi ce method, if the
class isn’t known on the other side, the RMIServerManagerServer will throw an excep-
tion and refuse to bring in the class. Normally, RMI downloads unfamiliar code
through its annotated codebase URL property—a URL which is provided by the pro-
grammer as a URL to contact for .class files and the like if the RMI server’s codebase
doesn’t already have the code. This is what provides RMIs thin-client capabilities—if
it doesn’t have the code locally, it'll connect to the URL, ask for the .class code it needs
and use that. As soon as a developer or administrator updates the code on the server,
the next time the client connects to the RMI server, it automatically retrieves the latest
version of the code. Zero deployment has never been easier.

It might seem, at first, that we can simply make use of this approach ourselves—
we provide the RMI system with an annotated codebase, and it should all work. There
are a number of problems with this thinking. To start, RMI expects to use the appro-
priate protocol to contact the annotated codebase URL; that means if the URL is an
http: protocol URL, then RMI will expect to have a web server on the other end waiting
to receive HTTP requests. When we're in the standard client/server approach, where
the client is requesting the new code of the server, this is trivial. Either a simple web
server can rest on the RMI server machine to dispense the necessary code, or, if the RMI
client is an applet, the applet’s web host can act as the RMI class host, as well.

This would mean that, since in our case it’s the client, not the server, providing
the code, we’d need to have an HTTP server running on the client to provide the code
desired. This isn’t a major problem. In chapter 9, we’ll see how we can create an HTTP
server in about 400 lines of code, since we’d just open a socket on the client, listening
for requests from the server on the usual port (80). The problem with this line of think-
ing, however, is that the client isn’t going to remain alive forever, and the server will
need that code in a completely nondeterministic way; we have no way of knowing pre-
cisely when or how often those code requests will come in. For example, consider a
hypothetical Service we call AService. As part of its duties, AService uses the BUltilities
class to do its work. When we send the AService class over the wire to the server, the
server will immediately request the BU ilities code as part of its normal ClassLoading
mechanism. This is all well and good.

INECESSARY IMPROVEMENTS 219

220

But if the AService class doesn’t directly refer to the BUitilities code, but instead
loads the BUilities class by name, we have a problem. When AService is serialized and
sent over, BUitilities won’t go with it; it’s not directly referred to anywhere within
AService. The only time BU ilities will be requested of the client is when AService
actually executes the code that loads the BUsilities class by name, and that could con-
ceivably be hours, days, weeks, or months after the client initially uploads the Service.
By that time, the client that originally provided the Service will be long gone.

What we need is to provide a way for clients to either provide the code, in binary
form, for the ServerManager to use when and how it needs it, or provide a mechanism
by which the ServerManager can obtain the code it needs to finish the loading and exe-
cuting of the Service. We can provide both in one mechanism.

To do this, we add two new methods to the IServerManager interface:

public interface | ServerManager

{
/1 . . . (as before)
public void depl oyService(String serviceNane,
Cl assLoader Strat egy strategy);
public |Server addService(String svcNane, String[] args);
}

The first, depl oySer vi ce, takes a ClassLoaderStrategy instance from chapter 2
and a name of a Service to bind it to. This way, when the ServerManager is asked to
load the Service whose name is the same as the serviceName parameter, IServerMan-
ager can use the ClassLoaderStrategy to load the Service instance, instead of the sys-
tem ClassLoader. But since addSer vi ce currently takes a Service instance as a
parameter (implying that the class has already been loaded and resolved), we need to
add an overloaded version of addSer vi ce that takes the name of the Service to
load, so that the ServerManager can do the loading instead of the client. This second
version of addSer vi ce will be the more popular method to use to add a new Ser-
vice, since it requires less work on the part of the client.

Now that we’ve modified the base interface, of course, we need to modify the
classes that implement it. In turn, we'll have to modify the classes that support the Server-
Manager system (thinking specifically of ServerManager.java), as well as any that act as
Proxies to the ServerManager instance (such as IRemoteServerManager, RMIServer-
Manager, and RMIServerManagerServer). We'll go over the details of the LocalServer-
Manager implementation, but I'll leave it to the reader to follow up with the others to
see how it’s done there.

LocalServerManager only needs to add the two new methods to become com-
pletely compliant. Their implementation is as follows:

public class Local Server Manager
i npl enent s | Server Manager

{
Il . . . (As before)

CHAPTER 8 REMOTE CONTROL

/**
* Place a C assLoaderStrategy into the service-loaders nap,
* so subsequent addService() calls can use the |oader to
* retrieve the necessary code.
*/
public void depl oyService(String servi ceNaneg,
Cl assLoader Strat egy strategy)

{
| og("Entering ServerManager. depl oyService");
m servi ceLoaders. put (servi ceNanme, strategy);
l og("Exiting ServerManager. depl oyService");

}

/**

* Add a Service by name; this presumes that the Service has
* already been deployed to this ServerManager via the
* depl oyServi ce nethod.

*/
public |Server addService(String svcName, String[] args)
{
try
{
I og("Entering ServerManager.addService(String, String[])");
/1 Get the C assLoader Strategy corresponding to the
/] service nane
Cl assLoader Strategy strat =
(O assLoader Strat egy) m servi ceLoader s. get (svcNane) ;
if (strat == null)
{
return null;
}
Strat egyCd assLoader scl =
new StrategyC assLoader (strat);
Service svc =
(Service)scl.loadC ass(svcNanme). newl nstance();
return addService(svc, args);
}
catch (Exception ex)
{
error(ex);
return null;
}
finally
{
I og("Exiting ServerManager.addService(String, String[])");
}
}
/1 Internal data
I
Il . . . (as before)

INECESSARY IMPROVEMENTS 221

222

private HashMap m servi ceLoaders = new HashMap();
}

Notice how the concepts from the ClassLoaders chapter are coming together here to
give us an unparalleled amount of flexibility. For example, we can specify that the
ServerManager is to load the Service from a relational database by using the JDBC-
ClassLoader we'll write later:

Cl assLoader Strategy strat =
new JDBCCl assLoader (/* details omtted */);
ServerManager.deployService(“MyService”, strat);

...

ServerManager.addService(“MyService”);

Now, when the ServerManager wants to load the MyService class, it will use the
ClassLoaderStrategy instance st r at , which happens to be our JDBCClassLoader.

Remember, our requirement was twofold: provide the code, in binary form, for
the ServerManager to use when and how it needs it, or provide a mechanism by which
the ServerManager can obtain the code it needs to finish the loading and executing of
the Service. We've got the second part down cold. We can load the code from any-
where we choose, when we choose, and how we choose, by giving the ServerManager
the ClassLoaderStrategy we want it to use.

We can achieve the first by loading all the code into a HashtableClassLoader and
handing that to the ServerManager to use for our particular Service:

String filename = "Test Service. cl ass";
java.io.FilelnputStreamfis =
new java.io. FilelnputStrean(fil enane);

byte[] bytes = new byte[fis.available()];
fis.read(bytes);

/1 Create a Hashtabl eC assLoader

com j avageeks. cl assl oader . Hasht abl eCl assLoader hcl =
new Hasht abl eCl assLoader () ;

hcl . put A ass(" Test Servi ce", bytes);

/1 Deploy it
Server Manager . depl oyServi ce(" Test Servi ce", hcl);

/1 Now add the Service
| Server svr = Server Manager. addServi ce(" Test Service", new String[0]);

In this particular case, we're only loading the TestService class into the Hashtable-
ClassLoader. If it in turn requires other classes, we'd need to load them by hand into
the HashtableClassLoader, too. This is a potential source of errors, since there’s
nothing programmatic preventing the developer from making this kind of “oops-I-
forgot-to-load-a-class-into-the-Hashtable” mistake, but if it becomes a problem, cre-
ate a depl oySer vi ceJar method on IServerManager that performs the recursive

CHAPTER 8 REMOTE CONTROL

class-check necessary to ensure all the classes are in the .jar file or the normal CLASS-
PATH/Extensions ClassLoader.

One final change is necessary to make all this work remotely: previously, Class-
LoaderStrategy wasn’t Serializable, which means sending the ClassLoaderStrategy
across the wire won’t work correctly. By marking the ClassLoaderStrategy as Serializ-
able, we can send ClassLoaderStrategy instances from one JVM to the other, thus solv-
ing that problem without too much trouble.

With all this code behind us now, we need to test it to be sure it all works. In the
sample code bundle, as a peer to the “Lib” directory, is a “Test” directory in which the
TestService.java file sits. (See the source code on the publisher's website at www.man-
ning.com/neward3.) Compile this file. We're going to test the RMIServerManager by
giving it the special command-line parameter TEST. When the RMIServerManager
finds this parameter, it tries to load the code for the TestService class from the current
directory, places it into a HashtableClassLoader, deploys this HashtableClassLoader to
the remote RMIServerManagerServer, and then tries to add the TestService service.

From the “Lib” directory, start the RMI registry:?

start rmregistry

Then, once the RMI registry is started, from the same directory, start the RMIServer-
ManagerServer:

java com j avageeks. gj as. RM Ser ver Manager Ser ver

This will block the current console window; wait until the message “RMIServerMan-
agerServer bound to registry” appears, then open a new console. The next point is
critical: make certain that the “Lib” directory is in your CLASSPATH,” and move over
to the “Test” directory. Fire up the RMIServerManager with the TEST parameter:

java com j avageeks. gj as. RM Ser ver Manager | ocal host TEST

And, after a few moments, you should see a flurry of activity on the RMIServerMan-
agerServer console, demonstrating that the RMIServerManagerServer is being called
to deploy the HashtableClassLoader and add the TestService instance, and that it’s all
happening from within a unique ClassLoader.

Take a moment to consider what we’ve accomplished. By specifying the Class-
LoaderStrategy to use when loading a particular Service, we’ve managed to completely
remove all Deployment issues from moving code to the server. Now, we can force the
ServerManager to pull code from anywhere, and the client who specified the Class-
LoaderStrategy can be long gone when it actually happens. Zero deployment. What's
more, administrators have complete control over the ServerManager from wherever
they happen to sit. Zero administration.

2 The commands given are for Windows N'T/9x systems; UNIX-heads will need to adjust accordingly.
3 Or the compiled .jar file with the GJAS code is in your Extensions directory.

INECESSARY IMPROVEMENTS 223

Now that we’ve got Services running in the ServerManager, let’s set up the ability
to reconfigure them after they’ve started.

8.4 ADDITIONAL READING

* Andy Krumel, “Revolutionary RMI: Dynamic class loading and behavior
objects.” JavaWorld, (Dec. 1998). Available at http://www.javaworld.com/jw-
12-1998/jw-12-enterprise.html.

This article describes how RMI uses the annoted codebase to automatically
download new classes, and demonstrates how this can be used to provide what
the author calls behavior objects. He describes as “the capability to effortlessly
pass true objects (data and code) between virtual machines without having to
distribute the supporting class files.” It’s basically the same tenet as zero deploy-
ment, except he uses it within the context of a running application (his net-
worked “scribble” example).

224 CHAPTER 8 REMOTE CONTROL

CHAWPTEHR 9

Configuration

9.1 Java models 225
9.2 Summary 236

Application configuration is typically an area that most developers do not consider
during the design, implementation, and testing of an application; if any configura-
tion is necessary, developers will typically lean toward tried-and-true mechanisms
such as .INI, .properties files, or platform-specific methods such as the Win32 Regis-
try. Rarely, if ever, will a developer stop to consider if this application will need con-
figuration from a remote site, or whether configuration will need to be reinitialized
without terminating the application, or even if it should be reread on the fly.

JAVA MODELS

Java models have two basic models for doing configuration of objects/applications:
JavaBeans and Servlets. In a JavaBeans environment, each Bean exposes a method,
getPropertyDescriptors , which returns an array of PropertyDescriptor instances,
each of which carries information about a particular Property (exposed attribute) of
that Bean type. A JavaBeans-enabled development environment can then Introspect
the Bean, retrieving the Properties and, optionally, any PropertyDialogs necessary to
display the Bean’s properties.

This approach carries a couple of advantages. First, because the Property can be
any actual Java object, the PropertyDialog allows Bean developers to create a custom-
ized Dialog for displaying and/or obtaining the value of the Property of the Bean
instance. This, in turn, allows Beans to be of any complexity and any type, even if the

225

9.1.1

226

Bean’s Property type is a custom object designed specifically for that Bean. Secondly,
because all knowledge about the Bean is obtained at run time, no versioning or infor-
mation dependency exists between the Bean and the environment. The environment
discovers the Bean’s Properties each time the Bean is hosted there. If a new version of
the Bean is loaded, the new Properties are loaded without any regard to previous ver-
sions of that Bean; it’s always a new Bean.

The other approach is the Servlet approach, in which each Servlet is handed a
Contextlnfo instance, where interesting information about the Servlet’s host is passed
to the Servlet for perusal. The Servlet can then pass certain information back to the
server, for the server to examine as it sees fit.

This approach carries the advantage of location transparency—the Servlet doesn’t
have any guarantee that the Contextlnfo is from a server in this JVM, or from some
other. Even if in the current version, the server and the Servlet coreside in the same
JVM, a future version of the server can add load balancing or clustering support with-
out requiring modification to the Servlet’s configuration mechanism.

A truly generic configuration mechanism wants to provide both options: location
transparency (which will become even more important in distributed systems using
RMI, CORBA or EJB), and property opacity (so that new types can be introduced as
Property types without requiring recompilation or redesign of the property-gathering
mechanism). The JavaBeans mechanism gives us the Property opacity we’re looking
for; the Servlet mechanism gives us the location transparency. What we need to do
now is combine the two into a single mechanism, if that’s possible.

Interface: ConfigProperty and ConfigProperties

To start with, we need to identify the things that make up a property for a GJAS ser-
vice; the list I use is as follows:

* Name
The property needs to have a name to identify it from the other properties the
service uses; for example, port, message, and so on.

* Tjpe
The property needs to be able to describe the type of its value; some properties
will be Strings, some will be Integers, and so on. This is so that any front end to
the configuration mechanism (Swing applet, Servlet, etc.) knows how to sanity-
check the value entered to ensure the user isn’t specifying a bad value.

» Compatible types
The property optionally should be able to specify a list of compatible types
that are acceptable as values, as well; for example, an Integer value can be con-
verted from Shorts, Longs, Floats and Doubles (with rounding), and even
Strings (by parsing).

o Value
The property needs to have a value tacked onto it.

CHAPTER 9 CONFIGURATION

* Description

The property should have some sort of descriptive string to go with the property
name, so that the configuration front end can provide an explanation about the
property other than just its name. For example, a port property might have

“TCP/IP socket port to use to listen for incoming requests.”
Parser

Very often, configuration settings will be stored and/or sent as Strings; ideally,
we’'d like to have the configuration mechanism provide a way to convert the

String value to its native (byte, Boolean, and so forth) value.

With that in mind, let’s take a first swipe at the ConfigProperty class in listing 9.1.

Listing 9.1 Code for ConfigProperty

[x*

* Class to provide configuration information to interested parties

*/

public class ConfigProperty

{

JAVA MODELS

implements Serializable

/I Internal implementation

1

private String m_name = null;

private String m_classType = null;

private String[] m_compatibleTypes = new String[0];
private Serializable m_value = null;

private String m_desc = null;

private transient Method m_parseMethod = null;
private String m_parseMethodClass = null;
private String m_parseMethodSig = null;

public ConfigProperty()
{1}
public ConfigProperty(String name, Object value, String desc)
{
setBaselnfo(name, value.getClass(), null, desc, null);
}
public ConfigProperty(String name, Class classType,
String[] compatibleTypes, String desc,
Method parser)
{
setBaselnfo(name, classType, compatibleTypes, desc, parser);
}
public ConfigProperty(String name, Class classType,
String[] compatibleTypes,
Serializable value, String desc,
Method parser)

setBaselnfo(name, classType, compatibleTypes, desc, parser);
m_value = value;

227

public void setBaselnfo(String name, Class classType,
String[] compatibleTypes, String desc,
Method parser)

{
m_name = name;
m_classType = classType.toString();
m_compatibleTypes = compatibleTypes;
if (m_compatibleTypes == null)
{
m_compatibleTypes = new String[0];
}
m_desc = desc;
if (parser)
{
m_parseMethod = parser;
m_parseMethodClass = m_parseMethod.getDeclaringClass();
m_parseMethodSig = m_parseMethod.toString();
}
}
public String getName()
{
return new String(m_name);
}
public String getClassType()
{
return new String(m_classType);
}
public String[] getCompatibleTypes()
{
String[] ret = new String[m_compatibleTypes.length];
for (int i=0; i<ret.length; i++)
{
retfi] = new String(m_compatibleTypesl[i]);
}
return ret;
}
public String getDescription()
{
return new String(m_desc);
}
public Serializable getValue()
{
return m_value;
}
public String getValueClass()
{
return m_value.getClass().toString();
}
public void setValue(Serializable value)
{

228 CHAPTER 9 CONFIGURATION

JAVA MODELS

}

String valueClass = value.getClass().toString();

/I If it's the exact type, we're OK
if (valueClass.equals(m_classType))
{

m_value = value;

return;

}

/I If the names match exactly, we're OK
for (int i=0; i<m_compatibleTypes.length; i++)

{
if (m_compatibleTypes[i].equals(valueClass))
{
m_value = value;
return;
}
}

/I 1f we're still here, the value failed to convert
throw new RuntimeException(“Value failed to convert”);

public void setValue(String stringifiedValue)

{

/I Test for parsers already in place (those types already
/I provided by Java; this will work for 95% of the time)

/I java.lang.* types
if (m_classType.equals(String.class.toString()))

: m_value = strigifiedValue;

]t;lse if (m_classType.equals(StringBuffer.class.toString()))
: m_value = new StringBuffer(stringifiedValue);
}else if (m_classType.equals(Boolean.class.toString()))
{ m_value = new Boolean(stringifiedValue);

}else if (m_classType.equals(Byte.class.toString()))

{ m_value = new Byte(stringifiedValue);

}else if (m_classType.equals(Character.class.toString()))
{ m_value = new Character(stringifiedValue);

](;Ise if (m_classType.equals(Double.class.toString()))

: m_value = new Double(stringifiedValue);

}

else if (m_classType.equals(Float.class.toString()))

229

m_value = new Float(stringifiedValue);

}else if (m_classType.equals(Integer.class.toString()))
{ m_value = new Integer(stringifiedValue);

}else if (m_classType.equals(Long.class.toString()))
{ m_value = new Long(stringifiedValue);

}else if (m_classType.equals(Short.class.toString()))
{ m_value = new Short(stringifiedValue);

}

/I java.math.* types
else if (m_classType.equals(BigDecimal.class.toString()))

{
m_value = new BigDecimal(stringifiedValue);
}
else if (m_classType.equals(Biglnteger.class.toString()))
{
m_value = new Biglnteger(stringifiedValue);
}

/I java.util.* types
else if (m_classType.equals(Date.class.toString()))
{
m_value = new Date(df.parse(stringifiedValue));
}
/I Well, it's not a "standard" type, so we've got to
/I try and parse it
else
{
try
{
/I We have to parse the stringified value
if (m_parseMethod == null &&
m_parseMethodClass != null &&
m_parseMethodSig != null)

Clas s ¢ = Class.forName(m_parseMethodClass);
Method[] methods =

c.getDeclaredMethods();
for (int i=0; i<methods.length; i++)

{
String methString = methodsi].toString();
if (methString.equals(m_parseMethodSig))
{
m_parseMethod = methods]i;
break;
}
}

230 CHAPTER 9 CONFIGURATION

}

if (m_parseMethod == null)

{
/I We tried; nothing more to do
return;

/I 1s it static, or virtual?
int mods = m_parseMethod.getModifiers();

Object instance = null;

if (mods & Modifier.STATIC)

{
/I We can call the Method directly; no instance
/I needed in order to do so

}

else

{
/I We have to try and instantiate the Class type
/I in order to call on the Method
Clas s ¢ = Class.forName(m_parseMethodClass);
instance = c.newlnstance();

}

Object[] args = new Object]]

{
stringifiedValue

h

m_value = (Serializable)
m_parseMethod.invoke(instance, args);

}
catch (Exception ex)
{
/I We can't do anything with it; just give up
}

As you can see, it’s not a trivial implementation by any stretch of the imagination;
ConfigProperty is intended to be as complex as necessary in order to make it as simple
as possible for users.

The basic intent of the ConfigProperty interface is simple. Because we’re sepa-
rating the actual configuration mechanism from the thing being configured, we need
to describe the configuration parameters (properties) in a generic way. That way, the
mechanism can interpret the information and present it in a manner that best suits the
configuration front end. Remember, the actual configuration mechanism hasn’t been
specified yet, and shouldn’t be assumed to be via HTML, Applet, or any other form.

JAVA MODELS 231

232

By doing this, we ensure that any configuration mechanism can adequately configure
any running Service.

We want ConfigProperty to be a location-transparent class; that is, we shouldn’t
care from the calling side whether this ConfigProperty instance came to us from a Ser-
vice locally to this JVM, or from across the wire. In order to best support that, we’ll
mark ConfigProperty as Serializable, so that instances of it can be sent to any other
JVM in existence.

A couple of oddities may stand out from the code—to start with, notice how the
m_parseMethod member is marked transient . The Method class, unfortunately,
is not Serializable, so it’s not going to move from one JVM to another.! As a result,
the members m_parseMethodClass and m_parseMethodSig capture the
Method instance’s declaring Class and the method signature. Then, if this Config-
Property is serialized and sent to another JVM, at least we have the information nec-
essary to rebuild the Method instance when we need it. This, in turn, is the source of
much of the complexity in the String form of the setValue method—if
m_parseMethod is null , we attempt to rebuild the Method instance and invoke it.

At this point, we've established support for individual properties, but dealing
with them as a group is more awkward. What we really want, in fact, is a single col-
lection-class instance that we can pass back and forth, containing all the ConfigProp-
erty instances for a given Service. Thus, we create the ConfigProperties class (refer to
the web site for the code), also marked Serializable for easy transmission, to encapsulate
the collection of ConfigProperty instances. ConfigProperties performs almost identi-
cally to the Properties class from the java.lang package, except no methods for
reading or writing to file are provided. If a configuration mechanism wants to store a
ConfigProperties instance to disk, for example, it can simply serialize the data to a File-
OutputStream.

We've established the means by which we can get and set Properties; now let’s
establish precisely how Services make those properties (names and values) available to
the configuration mechanisms that want to present or modify them. Doing so requires
a modification to the GJAS system, the addition of two methods, getConfiginfo
and setConfiginfo , to the Service interface:

public interface Service extends java.io.Serializable

{
. ..

[x*

* Return the Properties configuration information

! Some may argue that, because Method represents a specific Java method (which in C++ could be a
“function pointer”), it could mark the Class name and method signature as its Serializable data. Then,
when deserialized, it could rebuild the Method instance, throwing an exception that the Method of that
name and signature wasn’t found. This way, if the recipient lacked the Class, or the Class itself was dif-
ferent from the source JVM, Method could signal the error without destroying the JVM.

CHAPTER 9 CONFIGURATION

*/
public ConfigProperties getConfiginfo();

/*~k
* Set the Properties configuration information
*/
public void setConfiginfo(ConfigProperties info);

}

The corresponding modifications must be made to IServer (to pass the instances in or
out as necessary) and to any IServer-implementing classes, such as LocalServer or
RMIServer. Notice how we've studiously managed to avoid actually specifying any-
thing about that opaque configuration service. The configuration information could
be coming from a text file on disk, with the configuration mechanism responding in
recognition of a UNIX signal (the infamous “killall ~HUP <process-name>”
approach), or it could be a servlet-based HTML-driven approach. We could even be
responding to a native Control Panel applet on WindowsN'T, using JNI to interact
with the ServerManager. We don’t care how the information was configured, we only
care that new configuration information is present and needs to be picked up.

It may strike readers as odd that we’re making changes to code we just presented
a few chapters ago. This is to demonstrate how most server development takes place—
incrementally and in accordance with changing needs and/or requirements. Despite
most book authors’ professions that software must be allowed to evolve and take shape
in incremental fashion, just about every book published presents its code in its finished
form, without showing the steps along the way. It’s my hope that showing the reader
how this modification affects the rest of the system in turn heightens the reader’s
appreciation for the ripple effect that takes place when modification of an existing sys-
tem takes place. This, in turn, should explain the need for the steps we’ll take in later
chapters to avoid this domino effect of change, in the GJAS system as well as in other
systems we build.

9.1.2 Usage

Using the ConfigProperty system is fairly straightforward (listing 9.2). Services can
store the ConfigProperty instances as individual members of the Service, and bundle
them up into a ConfigProperties instance as necessary when sending them (getCon-
figinfo) and pick out the values when receiving them (setConfiginfo).

Listing 9.2 Code for using ConfigProperty

public class MyService
implements Service
{
/I Internal data
1
private ConfigProperty myFirstProperty =
new ConfigProperty(“myFirstProperty”, new String(*"),
“The first property to configure”);

JAVA MODELS 233

234

private ConfigProperty myNextProperty =
new ConfigProperty(“myNextProperty”, new String(*"),
“The next property to configure”);

. ..

public ConfigProperties getConfiginfo()

{
return new ConfigProperties(new ConfigProperty([]
{
myFirstProperty, myNextProperty
Pk
}
public void setConfiginfo(ConfigProperties configinfo)
{
ConfigProperty tmp;
tmp = configinfo.get(“myFirstProperty”);
if (tmp != null)
myFirstProperty.setValue(tmp.getValue());
tmp = configinfo.get(“myNextProperty”);
if (tmp != null)
myNextProperty.setValue(tmp.getValue());
/I Re-initialize service configuration, if necessary
}

Another approach is to use more standard value types and extract the values from the
ConfigProperties sent in to the Service in setConfiginfo . Precisely how the Service
uses these ConfigProperty instances is not important, so long as it understands two
simple rules:

* Do not assume the ConfigProperty passed out in getConfiginfo comes back to
you in setConfiginfo
Because the ConfigProperties instance may be Serialized and sent out, the exact
instance of ConfigProperty that comes in via setConfiginfo may be an
entirely separate instance, with the original unchanged. Services must assume
that, inside of setConfiginfo , the ConfigProperty and ConfigProperties
instances are entirely separate with no relationship to the one(s) passed out.

* Do not assume that the ConfigProperties instance is entirely acceptable.
A variety of conditions exist, beyond the Service’s control, that may prevent the
ConfigProperties instance from containing all of the Services configuration
information, or, more likely, containing more than just this Service’s configura-
tion information. For example, a developer may later subclass your Service
instance and expect additional properties to be sent in, or the configuration front
end may only send those values which were changed by the administrator to the

CHAPTER 9 CONFIGURATION

Service. Either way, don’t throw away old values until you’re sure you have new
ones to replace them.

These are actually good rules-of-thumb for any interaction with a development
framework. Always assume somebody will come in behind you and do something you
hadn’t expected, even in classes that you're sure will never get subclassed. Once the
code is complete, you have no control over what happens to or around it after that.

Code defensively.

9.1.3 Configuration front ends

On the CD is a SwingControlPanel, an application that displays a Swing user inter-
face about each of the Services loaded, and their corresponding ConfigProperties.
The SwingControlPanel can connect to a GJAS instance through standard sockets,
using the SocketControlService presented in chapter 10, by using RMI and an RMI-
ControlService, or by using CORBA and a CORBAControlService. The means by which
the SwingControlPanel communicates with the ServerManager instance is more or
less irrelevant. So long as the communication mechanism understands sending raw
bytes from sender to destination and back again, we can serialize and deserialize the
configuration information without a problem.

Other front ends are certainly possible. One would be a ServletControlPanel,
which uses an HTTP Servlet hosted within a web browser to connect to the Server-
Manager and configure/control the loaded Services. Another version would be a native
Win32 ControlPanel application (applet), using JNI Invocation to create a JVM and
communicate with the ServerManager on the other end. Doing this sort of integration
reduces the system administrator’s need for Java applications on the machine, thereby
making use of an already established environment (the Win32 Control Panel) with
which the administrator is already familiar. Less learning curve and greater centraliza-
tion of administrative functions means a bigger shift towards zero administration.

Some readers may wonder why we don’t simply store configuration settings to an
RDBMS, or disk file, or any of the other commonly used configuration information
repository systems. Nothing prevents us from doing so, and, in fact, it is quite a good
idea because administrators won’t want to spend time configuring an application, only
to have to reconfigure the entire thing again when the application goes down. The
point of this mechanism, however, is that a front end is free to store the configuration
information anywhere it chooses; a ServletControlPanel may choose to save the settings
in a local file (serializing all settings to disk) on command from the administrator, or
a custom front end may read the ConfigProperties settings from all running Services,
store them to an RDBMS, and provide them when requested to the Services loaded, typ-
ically on application start-up. This is all functionality that’s easily possible from a front-
end application, thus providing the administrator with the maximum flexibility in their
setup. Security concerns, for starters, may dissuade system administrators from putting
configuration information into an RDBMS where, presumably, database administrators

JAVA MODELS 235

9.2

236

have complete and total access. Correspondingly, a company may want to encrypt the
configuration information with a particular private key before storing it to file or
RDBMS; either way, the front end is responsible for this storage/retrieval, and can be
customized as necessary. The configuration mechanism itself doesn’t care, so long as the
data is in ConfigProperties format when received by the recipient Service.

SUMMARY

This chapter presented the necessity of building control mechanisms for server-side
applications. In addition to describing the basic framework and implementation of
the GJAS system, we discussed how we can better achieve zero administration by
developing a system in which control of the system can be maintained remotely (using
RMI). Note that the RMIServerManager/RMIServerManagerServer partnership is
different from a Service such as a RMIControlService/RMIControlServiceClient
partnership. In the first case, we are creating a remote proxy to the ServerManager
itself. In the second case (not discussed here), we are creating a standard Service that
must be loaded within the ServerManager, thus providing the necessary control of the
ServerManager instance in order for the Client to successfully connect and control
the ServerManager. The distinction is a subtle one, but one which provides for future
enhancements (such as fusing load-balancing/clustering support into the RMIServer-
Manager system, by having each machine connecting to the RMIServerManager-
Server become an available node in the cluster for executing Services).

Next, we built a generic configuration mechanism, ostensibly for use within GJAS,
but in all practical cases, usable by any Java application. Note that, in and of itself, the
configuration mechanism offers no real promises to its callers about when or how con-
figuration information is parsed or read; that is up to the recipient application to decide.
Services can either reread and reconfigure precisely when the setConfiginfo
method is called, or reread the configuration values as necessary in code, picking up
changes as they occur. This second approach carries a synchronization danger. If two
configuration settings depend on one another (for example, working directory and file-
name), the setConfiginfo and any other methods accessing those ConfigProperty
instances must be synchronized to prevent reading one while the other is in process of
being modified. If not, the potential exists that a system administrator might be con-
figuring an application to use a new directory in which the filename originally given
doesn’t exist, and the application attempts to look for it before the changes are made.

CHAPTER 9 CONFIGURATION

10.1

Sockets

10.1 Simple socket services 237 10.4 Advanced Socket services 273
10.2 Encapsulation and refactoring 247 10.5 Summary 281
10.3 Connection and 10.6 Additional reading 282

ConnectionManager 255

Java’s rich support for the Internet stems from its integral support for sockets pro-
gramming. The core package java.net provides an easy way to allow a JVM to
communicate with other machines (or with other JVMs on the same machine) in a
scalable, robust fashion. The portable nature of sockets and their industrywide accep-
tance guarantee that heterogenous networks will be able to communicate seamlessly,
and Java’s built-in support for sockets makes it an ideal language for socket communi-
cations programming.

Just about every Java book written covers how to use Java’s Socket and ServerSocket
classes. For that reason, ’'m assuming that you already know how to write Java code to
use sockets. If you’re unfamiliar with how to program with Java’s Socket and Server-
Socket classes, I recommend Java Network Programming. (See “Additional reading.”)

SIMPLE SOCKET SERVICES

Some of the basic Internet services are present simply to provide some measure of
diagnostic ability when setting up a TCP/IP network. Ping, for example, does nothing
except provide a port where a ping client can attempt to connect, thereby verifying
that the machine can be seen over a TCP/IP network. This helps TCP/IP network
administrators when ensuring that a machine is configured correctly. Another service,

237

10.1.1

238

Echo, echoes back to the client any input it receives from the client. The Date service
sends back the current date and time on the server and disconnects the connection.

All of these services share one common characteristic. They are trivial to write, and
having them in GJAS serves the same purpose as they do for TCP/IP administrators:
to verify that GJAS is, in fact, doing what it’s supposed to do.

SocketClient

Before we dive into the server side of sockets, let’s take a second and see how the cli-
ent side of socket programming looks (listing 10.1). Because connecting to a server
socket is universal, the socket client application we build here will be useful in testing
any and all socket-based servers we build later in the chapter.

Listing 10.1 Code for a SocketClient

import java.io.*;

import java.net.*;

/**

* This thread reads from the socket and writes the bytes received to the
* console window.

*/
class SocketToConsoleThread extends Thread
{
public SocketToConsoleThread(Socket s)
{
m_socket = s;
setDaemon(true);
/I Necessary to work around some platforms
setPriority(Thread.currentThread().getPriority()+1);
}
public void run()
{
try
{
/I Set up the necessary Reader from the Socket
Reader fromSocket =
new InputStreamReader(m_socket.getinputStream());
/I Set up the necessary Writer to the Console window
Writer toUser =
new PrintWriter(new OutputStreamWriter(System.out));
int c;
char[] buffer = new char[1024];
while ((c = fromSocket.read(buffer)) != -1)
{
toUser.write(buffer, 0, c);
toUser.flush();
}
}

CHAPTER 10 SOCKETS

catch (java.io.lOException ioEXx)

{ ioEX.printStackTrace();
return;
}
}
Socket m_socket;
}
/**

* This thread reads from the console window and writes
* the received keystrokes to the socket.

*/

class ConsoleToSocketThread extends Thread

{
public ConsoleToSocketThread(Socket s)
{
m_socket = s;
setDaemon(true);
}
public void run()
{
try
{
BufferedReader fromUser =
new BufferedReader(new InputStreamReader(System.in));
PrintWriter toSocket =
new PrintWriter(new OutputStreamWriter(
m_socket.getOutputStream()));
String line;
while ((line = fromUser.readLine()) != null)
{
toSocket.printin(line);
toSocket.flush();
}
}
catch (java.io.lOException ioEXx)
{
ioEX.printStackTrace();
return;
}
}
Socket m_socket;
}
/**

* Client: connect to <host> on port <port>
*/
public class Client

SIMPLE SOCKET SERVICES 239

240

public static void main(String[] args)
throws Exception

{
if (args.length < 1)
{
System.out.printin("Usage: java Client <hostname:port>");
return;
}
/I Parse out hostname and port
String host = args[0].substring(0, args[0].indexOf(":"));
Integer port =
new Integer(args[0].substring(args[0].indexOf(":")+1,
args|[0].length()));
System.out.printin("Connecting t o " + host + ™" + port);
Socket socket = new Socket(host, port.intValue());
SocketToConsoleThread s2c = new SocketToConsoleThread(socket);
s2c.start();
ConsoleToSocketThread c2s = new ConsoleToSocketThread(socket);
c2s.start();
s2c.join();
}

The Client class is the central driver. The ConsoleToSocket class extends java.
lang.Thread, ! and provides a link from the console window’s input stream to the
connected socket. The SocketToConsole class, in similar fashion, reads from the
socket and echoes to the console window’s output stream. The SocketToConsole
thread has its priority boosted by one due to problems with some JVM implementa-
tions that force all threads executing at the same priority level to block if one thread at
that same level attempts to read from standard input.? Client starts both threads, and
then calls join to block until the SocketToConsole thread returns, meaning we’ll
continue to interact until the Server disconnects from the client.

In fact, this “run-a-Thread-to-pull-from-an-InputStream-and-send-down-an-
OutputStream” concept is common enough to merit the design of a specific class to
do precisely that (listing 10.2); thus, we create the ThreadedPipeStream class.

! This would seem to contradict what I say in chapter 5, where I advocate implementing Runnable, in-
stead of extending Thread, but bear with me. This is part of the refinement process.

2 From Java Examples in a Nutshell, by David Flanagan, in the GenericClient.java implementation.

CHAPTER 10 SOCKETS

Listing 10.2 Code for the ThreadedPipeStream Class

/**
* ThreadedPipeStream: reads from an InputStream, sends the received
* data down the given OutputStream.
*/
public class ThreadedPipeStream
implements Runnable
{
/I Internal data
private Thread m_thread,;
private InputStream m_from;
private OutputStream m_to;
private Exception m_lastException;

public ThreadedPipeStream(InputStream in,
OutputStream out,
Thread thread)

{
m_thread = thread;
m_from = in;
m_to = out;

}

public ThreadedPipeStream(InputStream in,
OutputStream out)
{
m_from = in;
m_to = out;

/I Create our Thread

m_thread = new Thread(this);
m_thread.setDaemon(true);

m_thread.setName(toString());
m_thread.setPriority(Thread.currentThread().getPriority()+1);

}
/**
* Convenience method to save from having to reimplement all the

* Thread methods: start(), stop(), resume(), interrupt(), and
* so forth. Should probably put those methods in here at some

* point.
*/
public Thread getThread()
{
return m_thread;
}
public String toString()
{
return new String("ThreadedPipeStream:" +
m_from.toString() + ":" +
m_to.toString());
}

SIMPLE SOCKET SERVICES 241

242

public void run()

{
try
{
/I Set up the necessary Reader from the Socket
Reader from =
new InputStreamReader(m_from);
/I Set up the necessary Writer to the Console window
Writer to =
new PrintWriter(m_to);
int c;
char[] buffer = new char[1024];
while ((c = from.read(buffer)) != -1)
{
to.write(buffer, 0, c);
to.flush();
}
}
catch (IOException ioEXx)
{
m_lastException = ioEXx;
iOEX.printStackTrace();
}
}

ThreadedPipeStream allows for a certain amount of flexibility in its implementation;
by allowing users to specify the Thread to use, we can hook in to any custom Thread-
processing scheme the client has going; if no explicit Thread is provided, Threaded-
PipeStream creates its own. By using InputStream and OutputStream as the source
and destination to use, we also make it possible to use any of the Java I/O types as
source or sink, whether it be Socket, Console, or anything else. This, in turn, makes
the Client implementation much simpler:

o

* Client: connect to <host> on port <port>
*
* Componentized implementation
*/
public class Client
{
public static void main(String[] args)
throws Exception

{
if (args.length < 1)
{
System.out.printin("Usage: java Client <hostname:port>");
return;
}

CHAPTER 10 SOCKETS

/I Parse out hostname and port

String host;

Integer port;

host = args[0].substring(0, args[0].indexOf(":"));

port = new Integer(args[0].substring(args[0].indexOf(":")+1,
args[0].length()));

System.out.printin("Connecting t o " + host + ™" + port);

Socket socket = new Socket(host, port.intValue());

ThreadedPipeStream socketToConsole =
new ThreadedPipeStream(socket.getinputStream(),
System.out);
socketToConsole.getThread().start();

ThreadedPipeStream consoleToSocket =
new ThreadedPipeStream(System.in,
socket.getOutputStream());
consoleToSocket.getThread().start();

socketToConsole.getThread().join();

}

Once again, the act of creating a reusable component in turn leads to less develop-
ment required later: zero development at its finest. We’ll use this class (and this con-
cept of feeding an OutputStream with the contents of an InputStream) again later.

To test, run the Client against a well-known web server on port 80, one such as
this book’s support web site (www.javageeks.com) or Manning’s web site (www.man-
ning.com). If you type in the HTTP header sent by the client (see later in this chapter),
you should get back the full HTML file for that URL.

10.1.2 EchoService

Listing 10.3 demonstrates how an Echo-like service looks inside the GJAS system.

Listing 10.3 Code for EchoService

/**
* EchoService simply echoes back the input it receives to the client.
*/
public class EchoService
extends com.javageeks.gjas.services.ThreadedServer
implements Runnable

public void start()
throws Exception
{

setRunnable(this);

super.start();

SIMPLE SOCKET SERVICES 243

244

public void run()
{
try

ServerSocket svrSocket = new ServerSocket(7);

Socket socket;
while ((socket = svrSocket.accept()) '= null)

{

ServerManager.instance().log("Socket accepted");

Reader fromSocket =

new InputStreamReader(socket.getIinputStream());
Writer toSocket =

new OutputStreamWriter(socket.getOutputStream());

try
{
char[] buffer = new char[1024];
int c;
while ((c = fromSocket.read(buffer)) != -1)
{
toSocket.write(buffer, 0, c);
toSocket.flush();
}
}

catch (Exception ex)

{}

socket.close();

ServerManager.instance().log("Socket closed");
}
}

catch (java.io.lOException i0EXx)

{
ioEx.printStackTrace();

return;

The implementation of the EchoService is straightforward. In start , we simply call
the ThreadedServer’s setRunnable method with this as the parameter. Then,
when the ThreadedServer calls the associated start method, control passes to our
run method. In that, we create a ServerSocket on port 7 (the RFC-mandated port),
we enter an infinite loop, blocking inside the ServerSocket’s accept call until a new
connection from a client comes in and we return with a new Socket instance. We set
up a Writer to point to the OutputStream of the Socket, a Reader to pull from the
InputStream of the Socket, then enter a new while loop to pull input from the cli-
ent and write it back down the socket until the client terminates the connection.
When that happens, we close the Socket and return.

CHAPTER 10 SOCKETS

This is not the world’s most scalable implementation of the Echo service. Specif-
ically, any requests for the Echo service that come in while the service is already occu-
pied with a previous client will block until the first client terminates the connection.
This means that we cannot service more than one Echo connection at a time, which
is obviously not a scalable solution.

10.1.3 TimeService
TimeService is another easy service to implement:

/~k~k
* TimeService simply echoes back the input it receives to the client.
*/
public class TimeService extends ThreadedServer

implements Runnable
{

public void start()

throws Exception

{

setRunnable(this);

super.start();

}

public void run()
{

try

{

ServerSocket svrSocket = new ServerSocket(7002);

Socket socket;
while ((socket = svrSocket.accept()) '= null)

{

ServerManager.instance().log("Socket accepted");

Reader fromSocket =
new InputStreamReader(socket.getIinputStream());
PrintWriter toSocket =
new PrintWriter(
new OutputStreamWriter(
socket.getOutputStream()));

toSocket.printin(new Date());
/I Date's default constructor constructs a Date
/I with the current date/time; Date.toString()
/I converts the date/time to readable format
toSocket.flush();

socket.close();

ServerManager.instance().log("Socket closed");

}
}

catch (java.io.lOException ioEXx)

SIMPLE SOCKET SERVICES 245

10.1.4

246

ioEX.printStackTrace();
return;

}

TimeService is even less work than the EchoService, since we don’t need to keep the
Socket connection alive until the client quits. After the service sends the current date
and time on the server, we close the Socket and wait for the next connection.

Here, as with EchoService, you can see that the TimeService is also inherently non-
scalable. As with EchoService, we can only handle one concurrent connection, forcing
any others to block until we're finished with the first. Unlike EchoService, however,
chances are small (until we get into a large number of attempted concurrent connec-
tions) that we will actually have a performance problem, due to the speed with which
we can deal with each connection—just get the date, send it down the Socket, and close.

Analysis

This also demonstrates an important difference between two approaches to sockets
programming: dedicated and stateless. The EchoService is a dedicated service in that
so long as the client remains connected to the Socket, we service one, and only one,
client. More sophisticated dedicated services would maintain some form of state on
behalf of the client, in a one-to-one fashion. This approach carries the advantage of
being simple to understand, and offers the best performance on behalf of each con-
nected client. No waiting necessary.

TimeService, on the other hand, simply services the client request and disconnects.
If the client wishes the time on the server again, the client must reconnect to the
TimeService on a new connection. One drawback to this approach is that if there is any
context that must be maintained across requests, the client must track it and resend it
on each new request. This is, in turn, offset by the fact that most stateless protocols are
more scalable (they spend no time idling, waiting for additional client requests), as well
as more efficient (a single TimeService instance can provide services for a large number
of clients before requiring another TimeService instance to assist).

To see the difference, let’s draw an analogy.? You are a business traveler planning
a trip. In a dedicated service, you have a plane that is for your use only. You can com-
mand it to go anywhere, you can leave your bags on board, and you can have the pilot
make the odd trip for you while you’re meeting with clients. But the plane remains
dedicated to your use only. As convenient as this is, it does not scale well when com-
pared to stateless services—the use of commercial airlines or taxicabs. The first offers
more direct control to the client (you), but it requires that the resource (the object

3 Analogy loosely borrowed from Roger Sessions COM and DCOM: Microsoft’s vision for Distributed
Objects (John Wiley and Sons, 1997).

CHAPTER 10 SOCKETS

server, the limousine, the private plane) sit idle during those times when the client is
not using it. To draw out the final comparison, the private plane will get you from A
to B faster, since it doesn’t make any additional stops along the way, but it requires
one plane per customer. At that ratio, most commercial airlines would be bankrupt
long before they were able to move 100 people across the country, the way they do
now with jumbo jets and fixed routes.

One thing you might have noticed as we moved through these admittedly simple ser-
vices is that much of the code for both looked alike. For example, the only real difference
between EchoService and TimeService was this sequence of lines in the run methods:

/I EchoService.run:
try
{
char[] buffer = new char[1024];
int c;
while ((c = fromSocket.read(buffer)) != -1)
{

toSocket.write(buffer, 0, c);
toSocket.flush();

}
}

catch (Exception ex)

{1}

/I TimeService.run:
toSocket.printin(new Date());
toSocket.flush();

Any time this is apparent, it means there has to be some way of refactoring code out
to a base class or a component.

10.2 ENCAPSULATION AND REFACTORING

As you probably guessed, we can elevate some common tasks into a base class. Lacking
any real originality, I choose to call this base class SocketServer, not to be confused with
the java.net class ServerSocket; the first is the ThreadedServer-derivative class that
provides base functionality for sockets-based services; the second is a socket that
receives client connections and hands back Socket instances for use.

10.2.1 SocketServer

Realistically, SocketServer needs only one piece of information (the port number
which with to initialize the ServerSocket) and requires only one customization of its
clients (what to do once the client connects). We express this in two ways: for the first,
we provide a constructor that takes the port as an argument as well as get /set meth-
ods to manipulate it, and for the second, we create an abstract method that derivatives

4 SocketServer encapsulates most of the need for clients or Service-writers to deal with ServerSockets.

ENCAPSULATION AND REFACTORING 247

248

must implement in order to compile. We extend ThreadedServer (from chapter 4) to
allow the ServerSocket (listing 10.4) to block without concern for the main thread.
Because the support and/or overhead for creating the thread can be encapsulated in
the base class, derived classes have to focus only on the actual socket functionality.

Listing 10.4 Code for SocketServer

package com.javageeks.gjas.services;

import com.javageeks.gjas.ServerManager;
import com.javageeks.gjas.ConfigProperties;
import com.javageeks.gjas.ConfigProperty;
import java.io.*;
import java.net.*;
import java.util.*;
/**
* SocketServer: abstract base class refactoring common behavior when
* writing a service to handle clients via sockets. Derived Services
* are expected to override serve and provide a port number
* to use as our server socket either via the setPort
* method or via a "port" property to setConfiginfo
*/
public abstract class SocketServer extends ThreadedServer
{

/I Nested Runnable class

class SocketServerRunner

implements Runnable

public void run()

{

Socket socket = null;

/I Start our (nearly) infinite loop waiting for connection
/I requests from clients
1
while (true) //('Thread.currentThread().isInterrupted())
{
try
{

socket = m_serverSocket.accept();

ServerManager.log(
getClass().getName() + " Socket accepted");

/I Calling getlnetAddress() can cause machines

/I not on a network to block for up to 15 minutes

/I due to a "feature" within Microsoft's implementation
/I of sockets. If your machine is on a TCP/IP network,
/I comment out the following lines for a bit more

/I information in the log regarding the connection.

"

/IServerManager.instance().log(

CHAPTER 10

SOCKETS

1 getClass().getName() + ™" +
1 "Socket accepted from " +
1 socket.getinetAddress());

/I Pass it to the derived class
serve(socket);

/I Derived class is responsible for closing it, since
/I if we close it, deriveds won't be able to deal with
/I the socket in a separate thread, if they so choose.

}
catch (InterruptedlOException ex)
{

if (shouldStop())
return;

else
continue;

}
catch (Throwable t)
{

ServerManager.log(
"Exception thrown from serve() on socket " +
socket + ":);

ServerManager.log(t.toString());

}

}

/I Constants

1

protected static final String PORT_PROP = "port";
protected static final String TIMEOUT_PROP = "timeout";

/I Internal data
1
protected ServerSocket m_serverSocket;

private ConfigProperty propPort =
new ConfigProperty(PORT_PROP,
new Integer(0),
"TCP/IP socket to use");
private ConfigProperty propTimeout =
new ConfigProperty(TIMEOUT_PROP,
new Integer(5 * 1000),
"Milliseconds before " +
"hanging up on client");

private ConfigProperties configinfo =
new ConfigProperties(new ConfigProperty[]

{
propTimeout,
propPort

»;

ENCAPSULATION AND REFACTORING 249

/**
* Constructor, taking no arguments. The port number on which to
* listen must be specified (either through the args argument to
* start or via setPort).
*/
public SocketServer()
{
/I Do nothing
}
/**
* Constructor, taking the port number on which to listen as the
* sole argument.
*
public SocketServer(int port)
{
setPort(port);

}

/**
* Start the SocketServer
*/
public void start()
throws Exception

{
setState(STARTING);

int port = ((Integer)propPort.getValue()).intValue();
int timeout = ((Number)propTimeout.getValue()).intValue();

/I We've GOT to have a port # by now, or we can't create
/I the ServerSocket.
if (port == 0)
throw new java.net.ConnectException(
"SocketServer must have a port argument!");

ServerManager.log(

getClass().getName() + ".start(): " +

"Opening ServerSocket on por t " + port);
m_serverSocket = new ServerSocket(port);

/I Configure the ServerSocket so we don't block indefinitely
/I inside of accept()

try
{
m_serverSocket.setSoTimeout(timeout);
/I Only wait for m_timeout milliseconds before coming back
}
catch(SocketException ex)
{
ServerManager.log(ex);
return;
}
catch (IOException ex)
{

250 CHAPTER 10 SOCKETS

ServerManager.log(ex);

}

/I Set the Runnable instance
1
setRunnable(new SocketServerRunner());

/I Call up to the base class (ThreadedServer) to let it do
/I its ancestor thing

1

super.start();

}

/**

*

*/

public void stop()
throws Exception

{
/I First call up the chain, to make the Thread (in which
/I we're listening to the ServerSocket) stop.
super.stop();
/I Close the ServerSocket
m_serverSocket.close();
}

/I pause() and resume() are a little poorly defined here; if

/I we have pause() and resume() close and reopen the socket,
/I respectively, they have no differentiation from start()

/I and stop(). On top of that, ThreadedServer already defines
/I pause() and resume() to pause and resume the Thread, so
/I additional redefinition would seem to be unnecessary

/I here.
/**

*/
public ConfigProperties getConfiginfo()
{

return configinfo;

}
/**

*/

public void setConfiginfo(ConfigProperties props)
{

/I We need to do a couple of things here; if the port or

/I the timeout values change, we need to shut down the

/I socket and open it again using the new values

if (((Integer)configinfo.get(PORT_PROP).getValue()).intValue() =
((Integer)props.get(PORT_PROP).getValue()).intValue() ||
((Number)configinfo.get(TIMEOUT_PROP).getValue()).intValue() !=
((Number)configinfo.get(TIMEOUT_PROP).getValue()).intValue())

ENCAPSULATION AND REFACTORING 251

252

try

{
ServerManager.log("Stopping Service: reconfigure");
stop();
/I Read the new values
ServerManager.log("Re-reading config values");
configinfo.set(props);
/I Restart the Service
ServerManager.log("Restarting Service");
start();
}
catch (Exception ex)
{
ServerManager.error(ex);
}
}
}
/**

* Return the port we accept clients on.
*/
public int getPort()

{
return ((Integer)propPort.getValue()).intValue();

}

[x*

* Set the port number we plan to accept clients on; has no effect
* after the service is started.

*/

public void setPort(int newPort)

{

propPort.setValue(new Integer(newPort));
}
/**
* Derived services must override this method. Once a client has
* connected to us, this method is called to "do the work" of
* handling the connection.
*/
public abstract void serve(Socket socket)
throws Exception;

SocketServer is a fairly straightforward implementation, but it’s the most complex of
the ones we’ve done so far, so a few moments to explain precisely what’s going on
within its various parts is necessary.

To start with, notice that SocketServer uses two ConfigProperty instances to rep-
resent the port on which we are to listen, as well as the timeout period before giving

CHAPTER 10 SOCKETS

up on the client and closing the Socket. These are both specified as Integers, although
any Number-extending class would work, since Number provides an intValue
method.” Note also that within the SocketServer’s setConfiginfo method, we stop
the SocketServer, copy over the new values passed in, then re-start the Server. This is
precisely what we intended to happen when we designed the whole Configuration sys-
tem. The Service gets its new values, and can either reread them on the fly, or stop/
reread/restart, as necessary for each Service.

SocketServer also specifies two constructors. One is the standard default con-
structor; the other is a constructor intended for subclasses to call within their own con-
structors, allowing for convenient setting of the port property. Nothing prevents a
derived Service from calling SocketServer’s base constructor and later either calling
SocketServer’s setPort method directly, or else modifying the value through set-
Configinfo , but this provides a simple way to configure the port for listening.

SocketServer’s start method, however, is by far the most interesting part of the
class. It first extracts the port and timeout values from its configuration information.
Should port be zero (which indicates it wasn’t specified by either the Service class or
the system administrator before starting), there’s nothing SocketServer can do. We
can’t continue. We throw a java.net.ConnectException indicating why we
threw it. In a more interactive system, we would probably make this its own type of
Exception class, but I choose not to for a reason.

Normally, when an Exception is thrown, it falls into one of two categories: either
the client can do something about it, or the client can’t. Exceptions that can be han-
dled include such as improper URL specifications, improper filenames, and so forth.
In those situations, the client can reasonably catch the exception, and deduce from the
type whether it can correct the problem. For example, with a FileNotFoundException,
the code can pop up a dialog to the user asking if the filename is correct, and would
the user like to create a new file. With a MalformedURLException, we can again query
the user if the URL is correct.

With this, however, there’s not much we can do—we can’t expect ServerManager
to be able to correct the action (it’s not supposed to know anything about the Service),
so the actual type of Exception thrown is fairly irrelevant. It’s not going to try to
undertake corrective action based on the type, as we would in client code. So we throw
a type that’s close enough, and continue.

Once the ServerSocket is created, we then call the ThreadedServer.set-
Runnable method with an instance of the inner Runnable class SocketServerRunner,
whose run method spins in an infinite while loop blocking on accept . As each
request comes in, it passes the local Socket off to an abstract method called serve .
Note that we could pass in the InputStream and OutputStream from Socket instead

5 The semantics of the java.lang.Number class say that an int will be returned from intvalue , and
that so long as a class honors Number’s interface, we’re okay in using it for port values.

ENCAPSULATION AND REFACTORING 253

10.2.2

254

of the Socket itself, but Socket carries with it some information for which derived
classes might have a use, and it’s marginally simpler to pass in the Socket instead of
the I/O streams.

We mark serve as abstract because I don’t want to have a default implementation
for it. The whole point of SocketServer is to serve as an implementation-inheritance
base class; creating a SocketServer on its own would be pointless. We could create a
Serveable interface, with the serve method as its own method, and take one of those
in the SocketServer constructor, instead of using implementation-inheritance. Doing
so would be more awkward, since specifying the name of the service to load (through
the configuration information) would also have to have the name of the Serveable
instance to create at the same time. Nevertheless, there are some definite advantages
to this approach, and we’ll do something just like this in the next section.

Example: Echo2Service

Let’s see what EchoService looks like now that we’ve refactored some of the scaffold-
ing code regarding sockets into the base SocketServer class:

import java.io.*;
import java.net.Socket;

public class Echo2Service
extends com.javageeks.gjas.services.SocketServer

{
public Echo2Service()
{
super(7);
}
/**
* Handle a connection
*/
public void serve(Socket socket)
throws Exception
{
Reader fromSocket =
new InputStreamReader(socket.getinputStream());
Writer toSocket =
new OutputStreamWriter(socket.getOutputStream());
char[] buffer = new char[1024];
int c;
while ((c = fromSocket.read(buffer)) != -1)
{
toSocket.write(buffer, 0, c);
toSocket.flush();
}
}
}

CHAPTER 10 SOCKETS

If you compare this version to the version a few pages back, we’ve added functional-
ity—not only can we specify one via SocketServer’s default configuration information
handling, but we default to 7 if one isn’t specified—while reducing the number of
lines in the code. This is definitely moving in the right direction.

10.3 CONNECTION AND CONNECTIONMANAGER

SocketServer suffers from the same problem as its predecessors. Because it is executing
within its own thread, each request is serialized. We must finish with the first request
before we can move on the next. This is no good, especially when dealing with dedi-
cated Services like EchoService. We've effectively undone all our hard work putting
Threads into the system to go right back to a single-client system, at least at the
Socket level.

Before we dive into the code, let me describe precisely what is being built. Con-
nectionManager (listing 10.5) will create Connection instances, just as ServerManager
creates Service instances. The idea is that if a user creates a class that implements Con-
nection, we can plug them into ConnectionManager just as we plug Service-imple-
menting classes into ServerManager and it all just works. ConnectionManager will
farm out each Connection to a separate Thread in order to achieve parallelization of
client responses, up to a user-definable set number of Threads (in order to prevent
denial-of-service attacks from crippling the entire JVM). ConnectionManager will
also, therefore, be responsible for shutting down these Connections (if necessary)
when the stop request comes through.6

Once ServerManager creates the ConnectionManager instance, Connection-
Manager must now obtain three pieces of information in order to continue, two of
which are vital to its ability to function. First, it needs to know the port number on
which to listen (required), and it needs to know the name of the Class to instantiate
in order to handle the client request (also required). Optionally, it also has a threads
argument, which indicates the number of threads to create in the thread pool for Con-
nections. If no argument is specified, then it is assumed that an infinite number of
Threads can be created, which is dangerous in any but the most secure and trustworthy
environments. In addition, because the loading of the Connection-implementing class
is critical if ConnectionManager is to support the whole load-on-the-fly support from
chapter 2, we also provide an optional loader property, which is a ClassLoaderStrategy
instance to use to load the Connection class when starting.

® In the source code available on the publisher’s web site, this is actually not implemented, since most of
these Services are stateless anyway, and will not require more than a second or two to complete. How-
ever, ConnectionManager is still responsible for the Connections it maintains. If you write a Connec-
tion that takes longer (and won’t seriously muck things up if you kill it halfway through, which is the
other reason I didn’t implement it), then you need to have ConnectionManager.stop iterate across
each Thread and call stop on it.

CONNECTION AND CONNECTIONMANAGER 255

Got it? Let’s take a look at the code, then:

Listing 10.5 Code for ConnectionManager

package com.javageeks.gjas.services;

import com.javageeks.gjas.*;

import com.javageeks.classloader.ClassLoaderStrategy;
import com.javageeks.classloader.StrategyClassLoader;
import EDU.oswego.cs.dl.util.concurrent.Callable;

import EDU.oswego.cs.dl.util.concurrent.Executor;

import EDU.oswego.cs.dl.util.concurrent.ThreadFactory;
import EDU.oswego.cs.dl.util.concurrent. ThreadFactoryUser;
import EDU.oswego.cs.dl.util.concurrent.PooledExecutor;
import EDU.oswego.cs.dl.util.concurrent. ThreadedExecutor;
import EDU.oswego.cs.dl.util.concurrent.DirectExecutor;
import java.io.lnputStream;

import java.io.OutputStream;

import java.io.lOException;

import java.net.ServerSocket;

import java.net.Socket;

import java.util.Vector;

/**

*

ConnectionAdapter is an Adapter (see the GOF book) class that ties
together a Connection instance and a Thread to run it in. Java purists
will immediately cringe at the use of the non-private member fields in
this class, and claim that they should be initialized via a constructor
instead of by direct manipulation (see run() in ConnectionManager). |
won't argue that they could be initialized that way. However, because
ConnectionAdapter isn't intended as a reusable component, but as an
integral part of the ConnectionManager component (it began life as an
anonymous class inside of ConnectionManager, that's how tightly these
two are tied together), and therefore subject to some relaxation of the
"normal" rules regarding encapsulation.

*

*

*

*

*

*

*

*

*

*

*

One interesting trick it makes use of is the "Runnable finish;" field.
ConnectionManager sets this field to an anonymous Runnable class instance
that ConnectionAdapter must call before it shuts down completely; this

is what helps ConnectionManager keep track of the Connections still
outstanding. | could have, certainly, simply exposed the m_connections
Vector in ConnectionManager through methods like "add(Connection c)" and
"remove(Connection c)", but even then there could be more than one
ConnectionManager running, so | would have had to have a ConnectionManager
reference in ConnectionAdapter, as well. This is more elegant, in my
opinion, and keeps the "cleanup" logic in the precise place where it
should be--in the ConnectionManager class code.

*

*

*

*

*

*

*

*

*

*

*/
class ConnectionAdapter
implements Runnable

256 CHAPTER 10 SOCKETS

public void run()

{

try

{
connection.serve(socket);
socket.close();
finish.run();

}

catch (InterruptedException intEx)

{
/I Do nothing

}

catch (Exception ex)

{
ServerManager.instance().log(ex);

}

finally

{
/I Close the Socket
try { socket.close(); }
catch(java.io.lOException ioEx) { }
ServerManager.instance().log(

getClass().getName() + ™" +
"Socket closed");
}
}

Connection connection;
Socket socket;
Runnable finish;

}

[**

* ConnectionManager is a ThreadedServer that specifically manages a single
* type of socket connection between this host and some anonymous client.
*
public class ConnectionManager extends SocketServer
{

/I Internal members

1

private Executor m_executor = null;

private Vector m_connections = new Vector();

private Class m_connectionClass = null;

private static int s_count = 0;

private ConfigProperty propThreads =
new ConfigProperty("threads", new Integer(1),
"Maximum number of threads to use");
private ConfigProperty propType =
new ConfigProperty("type", new String(""),
"Connection class to use");
private ConfigProperty propLoader =

CONNECTION AND CONNECTIONMANAGER 257

new ConfigProperty("loader”, ClassLoaderStrategy.class,
null, null,
"ClassLoaderStrategy instance to use " +
"to load Connection instances",
null);

private ConfigProperties m_configinfo =
new ConfigProperties(super.getConfiginfo(), new ConfigProperty[]

{
propThreads,
propType,
propLoader

D

/**

* Start the Service.

*/

public void start()
throws Exception

{
setState(STARTING);

ServerManager.log(
"ConnectionManager: Loaded by " +
getClass().getClassLoader().getClass().getName());

/I Determine which Executor to use; unless the "threads"
/I ConfigProperty has been modified, we default to using
/I a ThreadedExecutor
switch (((Integer)propThreads.getValue()).intValue())
{
case O:
m_executor = new ThreadedExecutor();
break;
case 1:
m_executor = new DirectExecutor();
break;
default:
Integer numThreads =
(Integer)propThreads.getValue();
m_executor =
new PooledExecutor(numThreads.intValue());
((PooledExecutor)m_executor).waitWhenBlocked();
break;
}
ServerManager.log(getClass().getName() + " " +
"Executor : " + m_executor.toString());

/I Determine Connection Class to use
String name = (String)propType.getValue();
if (name.equals(™))
{
throw new Exception("You must specify a \"type\" " +
"argument to ConnectionManager");

258 CHAPTER 10 SOCKETS

else

ServerManager.log(
getClass().getName() + ": Using " +
name + " as Connection type");

/I Determine if we've been given a specialized
/I ClassLoader instance to use; otherwise, just use
/I whatever ClassLoader loaded us
ClassLoaderStrategy strat =
(ClassLoaderStrategy)propLoader.getValue();
if (strat == null)
{
ServerManager.log(
getClass().getName() + ™ Using " +
getClass().getClassLoader().getClass().getName()
+ " as ClassLoader fo r " + name);
m_connectionClass = Class.forName(name);

}
else
{
ServerManager.log(
getClass().getName() + ™ Using " +
strat.getClass().getName() + " as ClassLoader " +
"for " + name);
StrategyClassLoader scl =
new StrategyClassLoader(strat);
m_connectionClass = scl.loadClass(name);
}

/
/
/
/

=

Create a ThreadFactory that gives us a bit more

information in the Thread label; useful for tracing and
debugging. We only need to do this where we're using
Threads other than the 'main’ Thread. (Both

/I ThreadedExecutor and PooledExecutor are ThreadFactoryUser-
/I implementing classes.)

f (m_executor instanceof ThreadFactoryUser)

N

{
((ThreadFactoryUser)m_executor).setThreadFactory(
new ThreadFactory()
{
public Thread newThread(Runnable cmd)
{
return new Thread(cmd,
m_connectionClass.getName() + s_count++);
}
»
}

/I Call up the chain so SocketServer can do its thing
super.start();

CONNECTION AND CONNECTIONMANAGER 259

*/
public ConfigProperties getConfiginfo()
{

return m_configinfo;

}

/**

*

*/

public void setConfiginfo(ConfigProperties props)
{

m_configinfo.set(props);

*/

public void serve(Socket socket)
throws Exception

{
/I Create the Connection instance, place it in our list
final Connection connection =

(Connection)m_connectionClass.newlInstance();

m_connections.addElement(connection);

/I On each connection, create a new Runnable to be
/I executed within the Executor to do the actual work
ConnectionAdapter ca = new ConnectionAdapter();
ca.connection = connection;
ca.socket = socket;
ca.finish = new Runnable()
{

public void run()

{

m_connections.removeElement(connection);

}

/I The "finish" Runnable in ConnectionAdapter

/I provides a Java-acceptable way of performing
/I a callback into this object to remove the

/I Connection object without having to (a) expose
/I the m_connections Vector to outside use via
/I "add" and/or "remove" methods, or (b) make
/I the m_connections Vector package-available

/I by reducing the ‘private’ access specifier to
/' (nothing, which is package access).

m_executor.execute(ca);

260 CHAPTER 10 SOCKETS

Again, as with SocketServer, this class is nontrivial in parts.

First, take a look at the initialization of the ConfigProperties instance for the
ConnectionManager class. Because we want to preserve SocketServer’s configuration
information while at the same time adding our own, we use the ConfigProperties con-
structor that takes both a ConfigProperties instance and an array of ConfigProperty
instances. This then gives ConnectionManager five properties: “port ” and “time-
out ”, which SocketServer will recognize and handle, and “threads 7, “type ”, and
“loader 7, which ConnectionManager itself will handle. Also, because the “loader ”
property is a nonbasic type (that is, it’s a ClassLoaderStrategy instance, not a String

»

or an Integer), we use the longer form of the ConfigProperty constructor to specify
the type independently of the value. We set the value of the “loader ” property to
be null ; this means that the ClassLoader that loaded the ConnectionManager (most
likely the Java App/Ext-ClassLoader pair, the bootstrap ClassLoader) will in turn load
the Connection-implementing class specified in “type ”

Because ConnectionManager is responsible for the threading policy of the con-
nections, it uses Lea’s Executor classes to manage its thread pools (or lack thereof). By
default, the “threads ” property is set to O, indicating that ConnectionManager is
free to fire off a Thread per connect. This is the easiest setting to use, and offers the
best performance’ of the three, but opens up the possibility of denial-of-service attacks
by malicious clients; instead, in an untrusted environment, it’s far safer to use a max-
imum number of Threads in a ThreadPool.

In order to better help track down the threads during execution, Connection-
Manager has its Executor use a custom ThreadFactory (a simple interface that has only
one responsibility—return new Thread objects when asked) in order to set the Thread
names to something meaningful. Here, ConnectionManager sets the name of the thread
to be that of the Connection type itself plus a static count (to keep the names unique).

On each connection, within the serve method, ConnectionManager creates a
new instance of the Connection type, then creates a new ConnectionAdapter instance
to go with it. ConnectionAdapter serves as the glue that ties the created Thread and
the Connection instance together. It implements Runnable , allowing it to be placed
as the target of a Thread, and calls the Connection instance’s serve method (and
catches any exceptions thrown from there, as well).

ConnectionManager stores each newly created Connection instance in a private
Vector called m_connections . However, because ConnectionManager has no way
of knowing when the Connection is finished, it cannot remove the Connection
instance from the Vector. Instead, ConnectionManager creates an anonymous Run-
nable instance to call remove on the Vector, and hands this Runnable instance to the

7 Using a fixed number requires some tuning, and using only one thread is certainly less performance-
friendly.

CONNECTION AND CONNECTIONMANAGER 261

10.3.1

262

ConnectionAdapter. Rather than place the Runnable instance (finish) within a
Thread, however, ConnectionAdapter calls its run directly.

This approach may seem odd to some Java programmers. In fact, it’s not a com-
mon idiom within Java to establish this kind of callback. Some would be tempted to
provide addConnection and removeConnection methods to ConnectionManager
and have the ConnectionAdapter call those. However, because multiple Connection-
Manager instances can be running simultaneously, ConnectionAdapter would have to
have a reference to the ConnectionManager that created it in order to call on the correct
ConnectionManager. Moreover, it really isn’t ConnectionAdapter’s responsibility to
know what sort of internal bookkeeping ConnectionManager is doing. If, for example,
ConnectionManager later wants to track start and stop times for the Connection
instances, that's ConnectionManager’s business, and has nothing to do with Connection-
Adapter. By using this anonymous Runnable instance built within ConnectionManager,
the necessary cleanup measures required at the end of a Connection call remain encapsu-
lated within ConnectionManager. Within two tightly coupled classes such as Connection-
Manager and ConnectionAdapter, this is likely less of a concern than it would be with
less-coupled classes, but it never hurts to still try to practice good encapsulation when-
ever possible.

That’s it for ConnectionManager.

Example: EchoConnection

Once we've refactored all that code back into ConnectionManager, however, code in the
corresponding service classes, like EchoConnection, should be much, much simpler:

public class EchoConnection
implements Connection
{
public void serve(Socket socket)
throws Exception
{
Reader fromSocket =
new InputStreamReader(socket.getinputStream());
Writer toSocket =
new OutputStreamWriter(socket.getOutputStream());

char[] buffer = new char[1024];

int c;

while ((c = fromSocket.read(buffer)) != -1)
{

toSocket.write(buffer, 0, c);
toSocket.flush();

}

In twenty lines, we now have a socket service that fully implements the Echo service,
is scalable, and is trivial to maintain. What’s more, we don’t have to worry about

CHAPTER 10 SOCKETS

10.3.2

opening the server port; we can open multiple Echo listeners on different ports,® and
we can control the number of concurrent requests we can handle, all through param-
eters to the ConnectionManager’s configuration information.

Consider the ramifications of what we've done. We’ve managed to create a server
framework that requires all of twenty lines to implement a Thread-pooled, client-proof,
scalable socket-based client/server architecture. What's more, as we’ll soon see, it now
becomes almost completely trivial to write sophisticated socket-based implementations.

Example: HTTPConnection

The true test of the ConnectionManager system comes when we try to implement a
more complex protocol. Since everybody is going nuts over the Web and HTTB let’s
see just how difficult it is to build an HTTP server. One caveat before we dive into
this: We are not going to build a full-fledged, production-quality web server. In addi-
tion to being a topic that would require a book in itself, it would be heading in
entirely the wrong direction. You can buy (or download for free) web servers if that’s
all you’re looking for. This is simply a demonstration to show you how easily it can be
done with the GJAS framework so far (listing 10.5); I'm not suggesting you finish it
off, although you could without too much trouble. Given that, however, when we are
finished, we will have a 100 percent HTTP 1.0-compliant HTTP server that you can
easily extend (or incorporate) into your own projects.

The HTTP 1.0 protocol is a stateless protocol, consisting of client requests and
server responses. A client sends a request consisting of a command, the URL, and the
HTTP version it expects back, and waits while the server formulates the response. The
response consists of a number of headers, followed by a blank line and the content of
the resource requested.

Nowhere in this discussion do we ever mention HTML, which may surprise you.
HTML and HTTP aren’t as tightly integrated as one might suspect. An HTTP server
can serve up all kinds of information beyond just HTML pages; XML is one commonly
discussed option. The key is that it must be a format the client knows, recognizes, and
understands how to present. HTML is perfect for this purpose, but it could easily be
anything else, including PDF files, PostScript files, or even script command to be exe-
cuted on the client.”

8 This is another way to achieve scalability. By having the server listen on multiple ports, we reduce to
almost nothing the chance of a client not being able to reach a server. Internet Relay Chat servers use
this with great success.

Now there’s a switch. Asking the server to do things on the client? Fully possible, although obviously not
from within your standard web browser. What's more, it can make copying files around and doing end-
user configuration a snap—just ask users to point their “ScriptClient” to the company intranet and a
particular URL, and let the client interpret and execute the returned script. Remember, HTTP is not
intrinsically tied to HTML, and could, in fact, be used in a variety of situations for communication.

CONNECTION AND CONNECTIONMANAGER 263

264

Once the returning content is identified and ready to send back, we first write a
header indicating the HTTP version level we are sending back. In a more feature-filled
server, we would examine the HTTP header sent by the client and determine if the cli-
ent can support our highest-support HT'TP version. Since there are only two versions
of HTTP, 1.0 and 1.1, and we want to remain tightly focused on the framework, not
the HTTP protocol, we only send back HTTP/1.0-compliant information.

After the “HTTP/1.0” string, we send back a return code that complies with the
HTTP standard. Codes in the 200 range are generally “OK” codes, 300 range is for
relocation or redirection codes, the 400 range is for client errors, and the 500 range
is for server errors. In order to make them easily reusable (in case we have code outside
of the HetpConnection class that wants to work with these constants), we make them
part of the HttpConstants interface, and anybody who wants to use them can simply
implement that interface. It’s a blatant misuse of the interface concept (at least as it
was originally intended, anyway), but it works.

Note that this web server is rudimentary—it offers no POST support (without
which HTML forms are pretty useless), no URL parameter support (any parameters
will be assumed to be part of the URL file path), no cookie support, just basic file-down-
load and file-system-browsing capabilities. Even so, it provides these capabilities in less
than 500 lines of commented Java code, including about 75 constants lines (listing 10.6).

Listing 10.6 Code demonstrating building a web server

/**
* A cheap way of doing #defines in Java; just implement this interface
* (which costs you nothing), and you can refer to them directly
*/
interface HttpConnectionConstants
{
/I 2xx: "OK" response codes
public static final int HTTP_OK = 200;
public static final int HTTP_CREATED = 201,
public static final int HTTP_ACCEPTED = 202;
public static final int HTTP_NOT_AUTHORITATIVE = 203;
public static final int HTTP_NO_CONTENT = 204;
public static final int HTTP_RESET = 205;
public static final int HTTP_PARTIAL = 206;

/I 3xx: relocation/redirect response codes

public static final int HTTP_MULT_CHOICE = 300;
public static final int HTTP_MOVED_PERM = 301;
public static final int HTTP_MOVED_TEMP = 302;
public static final int HTTP_SEE_OTHER = 303;
public static final int HTTP_NOT_MODIFIED = 304;
public static final int HTTP_USE_PROXY = 305;

/I 4xx: client error codes
public static final int HTTP_BAD_REQUEST = 400;
public static final int HTTP_UNAUTHORIZED = 401;

CHAPTER 10 SOCKETS

public
public
public
public
public
public
public
public
public
public
public
public
public
public

Il 5xx:

public
public
public
public
public
public

[x*

* This class provides a simplistic HTTP/1.0 service; it uses only a single
root (as opposed to other Web servers, which allow for multiple "virtual
roots" in their setup), and offers only the most rudimentary of HTTP
protocol services. Because HttpConnection is a transient type (that is,
multiple HttpConnection instances will come and go without warning or
guarantee), we use static instances to carry expensive resources (like

* the properties we use) from instance to instance without having to reload

*

*

*

*

*

static
static
static
static
static
static
static
static
static
static
static
static
static
static

final i
final i
final i
final i
final i
final i
final i
final i
final i
final i
final i
final i
final i
final i

HTTP_PAYMENT_REQUIRED = 402;
HTTP_FORBIDDEN = 403;
HTTP_NOT_FOUND = 404;
HTTP_BAD_METHOD = 405;
HTTP_NOT_ACCEPTABLE = 406;
HTTP_PROXY_AUTH = 407;
HTTP_CLIENT_TIMEOUT = 408;
HTTP_CONFLICT = 409;
HTTP_GONE = 410;
HTTP_LENGTH_REQUIRED = 411;
HTTP_PRECON_FAILED = 412;
HTTP_ENTITY_TOO_LARGE = 413;
HTTP_REQ_TOO_LONG = 414;
HTTP_UNSUPPORTED_TYPE = 415;

server error codes

static
static
static
static
static
static

final

final i
final i
final i
final i
final i

* them each time.

* Much of this code is cribbed from the WebServer.java example from the
* JavaSoft site; however, if you're familiar with that code, you'll notice

* that this version is much smaller, owing to the fact that GJAS factors out
* much of the complexity unrelated to HTTP (like thread pools).

*

int

HTTP_SERVER_ERROR = 500;
HTTP_INTERNAL_ERROR = 501,
HTTP_BAD_GATEWAY = 502;
HTTP_UNAVAILABLE = 5083;
HTTP_GATEWAY_TIMEOUT = 504;
HTTP_VERSION = 505;

public class HttpConnection
implements Connection, HttpConnectionConstants

{

static final String EOL = new String(new byte[] { (byte)\r, (byte)\n' });

[x*

*

*/

public void serve(Socket socket)

throws Exception

{

/I Before we even do anything, do we need to abort?

if (s_exception != null)
throw s_exception;

CONNECTION AND CONNECTIONMANAGER

265

266

}

/**

/I Get streams from the Socket
InputStream in = socket.getlnputStream();
OutputStream out = socket.getOutputStream();

/I Pick apart the URL sent; we only want the first line, really
Properties headers = new Properties(); // HTTP headers we send back

try
{
/I Pick out the request, load the content and the headers
parseRequest(in, headers);
/I Send back our HTTP/1.0 response
sendResponse(out, headers);
}
catch (Exception ex)
{
/I Send the server error back to the client
sendError(HTTP_SERVER_ERROR, ex.toString(), headers);
throw ex;
}
finally
{
/I Send it back down the stream
out.flush();
in.close();
out.close();
}

public void parseRequest(InputStream in, Properties headers)

{

throws 1OException

headers.put("_HTTPVersion", "1.0");
headers.put("Server", "GJAS-HttpConnection/1.0");
headers.put("Date", new Date());

/I Pick out the command & URL in the incoming request
BufferedReader reader =

new BufferedReader(new InputStreamReader(in));
String line;
String clientCommand = null;
while ((line = reader.readLine()) != null)

{
if (line.startsWith("GET"))
{
clientCommand = line;
break;
}
}
if (clientCommand == null)

CHAPTER 10

SOCKETS

sendError(HTTP_BAD_METHOD, "Server only supports GET", headers);
return;

}

/I Pick out the command & URL
String URL = clientCommand.substring(4);
URL = URL.substring(0, URL.indexOf(" "));

/I Turn the URL into a local filename

File target;
if (URL.equals("/"))
{
target = new File(s_root.getCanonicalPath());
}
else
{
String filename = new String(URL.replace(/', File.separatorChar));
if (filename.startsWith(File.separator))
filename = filename.substring(1);
target = new File(s_root, filename);
}

/I Find file/directory
if ('target.exists())

{
sendError(HTTP_BAD_REQUEST, "URL "™ + URL + ™ not found", headers);
return;
}
if (target.isDirectory())
{

File targetindex = new File(target, "index.html");

if (targetindex.exists())

{
/I Send the file back
target = targetindex;
headers.put("_ReturnCode", HTTP_O K + " OK");
headers.put("_Content", new FilelnputStream(target));

headers.put("Last-modified", new Date(target.lastModified()));

headers.put("Content-length”, new Long(target.length()));
headers.put("Content-type", “text/html");

}

else

{

/I Send the contents of the directory back
String html = listDirectory(URL, target);
headers.put("_ReturnCode", HTTP_O K + " OK");
headers.put("_Content",

new ByteArraylnputStream(html.getBytes()));
headers.put("Last-modified", new Date());
headers.put("Content-length”, new Long(html.length()));
headers.put("Content-type", "text/html");

CONNECTION AND CONNECTIONMANAGER 267

268

}

private void sendError(int errCode, String errText, Properties headers)

{
}

else

}

/I Send the file back
headers.put("_ReturnCode", HTTP_O K + " OK");
headers.put("_Content", new FilelnputStream(target));
headers.put("Last-modified", new Date(target.lastModified()));
headers.put("Content-length”, new Long(target.length()));
String fname = target.getName();
int ind = fname.lastindexOf(.");
if (ind > 0)

headers.put("Content-type",

s_suffixMap.get(fname.substring(ind)));

else

headers.put("Content-type", "unknown/unknown");

headers.put("_ReturnCode", errCod e + " " + ernText);

private String listDirectory(String URL, File dir)
throws IOException

{

StringBuffer ret = new StringBuffer();

/I Header information
ret.append("<TITLE>Directory o f" + URL + "</TITLE>" + "\n<P>\n");

if ('dir.getCanonicalPath().equals(s_root.getCanonicalPath()))

ret.append("Up one directory
\n<P>\n\n");

/I Print list of files
String[] list = dir.list();
for (int i=0; list != null && i<list.length; i++)

{

}

File item = new File(dir, list[i]);
if (item.isDirectory())

{
ret.append("" +
listi] + "/<IA>
\n");
}
else
{
ret.append("" +
listli] + "
\n");
}

/I Print trailer
ret.append("<P><HR>
<I>" + new Date() + "</I>
");

ret.append("<I>Generated by the Generic Java Application Server, " +

CHAPTER 10

SOCKETS

getClass().getName() + " service</I>");

return new String(ret);

*/
public void sendResponse(OutputStream os, Properties headers)
throws 10Exception

{

PrintWriter pw = new PrintWriter(os);

/I Send HTTP/1.0 <retCode> <text> line

pw.print("HTTP/" + headers.get("_HTTPVersion" Y+t
headers.get("_ReturnCode"));

pw.write(EOL);

/I Send headers, one at a time
for (Enumeration enum = headers.propertyNames();
enum.hasMoreElements();)

{

String key = (String)enum.nextElement();

/I Skip the lines starting with an underscore; those are for
/I HttpConnection internal use only
if (key.startswith("_"))

continue;

/I Otherwise, print the key, a colon, the property, and an EOL
pw.print(key + " : " + headers.get(key) + EOL);
}

/I Write blank line after headers to mark end of headers section
pw.write(EOL);
pw.flush();

/I Read the content from the specified InputStream, and send it down
InputStream content = (InputStream)headers.get("_Content");
if (content != null)
{
byte[] buffer =
int nRead = 0;
while ((nRead = content.read(buffer)) = -1)
/lpw.print(new String(buffer, 0, nRead));
os.write(buffer, 0, nRead);

new byte[1024];

/I Write one more blank line, just for luck
pw.write(EOL);
}

/I Ba-whoosh!
pw.flush();
}

/I Internal members

CONNECTION AND CONNECTIONMANAGER 269

270

1
private static Exception s_exception = null;
/I Reserved solely for exceptions generated from the static init block
private static Properties s_properties = null;
private static File s_root = null;
private static Hashtable s_suffixMap = new Hashtable();

/I Internal methods

1

/**

* Static initializer block--executed when this class is loaded into its
* namespace.

*/
static
{
/I Load the s_properties instance with our http-properties file
loadProperties();
/I Fill the suffix map with well-known file types
fillMap();
}
/~k~k
*
*/
private static void loadProperties()
{
try
{

/I Load the properties from disk

s_properties = new Properties();

InputStream propFileStream;

try

{
propFileStream = new FilelnputStream(".http-properties");
s_properties.load(propFileStream);
s_properties.list(System.out);
propFileStream.close();

}

catch (IOException ioEXx)

{1}

/I Set up our instance data from the Properties read in
String r = s_properties.getProperty("http-root");
if (r !'= null)
{
s_root = new File(r);
if (!s_root.exists())

{
/Is_exception =
new FileNotFoundException("Root doesn't exist!");
s_root = null;
}

CHAPTER 10

SOCKETS

/I Use defaults
if (s_root == null)
s_root = new File(System.getProperty(“user.dir"));

ServerManager.instance().log(
HttpConnection.class.getName() + ": http-root = " +
s_root.getCanonicalPath());

}
catch (IOException ioEx)
{
/I Nothing to do, so just move on
s_exception = i0EXx;
ServerManager.instance().log(ioEx);
}
}
/**
*
*/
private static void fillMap()
{
s_suffixMap.put("", "content/unknown");
s_suffixMap.put(".uu", "application/octet-stream");
s_suffixMap.put(".exe", "application/octet-stream");
s_suffixMap.put(".ps"”, "application/postscript");
s_suffixMap.put(".zip", "application/zip");
s_suffixMap.put(".sh", "application/x-shar");
s_suffixMap.put(“.tar", "application/x-tar");
s_suffixMap.put(*.snd", "audio/basic");
s_suffixMap.put(".au”, "audio/basic");
s_suffixMap.put(".wav", "audio/x-wav");
s_suffixMap.put(".gif', "image/gif");
s_suffixMap.put(".jpg"”, “image/jpeg");
s_suffixMap.put(".jpeg”, "image/jpeg");
s_suffixMap.put(".htm", “text/html");
s_suffixMap.put(".html", "text/html");
s_suffixMap.put(".txt", "text/plain");
s_suffixMap.put(".text", "text/plain");
s_suffixMap.put(".c”, "text/plain®);
s_suffixMap.put(".cc”, "text/plain);
s_suffixMap.put(".cpp”, "text/plain”);
s_suffixMap.put(".c++", "text/plain");
s_suffixMap.put(".h", "text/plain");
s_suffixMap.put(".hh", "text/plain");
s_suffixMap.put(".hpp", "text/plain");
s_suffixMap.put(".h++", “text/plain®);
s_suffixMap.put(".pl", "text/plain®);
s_suffixMap.put(".java", “text/plain®);
}

CONNECTION AND CONNECTIONMANAGER 271

10.3.3

272

I’s a rather lengthy swath of code (it weighs in at just over 400 lines in a text editor),
but think about what it represents—you now have complete control over how a web
server can act. This offers powerful implications for your enterprise projects. Think
about this. The web is one of the most powerful media by which to deliver informa-
tion across the Internet. Web servers are scalable, adaptable, and flexible, and now
they’re a part of your programming arsenal.

Servlets

From the HetpConnection, it’s a short jump into providing a full-fledged Servlet envi-
ronment. As tempting as it would be, I'm not going to jump into Servlets, the Servlet
AP], or example Servlets here, principally because Servlets are well covered in other texts.
Instead, I want to point out some interesting concepts underlying the Servlet concept:

o Servlets can be a poor man’s RMI.

Servlets are really all about communication—they’re a simple marriage of CGI
and HTTP, executing inside of a web server for best performance, although they
don’t have to be inside the server. This also means that Servlets, by serving up
files other than HTML documents, can serve as a simple middleware layer on top
of HTTP For example, the RemoteStorageServer/RemoteStorageClient discussed
in chapter 12: instead of using straight sockets, we could make the RemoteStorage-
Server a servlet, and no specialized client would be required—just open a URL-
Connection to the server, and deserialize the resulting stream coming back. (In
fact, this is precisely the concept behind HTTP tunneling in RMI.)

o Servlets can be a poor man’s EJB.

Because many Web servers already provide some form of load-balancing, fault-
tolerance and/or clustering support, servlets are sometimes called upon to perform
in roles more appropriate to EJB servers, containers, and Beans. For example,
consider the ubiquitous #-tier business system. The client communicates via a
middleware layer to the database. In the J2EE model, the middleware layer is
EJB layered on top of RMI/IIOP; in a lightweight version of this, however, the
middleware layer is a collection of Servlets, layered on top of straight TCP/ID
sending and receiving Serialized objects. In this approach, the database can hide
behind the firewall, so long as the web server has access to it.

A lightweight Servlet engine can provide easy monitoring/configuration.
If your enterprise application wants to be easily configurable and/or monitor-
able, embedding an instance of a Servlet engine—along with the Servlet to do
the actual configuration or monitoring—allows administrators to remotely
check on the progress or status of your enterprise application. If this sounds like
a lot of work, it’s not. New Atlanta, makers of the ServletExec servlet engine,
makes freely available a lightweight servlet engine it calls “ServletDebugger.” The
intent is to allow Java developers to easily debug their servlets (by allowing you
to execute the Servlet inside of an IDE or other debugger), but it would be just as

CHAPTER 10 SOCKETS

simple to embed the ServletDebugger into your enterprise application and kick
off the Servlet to do the administrative work.

Servlets are capable of much, much more than this. The above examples should
start you thinking about servlets in an entirely new light. Remember, servlets aren’t
just about HTML—servlets are a basic communications layer.

In fact, I've come to believe that most Java developers have a backward opinion
of servlets: where they see Servlets as bringing Java into the web server, I see Servlets
as bringing HTTP into the larger world of Java application servers. If you look carefully
ata number of the Servlet implementations on the market (such as JRun, or even Sun’s
own reference implementation, JSWDK), you’ll notice not only are they all imple-
mented in Java, but even the basic Web-serving capabilities are done as a Servlet within
the more generic server framework. This is partially why it’s becoming so simple for
Web server vendors to become EJB server vendors. Because the fundamental concepts
behind the two are so similar, it’s trivial to adapt their server framework to handle EJB
containers and Beans. A web server is just a specialized form of the more generalized
Application Server. Or, to put it in O-O parlance, “A web server IS-A application server.”

10.4 ADVANCED SOCKET SERVICES

Having gone this far, let’s now see how we can take sockets even farther.

10.4.1 SocketClassLoader and SocketClassService

In chapter 2, we talked about Java’s ClassLoader facility giving developers the capability
to retrieve bytecode from any resource; this extends to sockets as well. Given a boot-
strap client on the user’s local disk (to load the Java run time and a small bootstrap class
that knows to use the customized ClassLoader to retrieve the next classes), a server can
then provide the latest, up-to-date bytecode to a client when requested.

Doing so requires effort on the part of both the client and the server—the client
must use the SocketClassLoader class, and the server must have an instance of the
SocketClassConnection running to respond to the client’s request. The client must
know, at run time, the host name and port of the server, which is typically more of
an administrative detail than a developmental one. The server must be informed of the
full class name to retrieve, which is sent by the client in a plaintext string. The server
can then either find the class (possibly from local disk, possibly through another Class-
Loader), or simply close the port, indicating the class couldn’t be found.

For more control, an HTTP-like protocol could be used to offer more verification
(headers with content-length and possibly Java version expected are good candidates).
For that matter, the HttpConnection code itself could be used, accepting URLs with
.class extensions as a request to send back the actual bytecode. However, for an appli-
cation of any size distributed in this way, the server will be hit a lot as users start and

ADVANCED SOCKET SERVICES 273

274

close the application; to add web-serving duties to the same server could bog both the
web site and the SocketClassConnection service down to the point of impotence.
The SocketClassLoader (listing 10.7), as you might imagine, is pretty straight-

forward, given what was presented in the chapter on ClassLoaders.

Listing 10.7 Code for SocketClassLoader

/**
* SocketClassLoader retrieves bytecode for a given class via a
* HTTP-like protocol.
*/
public class SocketClassLoader extends ClassLoader
implements ClassLoaderStrategy
{
/**
* Constructor.
*
* @param host TCP/IP host name to contact
* @param port TCP/IP port to contact host on
*/
public SocketClassLoader(String host, int port)
{

this(SocketClassLoader.class.getClassLoader(), host, port);

}

/**

* Constructor.

*

* @param host TCP/IP host name to contact

* @param port TCP/IP port to contact host on

*/

public SocketClassLoader(ClassLoader parent,
String host, int port)

{
/| Establish the parent ClassLoader
1
super(parent);
/I Store off Socket settings
1
m_host = host;
m_port = port;
}
/**

* Return byte array (which will be turned into a Class instance
* via ClassLoader.defineClass) for class
*/
public byte[] findClassBytes(String className)
{
try
{

/I Connect to the host on port

CHAPTER 10 SOCKETS

Socket socket = new Socket(m_host, m_port);

BufferedReader reader =
new BufferedReader(new InputStreamReader(
socket.getinputStream()));
PrintWriter writer =
new PrintWriter(socket.getOutputStream());

/I Send the class name
writer.printin(“"Classname:" + className);
writer.flush();

/I Get back the resulting bytecode, or get nothing back (an error)
String line = reader.readLine();
if (line.equals("Error"))
return null;
else if (line.startsWith("Content-Length"))
{
/I Find out how much we're expecting back
int colonLoc = line.indexOf(":");
Integer | =
new Integer(line.substring(colonLoc + 1, line.length()));
byte[] classBytes = new byte[l.intvValue()];

/I Throw away any data between
/I our current point in the stream
/I and the first magic number of the Java .class file ('CA")
while (reader.read() != (int)OxCA)

f

Il We already pulled back the first magic number of the class,
/Il so manually insert it into the byte array. Read the rest
/I from the socket
classBytes[0] = (byte)OXCA;
for (int i=1; i<classBytes.length; i++)

classBytes[i] = (byte)reader.read();

return classBytes;

}

else
return null;

}

catch (UnknownHostException uhEx)

{

return null;

}

catch (IOException i0EXx)

{

return null;

}
}

/**

* Return URL for resource given by resourceName
*/

ADVANCED SOCKET SERVICES 275

276

public URL findResourceURL(String resourceName)
{
return null;

}

/**

* Return Enumeration of resources corresponding to

* resourceName.

*/

public Enumeration findResourcesEnum(String resourceName)

{

return null;
}
/**
* Return full path to native library given by the name
* libraryName.

*/
public String findLibraryPath(String libraryName)
{
return null;
}
/**

* ClassLoader-overridden method to retrive the bytes
*
public Class findClass(String className)

throws ClassNotFoundException

{

byte[] classBytes = findClassBytes(className);

if (classBytes==null)

{

throw new ClassNotFoundException();

}

return defineClass(className, classBytes, 0, classBytes.length);
}

/I Internal members
1

String m_host;

int m_port;

/I To test this effectively from the CD, copy
/I SocketClassLoader.class to a directory elsewhere on your
/I hard drive. Start GJAS in a separate directory,
/I then run SocketClassLoader from the command-line.
public static void main(String[] args)
throws Exception
{
/I If Hello.class exists in the current directory, the
/I bootstrap ClassLoader, which is always given first crack,
/I will pick it up and load the class, instead of the
/I SocketClassLoader.
File file = new File("Hello.class");

CHAPTER 10

SOCKETS

if (file.exists())
System.out.printin("Warning--Hello.class exists " +
"in the current directory.
SocketClassLoader will NOT be used " +
"to retrieve the file; the primordial ClassLoader will.");

/I Connect to the local host on port 8085 to see if Hello can be
/I loaded.

SocketClassLoader scl = new SocketClassLoader("localhost", 8085);
Class cls = scl.loadClass("Hello");

Object h = cls.newlnstance();

The mechanics of SocketClassLoader should be apparent. Open a Socket to the given
host on the given port, send a string with the class name requested, and look for
either a “Content-Length” string followed by the class bytecode, or an “Error” string.
Note that SocketClassLoader also implements the ClassLoaderStrategy interface,
which in turn allows it to be used in all the ClassLoaderStrategy-related classes from
chapter 2.

SocketClassLoader comes with a main, in order to allow for independent unit-
testing and verification that the basic mechanism works. If you put the class
Hello.class in the same directory as the SocketClassLoader class, and run it, Hello.class
will be picked up by the bootstrap ClassLoader, and not by SocketClassLoader. There-
fore, if you wish to run this test, copy the SocketClassLoader over to another point
on your directory tree, and run it from there.

The SocketClassLoaderConnection is also fairly trivial, thanks in no small part to
the scaffolding that GJAS and the SocketServer and ConnectionManager classes provide:
-

* SocketClassLoaderConnection
*
/
public class SocketClassLoaderConnection
implements Connection
{
/**
* Send class bytecode, if it can be found, back down the socket.
*/
public void serve(Socket socket)
throws Exception
{
ServerManager.instance().log(
getClass().getName() + ".serve(): " +
"Entered");

InputStream in = socket.getinputStream();
OutputStream out = socket.getOutputStream();

BufferedReader br = new BufferedReader(new InputStreamReader(in));

ADVANCED SOCKET SERVICES 277

PrintWriter pw = new PrintWriter(out);

String classname = br.readLine();
classname =
classname.substring(classname.indexOf(":")+1,
classname.length());

ServerManager.instance().log(
getClass().getName() + ".serve(): " +
"Request : " + classname);
System.out.printin("Request . " + classname);

/I Find the file on the disk

try
{
FilelnputStream inFile =
new FilelnputStream("./" + classname + ".class");
/I Tell SocketClassLoader how much data to expect
pw.printin("Content-Length:" + inFile.available());
pw.flush();
/I We have to use OutputStream directly here, because Writer
/I and PrintWriter have no methods to write out bytes
byte[] buffer = new byte[1024];
int nRead = 0;
while ((nRead = inFile.read(buffer)) = -1)
out.write(buffer, 0, nRead);
out.flush();
/I Write one more blank line, just for luck
pw.write("\r\n");
}
catch (FileNotFoundException ex)
{
ServerManager.instance().log(
getClass().getName() + ".serve(): " +
"Error finding class file");
ServerManager.instance().log(ex);
pw.printin("Error");
}
finally
{
pw.flush();
}

}

SocketClassLoaderConnection, again, shouldn’t present any surprises. In this instance, we
attempt to read the class as a file off of the local disk, and send the bytecode down the
socket. Note that if the class is part of a package, then the filename must be a dot-separated
filename on the disk; that is, if a request comes in for the class “mypackage.myclass”,
SocketClassLoaderConnection looks for a file called “mypackage.myclass.class” in the

278 CHAPTER 10 SOCKETS

local directory. This is not, by any means, the only way classes could be resolved.
SocketClassLoaderConnection could, in turn, use its own ClassLoader to load the
classes (perhaps even the JDBCClassLoader mentioned in chapter 2 and explored in
chapter 12). The actual mechanics of how SocketClassLoaderConnection resolves its
requests is unimportant for the moment. Once it finds the bytecode, it sends it back
down the socket to the client SocketClassLoader for use.

10.4.2 Concept: RedirectorService

One interesting application of sockets is the ability to accept the incoming request on
a socket. Then, instead of providing the behavior requested, in turn, forward the
request to a socket on another server. This is, in fact, the primary function of a fire-
wall proxy server. It’s a simple concept: when the Redirector receives a client-connect, it
opens a new Socket connection to the host/port combination to which it is redirecting,
and simply hooks up the Sockets” InputStreams and OutputStreams to one another
via a custom class, ThreadedPipeStream, which is an abstraction of the spin-a-Thread-
to-loop-over-input-and-fire-it-down-the-OutputStream concept used by Client.java a

few pages back.

Usage

One potential use for this is to place RedirectorService on a machine accessible to the
public (in this case, referring to any clients using the system), having the Redirector-
Service redirect to a machine with sensitive data on it within a firewall or special secu-
rity zone. For companies with sensitive data, for example, it is imperative that the
machine containing the sensitive data be hidden from public eye as much as possible.
Using a Redirector, the development group can advertise machine “A” as the machine
to connect to, and silently redirect all queries to machine “B,” which contains the
actual sensitive data. This protects “B” in two ways: first, malicious users will not
know about “B,” believing instead that the data is contained on “A.” Secondly, “B” can
be configured to ignore any and all requests from any machine other than “A.”

We can also help reduce administrative costs by this same method; by advertising
machine “A” as the front end to a particular socket-based service (such as a web server),
and having it redirect to machine “B,” we can vary the actual configuration, name,
even IP address of machine “B,” as necessary, so long as “A” knows where to redirect
it. This provides a tremendous advantage during network rerouting or IP shuffling.
It also begins to touch on the basic nature of fault-tolerance and/or clustering, since the
redirector can now choose from machines “B,” “C,” “D,” or “E,” based on particular
criteria (clustering) or availability (fault-tolerance). In fact, by using the RedirectorCon-
nection, services which used to run on machine “A” can now silently be clustered, by
having “A” run the RedirectorConnection (or its clustering cousin, ClusterRedirector-
Connection, not implemented here) and choosing between the clustered machines
without having to even notify the clients of the switch. As far as clients are concerned,
they continue to access and use “A” just as they always have.

ADVANCED SOCKET SERVICES 279

10.4.3 Concept: FilterService

A close cousin to RedirectorService is FilterService, which takes a FilterInputStream
and/or a FilterOutputStream instance as a parameter, and passes all input and output
through the filter before sending it on to its destination (the sender or the server).

Usage

FilterService can offer basic statistics-gathering support, such as number of client
requests, length (in time) of each request, or even identification of clients making the
requests.'® Also, the filter allows for editing or translation of either input, output or
both. For example, a corporation wants to give its managers the ability to query the
database using English instead of SQL. A FilterService could be used, with appropriate
FilterInputStream/FilterOutputStreams that translates the English request into an
SQL statement, to pass on to any standard SQL cnginc.11
Alternative ideas are:

* On-the-fly modification or generation of HTML.

For example, a FilterService could ping the URL of each HREF link it sees in a
returned HTML document, to make sure each link exists; if the link doesn’t exist,
it could silently modify the HTML to put “(Broken Link)” in red text immedi-
ately after the HREF tag, or perhaps remove the link altogether. Alternatively, it
could postprocess HTML, inserting corporate headers and footers onto the page,
or adding advertising banners on Internet pages, and so forth. Finally, it could
even generate HTML from non-HTML sources; for example, a FilterConnection
could take Java or C++ files returned from an HTTP server and translate them
into color-syntax-highlighted HTML files for easier reading.

* On-the-fly compression or uncompression of data.
Data can be stored on the server in compressed form, to minimize storage require-
ments on the server, and uncompressed by a FilterService on its way back to the client.

* On-the-fly encryption/decryption of data.
As with the compression/uncompression idea, input can be decrypted on the
way in, and output can be encrypted on the way out, for the client to decipher
upon receipt. By doing it this way, as opposed to encrypting it within the server
itself, the server can be accessed in unencrypted form directly (perhaps for
debugging, or because sources within a firewall are implicitly trusted). Also, the
encryption formats can change simply by changing the FilterOutputStream
instance placed within the FilterService.

10 oy least, as much as TCP/IP allows, sophisticated hackers can always “spoof” an IP address, so it can’t
be relied upon confidently or for security issues.

" This really isn’t well-suited to the streaming nature of InputStream/OutputStream. It’s easier by far to
consider a sample implementation whereby we do byte-for-byte replacement, such as the compression/
decompression of data, for example.

280 CHAPTER 10 SOCKETS

10.4.4

10.5

SUMMARY

o Censorship of sensitive data to untrusted clients.

The FilterService can also be used to monitor data being retrieved from the
server. FilterService looks for particular keywords or tags to determine if the docu-
ment is of a sensitive nature; if it is, and the client is untrusted, or the document
is not permitted to be electronically transmitted, the FilterService can block the
output from returning (sending a generic error message instead and perhaps
noting the requestor’s IP headers for administrative review). Alternatively, it
could simply remove the sensitive portions and allow the remainder of the
response to be sent.

Other types

Certainly, the above are not the only possibilities when considering Connection
types. Any sockets-based communication protocol can be implemented and plugged
into the ConnectionManager system by implementing the Connection interface.

It may seem odd that there is any separation whatsoever between Connection-
Manager and SocketServer; if the features of ConnectionManager are so useful, why
not roll them into SocketServer and call it done with that? Principally, the issue is one
of design—have each class in the system provide one, and only one, specialization.
SocketServer provides the basic socket functionality, ConnectionManager provides
scalable socket functionality. This way, if a need arises where a particular socket-based
system wouldn’t want the multi-instanced nature of Connections (perhaps the code
in turn uses non-thread-safe classes or legacy system code), it can choose to instead
extend SocketServer.

SUMMARY

In this chapter, we extended our reach and availability outside of the local JVM. Now,
through sockets, clients in other JVMs (either local or remote) can connect and inter-
act with the server and its services. More importantly, the necessary scaffolding code
to support scalable socket-based solutions was placed within reusable base classes,
leaving service-writers to focus more tightly on the precise service being supported,
instead of on how to write sockets code. Then we built Internet-standard-conformant
services, including a basic HTTP-conformant web server. Even better, the design and
implementation of these services are such that they could be used within applications
outside of GJAS without modification.

We’re not done with sockets, not by a long shot. In later chapters, we'll be using
SocketServer and ConnectionManager over and over again as we expose additional
services to clients via sockets. Java’s ability to use sockets so effortlessly now offers serv-
ers the ability to reach out and touch the world. In fact, the ubiquitous socket is Java’s
best (and, in fact, only platform-portable) way of achieving interprocess and internet-
work communications, and forms the foundation of every other Java network-aware
system, such as Jini, JavaSpaces, or the Java Shared Data Toolkit.

281

10.6 ADDITIONAL READING

* Merlin Hughes, Michael Shoftner, and Derek Hamner, Java Network Programming,
2nd Ed. (Manning Publications Co. 1999).

This book covers every aspect of Java network programming, and should be con-
sidered to be your first go-to book if the Socket and ServerSocket still confuse you.

282 CHAPTER 10 SOCKETS

11.1

Servlets

11.1 Relationship to sockets 283

11.2 Servlets and the n-tier application 292
11.3 Servlets as a poor man’s RMI 293
11.4 Summary 298

11.5 Additional reading 298

Servlets represent a particular place in the enterprise developer’s bag of tricks. On the
one hand, they represent an easy replacement for CGI scripts. They also serve as the
fundamental heart of the JSP technology. Many people tie servlets irretrievably to the
HTTP and HTML protocols; to do so, however, is to miss a huge part of their func-
tionality. Servlets are more than Java CGIs. In fact, the Servlet specification served as
the testing ground for a number of the features that would eventually come to define
the Enterprise Java Beans specification.

We’re not going to go over the basics of servlets or the Servlet API here. For
detailed explanation of the Servlet API, and good examples of how to use servlets in
general, see Alan Williamson’s Servlets By Example (Manning), or Jason Hunter’s Java
Servlet Programming (O’Reilly).

RELATIONSHIP TO SOCKETS

A servlet, fundamentally, holds the same relationship as the Connection interface
from chapter 10. The servlet is called to service a particular request, performs the service,

283

and, in the case of an HrttpServlet, returns the necessary HTML to the socket. Con-
nection does the same thing. Interestingly enough, although the Servlet APT does pro-
vide for the concept, servlets are rarely (if ever) seen outside of an HTTP context—the
Servlet API is flexible enough to accommodate ideas such as FTP Servlets, Telnet
Servlets, and so on.

From a practical perspective, this means that theoretically, we could create servlets—
coding at the GenericServlet layer, instead of the HetpServlet layer, as most servlets
do—that could be plugged into any generic application server, and be executed upon
request. In fact, this is how the JSWDK itself performs—each web request, even if it
is for a standard static HTML page, is handled by a servlet. In fact, this kind of pass-
through servlet would probably be similar to the following:
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class PassthroughServilet extends HttpServlet

{

private String docRoot;

public void init(ServletConfig config)

{
docRoot = config.getlnitParameter("docRoot");
if (docRoot == null)

docRoot = ".";
}
public void doGet(HttpServletRequest req,
HttpServletResponse res)

throws ServletException, IOException

{
/I Find file given on URL
String filename = req.getServietPath();
/I Open it
FileInputStream fis = new FilelnputStream(docRoot + "/* + filename);
/I Send its contents back to the requester
OutputStream out = res.getOutputStream();
res.setContentType("text/html");
int ch;
while ((ch = fis.read()) != -1)
{

out.write(ch);

}

}

public void doPost(HttpServletRequest req,

HttpServietResponse res)

throws ServletException, |IOException

{ doGet(req, res); }

}

284 CHAPTER 11 SERVLETS

11.11

As you can see, the servlet simply obtains the requested file (assuming this servlet is
associated with the extension .html and/or .htm—see the Servlet API specification or
the JSWDK 1.0.1 documentation for more details) and passes it directly through to
the servlet’s OutputStream instance. Notice how we use the getServletPath()
method to retrieve the file path requested, and use that, plus the docRoot member,
to find the file requested and present it.

In fact, this concept is strikingly familiar. In the previous chapter, we talked about
some of the more interesting things to do with sockets; specifically, a FilterSocket and
a RedirectorSocket. Both are easily portable to the servlet arena.

CodeServlet: A filtering servlet

Filter-style servlets are the easier to implement, because we can take the PassThrough-
Servlet code base and tweak it just enough to do some manipulation of the text before
we send it back down the pipe to the client. In this case, we’ll create a CodeServlet
(listing 11.1), which takes standard .java files and applies a simple series of rules to
transform the returned stream into a color-highlighted HTML form:

Listing 11.1 Code for CodeServlet

public class CodeServlet extends HttpServiet

{

private static Map handlerMap;

public interface FileHandler

{
public String handle(String file);

}

public static class JavaHandler
implements FileHandler

{
public void handle(HttpServiletRequest req,
HttpServietResponse res)
{
/I code to transform java source into (for starters)
/I color-syntax-highlighted HTML markup
}
}

public void doGet(HttpServletRequest req,
HttpServietResponse res)
throws ServletException

/I Find file given on URL
String filename = req.getServietPath();
for (Iterator iter = handlerMap.keySet().iterator(); iter.hasNext();)
{
String key = (String)iter.next();
if (filename.endsWith(key))

{
FileHandler fh = (FileHandler)handlerMap.get(key);

RELATIONSHIP TO SOCKETS 285

fh.handle(req, res);

}
}
}
static
{
handlerMap = new HashMap();
handlerMap.put(“java”, new JavaHandler());
}

. ..

This isn’t rocket science. We map the CodeServlet over to extensions of type .java in
the servlet engine, and any URL (within the Servlet’s zone) requesting a .java file will
automatically be mapped onto the CodeServlet. In fact, CodeServlet could be
extended to do any source file type simply by registering new FileHandlers with the
CodeServlet in listing 11.1.

public class CodeServlet extends HttpServiet

{
/I ... as befor e . . .
/**
*/

public static class CPPHandler
implements FileHandler

{
public void handle(HttpServiletRequest req,

HttpServletResponse res)
{
/I code to mark up C++ code to provide (for starters)
/I color syntax highlighting, for example

}

}

static

{
handlerMap = new HashMap();
n. ..
handlerMap.put(“cpp”, new CPPHandler());
handlerMap.put(“cc”, new CPPHandler());
handlerMap.put(“C”, new CPPHandler()); // some UNIXes use

/I uppercase “.C" as
/I the C++ extension

handlerMap.put(“hpp”, new CPPHandler());
handlerMap.put(“hh”, new CPPHandler());
handlerMap.put(“H”, new CPPHandler()); // ditto as “.C”

}

}

286 CHAPTER 11 SERVLETS

We could even recode the PassthroughServlet to be another type of handler within
the CodeServlet (which, by this point, is probably misnamed, since we’re now dealing
with types other than just programming source):

public class CodeServlet extends HttpServiet

{
/I ... as befor e . . .
/**
*/

public static class HTMLHandler
implements FileHandler

{
public void handle(HttpServietRequest req,

HttpServletResponse res)
{
/I Simply pipe back

}

}

static

{
handlerMap = new HashMap();
n. ..
handlerMap.put(“html”, new HTMLHandler());
handlerMap.put(*htm”, new HTMLHandler());

}

}

By now, without a single change to the servlet engine supporting us, we have converted
the servlet engine into a more-or-less functional web server, even if the servlet engine
itself doesn’t provide web-serving capabilities. It may seem strange to consider the
idea of a servlet providing basic web-server functionality since most people see the
servlet in terms of wanting to get away from what the web server provides. The point is
that servlets aren’t necessarily tied directly to a web server; it’s possible to have a servlet
executing inside of a generic application server (such as GJAS), providing web services
for that application server on port 80 (or any other port).

11.1.2 HeaderFooter: a redirecting servlet

We can also create a redirector servlet. Under the servlet model, while redirecting is cer-
tainly an applicable concept, a better or more interesting idea is servlet chaining, which
loosely follows the notion of redirection. Instead of redirecting the request to a new
URL or socket, we redirect the flow of control to a new servlet within the same engine.

Under the Servlet 2.2 specification, however, servlet redirection takes on a dif-
ferent look. Under earlier versions of the servlet specification, a servlet simply had to
call getServlet on the javax.servlet.ServletContext class (returned from the
javax.servlet.GenericServlet’s getServletContext method), and pass in the name
of the servlet to obtain. Unfortunately, this had an inherent problem:

RELATIONSHIP TO SOCKETS 287

288

When this method is called, the state of the servlet may not be known and
this could cause problems with the server’s state machine. It is also a security
risk to allow any servlet to be able to access the methods of another servlet.

—Servlet 2.1 specification

This means the servlet engine is no longer going to allow you carte blanche to
obtain the servlet reference for another servlet in the system.

Does this mean servlet-chaining is dead? Absolutely not—it’s too critical a con-
cept to simply throw out. Instead, now a servlet that wishes to forward or chain its
request to another servlet needs to go through the target’s ServletContext’s forward
method, as shown in the following snippet:

public class ChainingServlet extends HttpServlet

{

public void service(HttpServletRequest req,
HttpServletResponse res)
throws ServletException

ServletContext cx = getServletContext();
String otherServletDomain = “http://www.javageeks.com”;
String otherServletURL = “/servlet/otherServlet”;
RequestDispatcher servlet =
cx.getRequestDispatcher(otherServletbomain +
otherServletURL);

/I Here we can do any other “pre-chain” work, like adding
/I new request parameters to the request parameters

servlet.forward(req, res);

}

When the forward method is called, it will effectively call into the otherServlet’s
service method, which, like all HttpServlet-extending classes, will get routed into
either doGet or doPost (predominantly), and the other servlet is now in full con-
trol. Once the other servlet is finished, control returns to ChainingServlet.

This aspect of servlets allows for interesting behavior. For example, the Java
Developer’s Connection at the Javasoft web site (developer.javasoft.com) uses chained
servlets to maintain its pages behind a login—each servlet request chains to a Login-
Servlet, which determines whether or not you've logged in. If not, it will display a
login page, and only if you authenticate correctly are you then directed to the original
URL requested.

The same sort of behavior can be applied to your own servlets.. Suppose, for
example, that you are building an Internet site for an e-commerce enterprise. In real-
ity, you are building an application catering to a variety of clients, who in turn are tell-
ing their clients to use your Internet application on their behalf.

CHAPTER 11 SERVLETS

The problem is simple—you need to vary the decorations around the outside of
the page on a per-client basis, so the customer (the end user) doesn’t realize that he’s
on your web site and not your client’s. One approach would be to have each client live
on its own web page, with a web designer maintaining the graphics and HTML for each
client. That’s also a great way to see how quickly you can burn out your web designers.
Can you imagine changing the clients’ look and feel after about the third or fourth time,
especially if the clients’ site spans many pages?

Instead, you can create a servlet that builds on the filtering and the chaining con-
cept and reduces the work your administrators have to do. Let’s play it out step by step.
Each client is going to require a hello page, welcoming the end user to the site and pre-
senting a list of choices. These hello pages are all going to look similar—big banner
graphic across the top, verbage and links in the middle, and a nice status bar with
small-font copyright information across the bottom. Instead of embedding all that
into a single welcome.html or WelcomeServlet, break it up into multiple servlets—one
for the top banner graphics (which can be retrieved from a file or from an RDBMS
based on either the incoming URL or on the URL request path), one to load that cli-
ent’s specific welcome page, and one for the bottom graphics.

What does this three-part chain get you? To begin with, chaining like this allows
you to partition out certain aspects of the web application if they’re conceptually dif-
ferent—the decorations around a page, for example, will typically remain constant,
while the content of the page will vary. Instead of forcing the web designers to cut-
and-paste the header/footer HTML onto each page, let a HeaderServlet and Footer-
Servlet provide that. Then, chain to the HeaderServlet, load and redisplay the original
HTML file requested, and chain to the FooterServlet before sending it on.

11.1.3 Server-side scripting capabilities

Servlet chaining is a useful aspect, but there will be situations where you will want to
do more logic-driven execution than just simple inclusion of HTML content. In those
situations, you have two choices:

o Write a servlet for each logical sequence you wish to execute.
This will get real boring, real quickly, especially if the logic is of simple garden-
variety if-this-show-this-page-else-show-that-page logic. What would be nice is
to place some sort of logic within the page, so that your web designers could put
some simple logic into the page.

* Abandon servlets.
Servlets don’t provide any sort of server-side scripting, so you're left with giving
up on servlets and moving toward ASP.

In order to change any sort of logic within the servlet, you have to change the
logic inside the servlet code, which requires a Java programmer (namely, you) to make
the change. What's worse, many of these changes could be done by those less technical
than you, because it’s that simple logic described above. What would be nice would

RELATIONSHIP TO SOCKETS 289

11.1.4

290

be to execute short snippets of some scripting language (such as ECMAScript, also known
as JavaScript) within the servlet.
It just so happens we can do that; for example:

<HTML>
<HEAD>Scripted example</HEAD>
<BODY>
<SVRSCRIPT>

(- . . script goes her e ...
</SVRSCRIPT>
</BODY>
</HTML>

When the pass-through servlet is executed, it looks for the <SVRSCRIPT>...</SVR-
SCRIPT> tags, and passes the contents to the appropriate scripting engine. This sup-
port could even be bundled inside its own servlet, and the pass-through servlet could
chain to it (let’s call it the ScriptingServlet) when it encounters the <SVRSCRIPT>tag.
A certain amount of overhead within ScriptingServlet will be necessary (for example,
establishing global objects within the scripting environment to send output to the end
user’s browser), and will be customized for each language. That’s a manageable task,
especially since it will sit once inside the ScriptingServlet and never be touched again.

This concept isn’t new: Netscape introduced it as LiveWire in an early release of
its Netscape Enterprise Server product, and Microsoft has enjoyed tremendous success
with its version, ASP. In both cases, the ability to be able to execute actual code during
the retrieval of the page offers interesting benefits, long before the page gets back to
the client. Because this is happening within an industry-standard servlet, however, it
can be plugged into any servlet 2.1-compliant servlet engine on any platform; by using
this server-script, we’re not limited to any one platform, web server, or environment.

With a bit of resourcefulness, various interpreters implemented in Java can be
found and used to provide a rich variety of scripting languages within the pages.
Mozilla makes available a freely distributable JavaScript engine called Rhino, at
www.mozilla.org/rhino. Another JavaScript engine is FESI. In the January 2000 issue
of Dr. Dobb’s Journal, Kirby Angell describes how to build something similar to this
using Python and the JPython engine available at www.python.org. John H. McCay
describes the Pnuts thin procedural wrapper scripting language in the same issue,
alongside the Mike McMillan article describing the Perl COM component for embed-
ding Perl as a COM component in Win32 applications.

Servlets: Not just about HTIVIL anymore

Servlets aren’t about web servers and HTML—they’re about a means of delivery of
arbitrary content.

Consider GJAS: thus far it is one of the weakest web servers ever concocted on this
planet. It doesn’t support any of the HTTP header commands except GET, and it cer-
tainly doesn’t do that well, either. Assume for the moment, that I create a Servlet-
ContainerService (or ServletContainerConnection) for GJAS that provides the basic

CHAPTER 11 SERVLETS

servlet environment. Now it becomes possible to load servlets into the GJAS system,
have them start listening on port 80 for incoming HTTP requests, and use the
PassthroughServlet to start sending .html or .htm files back to the requester. In fact,
we’d probably tie PassthroughServlet to all sorts of file extensions, such as .gif and .jpg,
so as to be able to pass those files’ contents directly back to the client, as well.

Let’s take this concept one step farther. We've now provided HTTP services to
GJAS; what about FTP? Or Gopher? Or Telnet? All of these are certainly feasible ser-
vices for the GJAS system, and wouldn’t be too terribly difficult to develop, assuming
one has the appropriate RFC handy.

Here’s a radical notion: A servlet isn’t really code that’s executed from within an
HTTP server, but is really code that can be executed from within any generic appli-
cation server (like GJAS). If that weren’t enough to cause readers to rethink the whole
servlet concept, Adam Smith, one of the reviewers of the early manuscript for this
book, suggested the idea of creating servlets to other protocols, as well—FTP servlets,
telnet servlets, mail servlets, and so on. In fact, just about any socket-oriented server
can use the Sun servlet specification to create a servlet backplane for enhanced socket-
to-socket serving. Look at the servlet interface:

public void init(ServletConfig config) throws ServletException;

public void service(ServletRequest request, ServletResponse response)
throws ServletException, IOException;

public void destroy();

public ServletConfig getServletConfig();

public String getServletinfo();

This API is extremely generic and, says absolutely nothing about the underlying pro-
tocol the servlet is serving. ServletRequest and ServletResponse each have some methods
that are somewhat HT TP-oriented (get /setContentLength , get /setContentType
etc.), but a servlet engine doesn’t have to call these methods, and a non-HTTP servlet
certainly doesn’t have to do anything meaningful for them.

For example, consider a hypothetical FTP servlet, that acts as a virtual directory
for uploading or downloading files; the servlet could take note of the FTP user’s name
and password, look up the user’s privileges in a database or local file, and provide auto-
matic masking of certain files to allow or prevent the upload/download of those files.
Or, within that directory, it could provide virus-scanning behavior (perhaps using a
JNI-to-native library connection, since no Java-based antiviral tools are available as
yet). The FTP servlet has its service called when the user executes a command within
the FTP/Servlet virtual directory, with the command coming in via the ServletRequest
instance, and the appropriate output sent via the ServletResponse instance. A dir or
Is command inside the hypothetical FTP VirtualDirectoryServlet would check the
user’s permissions against the files on the file system, and only display certain ones.
The same would be true for get or mget commands.

Or consider a telnet servlet system, in which commands can be added to the telnet
server to allow users to perform certain tasks from a telnet session without having to

RELATIONSHIP TO SOCKETS 291

11.2

292

create shell scripts that sit on the server’s file system. The telnet servlet would get the
input from the user before handing it on to the command shell it wraps, perhaps fil-
tering the commands before the command shell sees the input, or even performing a
series of steps on behalf of the user, providing telnet with a certain amount of macro
capability on the server side. Each telnet command gets checked against the list of run-
ning servlets in the system, and if the command matches a servlet name, the entire com-
mand line gets passed into the servlet’s service method inside of a ServletRequest
instance; the servlet sends the telnet output to the user via the ServletResponse instance.

Or consider a mail server servlet that performs the virus checking discussed pre-
viously before downloading the mail to the mail client, or even performs some sanity-
checking on the incoming mail, perhaps doing a content scan in an attempt to filter
out spam and other unwanted email. The mail server can load servlets on a user-by-user
basis (users get to specify which servlets get run at certain points in the mail server’s
operations, such as when new mail comes in), or else on a global basis (only mail
administrators get to specify the servlets run), and so on. A mail server servlet sends
the mail message into the servlet’s service method, and on incoming mail saves the
ServletResponse-sent output as the mail message, or on outgoing mail sends the Servlet-
Response-sent output as the actual mail message. The mail server servlet could even
filter the messages before sending them out, to ensure that nothing of a confidential
or proprietary nature is sent to someone outside the company address book.

In short, servlets aren’t just for web servers. The ability to plug in and define cus-
tom behavior for a given service process is not new, nor is it particularly revolutionary.
Some server programs (such as FTP or mail servers) already provide some of the behav-
ior that an FTP servlet might provide; however, it would be nice to be able to mix and
match that behavior as company policy or as the system administrator wishes. By pro-
viding a servlet engine within the FTP or mail-server’s execution engine, the system
administrator gets an unparalleled amount of control over what happens within the
FTP or mail server.

SERVLETS AND THE N-TIER APPLICATION

One of the principal problems with server-side scripting, however, is that while it
works well for programmers, it combines the presentation contents (the HTML) with
logic for the display (the SQL to retrieve, for example). Considering that most web
content designers have no eye for server-side logic, and that programmers have no eye
for matching colors, this means that one of three scenarios will take place within an
ASP (or other server-side scripting-based) shop:

o First the content, then the logic
The web designers will lay out the page and align the text and the graphics, then
turn the pages over to the programmers to put the logic behind it. Problems:
Development is serialized, since programmers can’t touch the pages until the web

CHAPTER 11 SERVLETS

11.2.1

11.3

designers are finished with them, and programmers can accidentally rearrange
things on the page contrary to the web designers’ intentions.

o First the logic, then the content

This approach seems to be the most popular. First the programmers embed the
logic into the page and verify and test the functionality, then the web designers
spruce it up. Problems: one, web designers can accidentally rearrange things on
the page, breaking the code; work is inherently serialized, since the web designers
can’t touch the pages until the programmers are finished; the QA effort must be
duplicated again after the web designers finish with the pages, since it’s possible
that the web designer introduced a bug.

o Simultaneously
This approach removes the serialized nature of the first two, but requires the web
designers to be familiar with source-code control techniques or applications, or
risk stomping over changes made by others, or even by the web designer.

The inherent problem is that the scripting-based web application is violating one
of the principal rules in z-tier applications, by embedded business logic in the same
layer as the presentation code (the HTML).

Separating logic from content

What really needs to happen is for the two groups to be able to work independently,
without accidentally overwriting the other’s work or creating more difficulties for the
other side. One of the best ways to achieve this sort of parallelism is to separate the
logic of the application (what to do) from the content of the application (what is seen
by the user). Business objects, servlets, and their script-like cousin, JSP, build on the
idea that the servlet/JSP page acts as the presentation layer, using Java to call into Java-
Beans or EnterpriseJavaBeans while processing the page on the server.

There are a number of Open Source and freeware toolkits designed to provide
this same separation. For example, WebMacro (http://www.webmacro.org) uses stan-
dard HTML mixed in with calls to retrieve objects out of its context (in which objects
are also stored, for later retrieval) and places that data on the page dynamically. Other
such systems use similar functionality, offering varying degrees of programmatic con-
trol over the page. This is, in fact, precisely what early web/database tools such as
ColdFusion and NetDynamics were all about.

SERVLETS AS A POOR MAN'S RMI

There is a tremendous amount of possible crossover between your average servlet, and
your average server application. Consider the average enterprise #n-tier, database-
backed, client-server system. When boiled down to its essence, any client/server sys-
tem is simply a collection of request-response calls, similar in scope and style to what
servlets provide. In fact, this has in turn led many developers and architects down an

SERVLETS AS A POOR MAN'’S RMT 293

294

interesting road: using servlets not for HTML and thin-client applications, but as a
middleware layer connecting client to server.

Stop and think about it: Within Java, opening a socket to communicate with a
hypothetical setup like this is trivial:

URLConnection conn =
new URLConnection(“http://www.server.com/servlet/Custom?cmd=start”);
InputStream in = conn.openContent();

Because URLConnection makes it trivial to open a connection to an arbitrary HTTP
server, we can use HT'TP as a simple, lightweight middleware protocol.
This approach offers a number of advantages:

* Lightweight
The HTTP protocol is probably one of the lightest protocols available in the net-
working tool chest. Its statelessness provides for tremendous scalability, and its
simplicity allows it to be used within a variety of environments. To make things
even simpler, it’s all sent as straight ASCII text over a socket—you don’t get much
simpler than this.!

o Content-neutral
HTTP doesn’t care about the data it’s sending back—that’s what MIME is for, as
far as it’s concerned. All HTTP cares about is that it knows the length to send back
(Content-Length), and a few clear-text headers the client must understand upon
response. We can send back anything we wish, and let the client deal with it.

e Security

Many, if not most, corporations have a firewall in place to keep their internal sys-
tems separated from the Internet. Trying to run an RMI, CORBA, or DCOM sys-
tem from outside the firewall to inside the firewall is an exercise in frustration for
all parties concerned. System administrators don’t want to open additional holes
in the firewall, developers don’t want to lose the benefit of distributed objects,
and customers are frustrated because all they know is that it just doesn’t work.
Running over HTTP however, allows us to piggyback on top of the one port
almost any corporation does allow through.

As with any technology or approach, however, running over HTTP has a couple
of disadvantages, too:

' Compare this with a CORBA, RMI, or DCOM system, in which we have to have complex object mar-
shaling, state management across the wire, and (for CORBA and DCOM, anyway) some measure of
pointer-transferability between two separate processes. Granted, HTTP isn’t an ORB, as are CORBA
and DCOM, or even an RPC, like RMI, but is that really the poine? HTTP facilitates quick, simple com-
munication between two processes, which is often all we really need.

CHAPTER 11 SERVLETS

* One way
The communication is entirely one way—the server cannot call back to the client.
This means that the client, if it wishes to be notified of events occurring within
the server, must poll the server to receive the updates. That, in turn, means higher
bandwidth consumption. This could be mitigated by using keep-alive sockets
from client to server, but this reduces the server’s scalability by a significant factor.

o Greater reliance on one component
If the web server is serving dual duty, both as the web server and as a messaging/
communications server, more people are affected if and when the web server is
down. As the old saying goes, if you place all your eggs in one basket....

o Serviet abuse

It becomes tempting to overuse the servlet approach as a generic application
server. In some servlet books, authors demonstrate how to create daemon servlets
that spin off a thread to perform some sort of background processing. Unfortu-
nately, this approach is nonportable; because the servlet engine always retains the
right to shut down the servlet instance (for performance or scalability reasons, if
nothing else), a daemon servlet may actually not run all the time, as it’s supposed
to. Equally unfortunately, this is a popular approach, due not only to the fact
that many servlet engines support the notion of initially loaded servlets (i.e.,
servlets that are loaded, regardless of user requests) to facilitate this idea, but also
to the inherent scalability support that web servers can provide.

It’s very tempting to want to use the Servlet/HT TP layer as a middleware system, using
applets as a front end, communicating through HTTP to a JDBC-driven servlet on the back-
end server. It’s certainly possible to do, and works out quite well for passive server systems;
it’s when we want to develop active or polling servers that the ServletEngine-as-AppServer
approach breaks down on us. A request-response protocol simply isn’t ideologically pre-
pared to deal with the kind of active objects we discussed in “Threading issues” (chapter 6).

11.3.1 Example: RemoteStorageServlet

In chapter 12, I show you a remote storage service, which accepts serialized objects
over a socket, stores them, and retrieves them for requestors—a simple distributed
database system. Within the code for this system, we had to deal with all the socket-
layer communications ourselves, and the storage server class had to be run on its own in
order to respond to requests. This means that system administrators must keep an eye
on this process, as well as the other processes they would normally have to monitor—
not a good way to make friends.

In fact, we could have leveraged the Servlet API to handle all of the communications-
layer aspect of the remote storage server, making use of the HT'TP protocol (listing 11.2)
instead of the custom protocol I presented there. In the custom protocol form, we had
GET, CHECKIN CHECKOUTand DIFF operations to support; we can support those
commands directly within the HTTP protocol, as well.

SERVLETS AS A POOR MAN'’S RMT 295

Listing 11.2 Code for the HTTP protocol

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

/**

*

*/

public class RemoteStorageServlet
extends HttpServlet

private static final String GET = "GET"

private static final String CHECKIN = "CHECKIN";
private static final String CHECKOUT = "CHECKOUT",
private static final String DIFF = "DIFF";

protected void service(HttpServletRequest req,
HttpServletResponse res)
throws ServletException, IOException

String method = req.getMethod();

/I Get the user's map--for now, keep one map per user
/I session; in a real robust system, we'd want to serialize
/I out the results when the session is destroyed, but
/I that's for a later date
HttpSession session = req.getSession(true);
Map userMap = session.getValue("MAP");
if (userMap == null)
{
userMap = new HashMap();
session.putValue("MAP");

}

if ("GET".equals(method))

{
String objName = req.getServietPath();

Object obj = userMap.get(objName);
if (obj == null)
{

String msg = "Objec t " + objNam e + " not found.";
res.sendError(HttpServletResponse.SC_BAD_REQUEST, msg);

else

/I Serialize the object
ByteArrayOutputStream baos =
new ByteArrayOutputStream();
ObjectOutputStream o0os =
new ObjectOutputStream(baos);

296 CHAPTER 11 SERVLETS

11.3.2

00s.writeObject(obj);
00s.flush();

byte[] serializedData = baos.getByteArray();
res.setContentLength(serializedData.length);
res.getOutputStream().write(serializedData);

}
}
else if ("CHECKIN".equals(method))
{
/I . . . details omitted
}
else if ("CHECKOUT".equals(method))
{
/I . . . details omitted
}
else if ("DIFF".equals(method))
{
/I . . . details omitted
}

Notice something interesting—we subvert the HTTP protocol itself in supporting
CHECKIN CHECKOUTand DIFF as valid commands. The getMethod() call on
ServletRequest tells us the actual command sent, which under most servlets will be
one of GETPOSTOPTIONS TRACE and so on, as mandated by the HTTP/1.1 speci-
fication. However, if you’re willing to accept the consequence that the RemoteStorage-
Servlet is to be used only with a custom RemoteStorageServletClient, then writing
the servlet to accept custom commands is perfectly acceptable.

Concept: poor man’s RMI

RMI, as we'll see in chapter 15, is all about Java methods being able to call between
JVM instances, even across the network. Unfortunately, RMI, like many other middle-
ware solutions, suffers from one critical restriction—Dbecause requests can come in
from clients on any port, it’s devilishly difficult to keep a server system running an
RMI server locked down. As a result, the use of distributed technologies like RMI has
not seen much use outside of the corporate firewall.

Servlets can serve as a cheap, lightweight form of RPC, however, by using HTTP
as the transport and serialized objects as the data communicated between client and
server. Instead of allowing RMI to do the marshaling of parameters, the programmer
opens a URLConnection, serializes the arguments into a ByteArrayOutputStream, and
sends the resulting byte array down the socket as POST parameters to the HTTP
request. On the server side, the poor man’s RMI servlet deserializes the POS®d parameter,
inspects the arguments, and makes the call given as part of the HT TP request; for example,
an HTTP request such as “POST/myobjectinstance/mymethodcall HTTP/1.0 ”

SERVLETS AS A POOR MAN'’S RMT 297

11.3.3

11.4

11.5

298

would call the mymethodcall method on the object instance referred to (within an
object mapping table, such as a Hashtable) as myobjectinstance . Note that the
hypothetical PMRMIServlet wouldn’t even need precompiled stubs to be present; it
can use reflection to look up the method name given as part of the HTTP request,
unpack the arguments, and if the types don’t match up, send a 404 or 500 error back
to the client, who interprets those as fatal mismatch or something similar.

Concept: SOAP

In point of fact, such a poor man’s RMI system already exists—it’s called SOAP, the
simple object access protocol, and it uses HT'TP as the transport and XML (instead of
serialized objects, since it’s intended to be cross-language) as the RPC payload. SOADR,
although still in the early stages of specification development at the time of this writ-
ing, promises to allow for an unprecedented amount of interconnectivity between the
RPC mechanisms we’ll talk about in chapter 16. Because Microsoft has committed to
it, along with several leading CORBA vendors, it’s entirely possible that by the time
you read this, DCOM will be able to call into CORBA servants via SOAP.

SUMMARY

What has this bought us? Why bother changing the persistence examples from using
straight sockets to using servlets and HTTP instead? What’s the big deal about the
poor man’s RMI system, or SOAP?

Simply, we can now let the Servlet engine manage the necessary activation/
passivation of the servlet as demand ebbs and flows. If the servlet engine sees that
twenty-four hours (or less) has gone by without a request to the RemoteObject-
Servlet, the Servlet engine can destroy() the RemoteObjectServlet, then con-
struct and init() a new instance of the Servlet when the next URL request comes
in. This means less drain on resources on the server.

Secondly, because our service is now operating off of the web server, we don’t have
to punch a new hole through the firewall and yet our middleware mechanism is still
available to Internet clients (if required). This makes the code firewall friendly, since
we're not requiring additional work on the part of the firewall (except that it support
HTTP requests through port 80, something most firewalls are already capable of doing).

ADDITIONAL READING
* Alan Williamson, Java Servlets By Example (Manning Publications Co., 1999).

An impressive collection of sample code focusing exclusively on servlets. It’s 500-
plus pages of nothing but servlets, servlets, servlets.
* Jason Hunter, Java Servler Programming (O’Reilly and Associates, 1998).

This is fast becoming the must-have book for servlet programming. If you're
working with servlets, this (or the Williamson book) is the place to start. Be

CHAPTER 11 SERVLETS

aware that the servlet specification has undergone several revisions (from 2.0 to
2.2, at the time of this writing) since his book became available, and certain
methods in the servlet API have become deprecated.

* James Duncan Davidson, “Servlet 2.2 Specification,” 1999, available at http://
www.javasoft.com/products/servlets.
This is the fundamental definition of what is, and is not, available within the
servlet API, and the classes which make up the javax.servlet package are
available online from the same place. If you develop servlets, you need to read
this, because vendors will be required to keep up with the spec, and you’ll get
burned someday if you don’t.

ADDITIONAL READING 299

Persistence

12.1 Java Serialization 301

12.2 Beyond the specification 317
12.3 JDBC 330

12.4 Summary 338

12.5 Additional reading 339

Persistence refers, in our particular case, to the ability of objects to be able to persist
themselves beyond the current application instance. Normally, most objects are tran-
sient, that is, they do not exist outside of the current application space. When the
application quits, they disappear. Persistent objects live on, or at least appear to. In real-
ity, while the actual object instance may be destroyed, the data that forms one half of
the object (the other half being the code, which is reloaded each time the application is
started) is saved off in some fashion, usually to disk. Then, when reloaded, an object of
similar or compatible type is created, and the data from the previous instance is loaded.
To all intents and purposes, that object has lived beyond the current application scope.

Persistence can take several forms of implementation. Java’s Object Serialization
specification is one. Using a relational database and JDBC is another. You can even use
some customized approach to handle it on your own terms if you choose. Where the
object’s data resides between invocations doesn’t matter, so long as the code using the
persistent object knows how to recreate it when asked.

It’s this latter requirement that typically provides the biggest headache. Saving an
object off to disk or database usually isn’t the problem; the problem comes when
attempting to retrieve that particular object, out of the hundreds, or thousands or hun-
dreds of thousands of objects available. In a relational database scheme, each object

300

usually corresponds to one or more rows in one or more relational tables, whose
uniqueness is given by a primary key. In classic JavaBeans Serialization, each object or
collection of objects corresponding to a single entity is saved into its own filename. !
For your custom approaches, you’re on your own.

Note that persistent object systems and databases (be they relational or object-
based) are not the same beast. The first merely describes the ability for an object to
save and restore itself to some nonvolatile memory (disk, or some external device). The
second describes a system not only in which objects can be stored and retrieved, but
queried and examined in an ad hoc format. This marks an important difference; a per-
sistent system may have no other way to access a given object other than retrieving the
entire object tree. Consider a simple request to determine if a large entity (100-plus
interconnected objects) exists; in a database system, I can fire off a simple query and
examine the results without having to instantiate the objects themselves. A persistent
system has no such ability; I must retrieve all 100-plus objects from disk or the per-
sistent backing store and deserialize them (which in turn requires the construction of
all 100-plus objects) before I get the chance to check if the object came back.

12.1 JAVA SERIALIZATION

Java’s Serialization mechanism is, at heart, a simple one. Objects which implement
the interface Serializable can be written directly to an ObjectOutputStream, in the
following manner:

/I Serialize today's date to a file
FileOutputStrea m f = new FileOutputStream(“date”);
ObjectOutputStrea m s = new ObjectOutputStream(f);
s.writeObject(“Today”);
s.writeObject(new Date()); // Date no-arg constructor

/I uses current date/time
s.flush();

Reading from a Serialized stream is similarly simple:

/I Deserialize file containing (we hope) today’s date
FilelnputStream f = new FilelnputStream(“date”);
ObjectinputStrea m s = new ObjectinputStream(f);
String label = (String)s.readObject();

Date date = (Date)s.readObject();

In this case, we open a file and attempt to read in a String object, followed by a Date
object. If it succeeds, label contains “Today”, and date contains the date when the
file “date” was written (since that was the value of the Date object at the time it was
serialized).

! Note that there is no mention of files or filenames in the Object Serialization specification, a fact which
will become more clear and lead to interesting tactics later in the chapter.

JAVA SERIALIZATION 301

12.11

302

All of this should be old hat to yous; if it’s not, check out just about any text on
JavaBeans. Most cover the basics of Serialization to some detail, since Serialization
made its debut in JDK 1.1. Touted as a scheme by which JavaBeans could be custom-
ized within a Bean editor, stored off to disk (and presumably shipped with your appli-
cation), and restored with all properties intact, Serialization never really got much
press beyond that. RMI also uses this “basic” form of Serialization to ship objects across
the wire from client to server or vice versa.

Serialization to other places

As RMI proves, we can Serialize objects to any place we can store and retrieve data
streams. ObjectOutputStream, the default ObjectOutput-implementing byte con-
tainer, wraps an OutputStream. This means that any class which extends Output-
Stream can in turn be a sink for serialized objects. When you consider the wide variety
of rich and well-defined stream classes Java has, this means that objects can, quite lit-
erally, be serialized anywhere:

ByteArrayOutputStream baos = new ByteArrayOutputStream();
ObjectOutputStream o0os = new ObjectOutputStream(baos);
00s.writeObject(obj);

00s.flush();

byte[] serializedData = baos.toByteArray();

...

/I Now reconstitute the object(s)

ByteArraylnputStream bais = new ByteArraylnputStream(serializedData);
ObjectinputStream ois = new ObjectinputStream(bais);

Object obj = ois.readObject();

This snippet® allows us to now send the serialized form of the object obj to any byte-cen-
tric data stream we choose: RDBMS binary object column, socket, XML format, wherever.

Furthermore, we can now manipulate the data in any way we see fit, even com-
press it:

import java.io.*;
import java.util.zip.*;

public class CompressedSerialization
{
public static void main(String[] args)
throws Exception
{
/I Take a String, serialize it compressed to disk
String data = "This is our test string";

2 Effectively a longer-way-around replacement for Cloneable, although I strongly suggest that if you
want to clone objects, you implement Cloneable and decide on shallow-copy or deep-copy semantics
explicitly. (“Cloning-via-serialization” will always give you a deep copy, with new versions of each object.)

CHAPTER 12 PERSISTENCE

FileOutputStream os =

new FileOutputStream("data");
GZIPOutputStream gzOS =

new GZIPOutputStream(os);
ObjectOutputStream o00s =

new ObjectOutputStream(gzOS);

/I Serialize the object
oos.writeObject(data);
00s.close();

/I Set up the input streams
FilelnputStream is =

new FilelnputStream("data”);
GZIPInputStream gzIS =

new GZIPInputStream(is);
ObjectinputStream ois =

new ObjectinputStream(gzIS);

String test = (String)ois.readObject();

System.out.printin("Compare ;" + data + " vs. " + test);
if (data.equals(test))
System.out.printin("Success!");

}

Notice how Java’s stream-chaining makes this a simple task. By placing the GZIP-
OutputStream and GZIPInputStreams around the FileOutputStream or Filelnput-
Stream instances, and having the ObjectOutputStream and ObjectInputStreams talk
to the GZIP streams, we now compress the serialized data on the way out, and
decompress it on the way in. The act of performing the serialization or deserialization
will take longer, granted, but this is to be expected of any compression task.

12.1.2 Security and Serialization

Serialization, in its basic form, for all its wonderful promise, leaves a very large secu-
rity hole. If sensitive information is stored off to some serialized stream, then anyone
who has access to the serialized data and the binary code for the class(es) which repre-
sent the serialized objects in that data stream can reconstitute the entire object with
no security restrictions whatsoever. This means that if you serialize a record contain-
ing financial or other sensitive information off to disk, you need to make sure that
unauthorized users can’t access the disk files.

It would be nice if Java came with some cryptographic I/O streams that we could
plug in to the Serialization process, as we did with compression, but none do. This
means that in order to encrypt the data produced from a serialization stream, we either
have to capture the entire byte array and encrypt it, or create an InputStream/Output-
Stream pair that do the encryption on the fly as bytes are written in. Unfortunately, the
more secure encryption algorithms don’t handle on-the-fly encryption, but depending
on your needs, simple on-the-fly encryption methods like listing 12.1 could work.

JAVA SERIALIZATION 303

304

Listing 12.1 Code for simple encryption

import java.io.*;
import java.util.zip.*;

class SimpleFilterinputStream extends FilterinputStream

{

public SimpleFilterinputStream(InputStream in)
{ super(in); }
/**
* Offset the byte values by -1
*/
public int read()
throws 1OException

{
int r = super.read();
return r--;

}
/**
* Offset the byte values by -1
*/
public int read(byte bl[])
throws 1OException

{
int ret = super.read(b, 0, b.length);
for (int i=0; i<b.length; i++)
b[i--;
return ret;
}
/**

* Offset the byte values by -1

*

public int read(byte b[], int off, int len)
throws IOException

{
int ret = in.read(b, off, len);
for (int i=0; i<b.length; i++)
bi]--;
return ret;
}

}

class SimpleFilterOutputStream extends FilterOutputStream

{
public SimpleFilterOutputStream(OutputStream out)
{ super(out); }

/**

CHAPTER 12

PERSISTENCE

* Offset the bytes by +1
*/
public void write(int b)
throws IOException
{

out.write(b++);

}

/**

* Offset the bytes by +1

*/

public void write(byte b[])
throws IOException

{
write(b, 0, b.length);

}

/**
* Offset the bytes by +1
*/

public void write(byte b[], int off, int len)
throws 1OException
{
for (int i=0;i<len; i++)
{
write((b[off + i])++);
}
}
}

/**
*
*/
public class SecureSerialization
{
public static void main(String[] args)
throws Exception
{
/I Take a String, serialize it compressed to disk
String data = "This is our test string";

FileOutputStream os =

new FileOutputStream("data");
SimpleFilterOutputStream fos =

new SimpleFilterOutputStream(os);
ObjectOutputStream oos =

new ObjectOutputStream(fos);

/I Serialize the object
oos.writeObject(data);
0os.close();

/I Set up the input streams
FilelnputStream is =

JAVA SERIALIZATION 305

12.1.3

306

new FilelnputStream("data");
SimpleFilterinputStream fis =

new SimpleFilterinputStream(is);
ObjectinputStream ois =

new ObjectinputStream(fis);

String test = (String)ois.readObject();

System.out.printin(*Compare ;" + data + " vs. " + test);
if (data.equals(test))
System.out.printin("Success!");

Obviously, this sort of encryption would be simple for any serious encryption-breaking
algorithm or hacker to tear apart. For added security (such as it is, anyway), we could
slip a GZIP stream into the process, thus rendering the data offset by one, compressed
and serialized, which would confuse any nonencryption-aware reader or application
attempting to understand the data. Again, however, if your data is truly sensitive, if the
data will be sent over insecure lines (such as anything outside your intranet), or if the
data simply warrants added security, go with a more secure algorithm.

Customized Serialization

Serialization isn’t limited to playing strictly by Sun’s rules. The Object Serialization
specification allows those classes that wish to control the manner in which they are
serialized to do so.

As stated before, one way in which serialization is controlled comes via the seri-
alizedPersistentFields member of a class; if one is present, Serialization will
only persist those members specified in that array. Sometimes, however, that level of
control isn’t enough—the target system doesn’t understand byte streams, or perhaps
simply streaming off the bytes in Serialization’s own format is inconvenient for further
system development.

Under these circumstances, if a class provides readObject and writeObject
methods (the access specifier on these methods must be marked as private , or Seri-
alization will not find them), these methods will be called in addition to using default
Serialization behavior to persist the object. This allows you to add optional data follow-
ing the class when persisting it off which would otherwise not be stored (such as static
fields, or references to objects that would normally sit outside the class, and so forth).

In listing 12.2, we replace the default Serialization mechanism with one of two
different implementations. Both use the read and write methods of ObjectInput-
Stream and ObjectOutputStream, respectively, and so aren’t completely removed
from Serialization, but alternate implementations are easy to imagine and see where
and how they would plug in.

CHAPTER 12 PERSISTENCE

Listing 12.2 Code for customizing Serialization

import java.io.*;
import java.util.*;

public class CustomSerialization
implements Serializable

{

public CustomSerialization()

{

}

m_int = 5;
m_string = "This is a test";
m_object = new Date();

private void writeObject(ObjectOutputStream o00s)

{

}

throws IOException

/I One possible implementation
/*

oos.writeUTF("{BEGIN}");
oos.writelnt(m_int);
oos.writeUTF(m_string);
oos.writeObject(m_object);
oos.writeUTF("{END}");

*/

/I A second implementation
Hashtable hash = new Hashtable();
hash.put("m_int", new Integer(m_int));
hash.put("m_string"”, m_string);
hash.put("m_object", m_object);
oos.writeObject(hash);

private void readObject(ObjectinputStream ois)

{

JAVA SERIALIZATION

throws 10Exception, ClassNotFoundException

/I The deserialization to the implementation given first
/*

System.out.printin((String)ois.readUTF());

m_int = ois.readInt();

m_string = ois.readUTF();

m_object = ois.readObject();
System.out.printin((String)ois.readUTF());

*/

/I The deserialization to the second implementation
Hashtable hash = (Hashtable)ois.readObject();
m_int = ((Integer)hash.get("m_int")).intValue();
m_string = (String)hash.get("m_string");

m_object = hash.get("m_object");

307

308

public int m_int;
public String m_string;
public Object m_object;

public static void main(String[] args)
throws Exception

{
CustomSerialization custom = new CustomSerialization();
custom.m_int = 12;
custom.m_string = "Test data";
custom.m_object = new Vector();
((Vector)custom.m_object).addElement("One");
((Vector)custom.m_object).addElement("Two");
((Vector)custom.m_object).addElement("Three");

/I Serialize it off to disk
FileOutputStream os =

new FileOutputStream("data");
ObjectOutputStream oos =

new ObjectOutputStream(os);
0os.writeObject(custom);
0os.close();

/I Retrieve it from disk
FilelnputStream is =
new FilelnputStream("data");
ObjectinputStream ois =
new ObjectinputStream(is);
CustomSerialization test =
(CustomSerialization)ois.readObject();

if (custom.m_int == test.m_int &&
custom.m_string.equals(test.m_string))

{

System.out.printin("It worked!");

}

The core of the example is in the writeObject ~ and readObject methods of Custom-
Serialization. In writeObject , the first implementation (which is currently com-
mented out) uses ObjectOutputStream’s methods to write a “begin” and “end” block
around the serialized members, and readObject in turn uses these markers to
ensure that the stream is synchronized correctly. The second implementation instead
makes use of a standard Hashtable to contain the members in a name-value pair
approach, and uses default Serialization to stream the Hashtable out to the data
stream and back again. While neither of these approaches really gets away from using the
default behavior of Serialization, (and neither approach warrants the need for custom
Serialization) it highlights the necessary steps to implement customized Serialization.

CHAPTER 12 PERSISTENCE

12.1.4 Serialization and evolution

“The only thing constant in life is change.” This is true of object systems, as well. Sys-
tems that remain constant aren’t well-written, they’re stagnant. Business changes,
technology evolution, new ideas, even the simple act of administering the enterprise’s
corporate data center can introduce changes into an enterprise system and create
additional requirements or changes to the system.

This introduces particular problems for the persistent object concept; how can
objects change their internal representation and still be able to read (and potentially write)
older versions of themselves? This is not a trivial task; the backward-compatibility tar-
get is one to which many systems aspire, yet few actually hit. It is difficult enough for
developers to maintain a consistent set of methods and APIs at the object-model level
so as not to require massive rework on the client side. Asking developers to also main-
tain the internal representation of objects, so as to remain compatible with the already
Serialized versions of those objects, is downright impossible.

Fortunately, Serialization provides a certain amount of evolution-friendly capa-
bility. So long as developers do not violate one of the following rules,® the serialized
versions of objects will be transparently read from disk without a problem:

* Deleting fields
If a field is deleted in a class, the stream written will not contain its value. When
the stream is read by an earlier class, the value of the field will be set to the
default value because no value is available in the stream. However, this default
value may adversely impair the ability of the earlier version to fulfill its contract.

* Moving classes up or down the hierarchy
This cannot be allowed since the data in the stream appears in the wrong sequence.

* Changing a nonstatic field to static or a nontransient field to transient
When relying on default serialization, this change is equivalent to deleting a field
from the class. This version of the class will not write that data to the stream, so
it will not be available to be read by earlier versions of the class. As when deleting
a field, the field of the earlier version will be initialized to the default value,
which can cause the class to fail in unexpected ways.

*» Changing the declared type of a primitive field
Each version of the class writes the data with its declared type. Eatlier versions of
the class attempting to read the field will fail because the type of the data in the
stream does not match the type of the field.

* Changing the writeObject orreadObject method
Changing either method so that it no longer writes or reads the default field data or
changing it so that it attempts to write it or read it when the previous version did not is a
no-no. The default field data must consistently either appear or not appear in the stream.

3 Java Object Serialization Specification, Section 5.6.1.

JAVA SERIALIZATION 309

» Changing a class from Serializable to Externalizable or vice-versa
This is an incompatible change since the stream will contain data that is incom-
patible with the implementation in the available class.

* Removing either Serializable or Externalizable
When written it will no longer supply the fields needed by older versions of
the class.

* Adding the writeReplace or readResolve method to a class
This is incompatible if the behavior would produce an object that is incompatible
with any older version of the class.

The following is a list of what is permitted to maintain compatibility:*

*» Adding fields
When the class being reconstituted has a field that does not occur in the stream,
that field in the object will be initialized to the default value for its type. If class-
specific initialization is needed, the class may provide a readObject method
that can initialize the field to nondefault values.

* Adding classes
The stream will contain the type hierarchy of each object in the stream. Com-
paring this hierarchy in the stream with the current class can detect additional
classes. Since there is no information in the stream from which to initialize the
object, the class’s fields will be initialized to the default values.

* Removing classes
Comparing the class hierarchy in the stream with that of the current class can
detect that a class has been deleted. In this case, the fields and objects corre-
sponding to that class are read from the stream. Primitive fields are discarded,
but the objects referenced by the deleted class are created, since they may be
referred to later in the stream. They will be garbage-collected when the stream is
garbage-collected or reset.

*» Adding writeObject /readObject — methods
If the version reading the stream has these methods then readObject is expected,
as usual, to read the required data written to the stream by the default serialization.
It should call defaultReadObject first before reading any optional data. The
writeObject ~ method is expected as usual to call defaultWriteObject to write
the required data and then may write optional data.

* Removing writeObject ~ /readObject methods
If the class reading the stream does not have these methods, the required data
will be read by default serialization, and the optional data will be discarded.

4 Java Object Serialization Specification, Section 5.6.2.

310 CHAPTER 12 PERSISTENCE

* Adding java.io.Serializable
This is equivalent to adding types. There will be no values in the stream for this
class so its fields will be initialized to default values. The support for subclassing
nonserializable classes requires that the class’s supertype has a no-arg constructor
and the class itself will be initialized to default values. If the no-arg constructor is
not available, the InvalidClassException is thrown.

* Changing the access to a field
The access modifiers public , package , protected , and private have no
effect on the ability of serialization to assign values to the fields.

» Changing a field from static to nonstatic or transient to nontransient
When relying on default serialization to compute the serializable fields, this
change is equivalent to adding a field to the class. The new field will be written
to the stream but earlier classes will ignore the value since serialization will not
assign values to static or transient fields.

When evolving a class in a compatible form, allowing the evolved class to read and
write the original class’s serialized instances is a simple matter. Place the original’s
serialver (so named because it is obtained from the JDK utility “serialver”) value as a
static member of the evolved class, like so:

public class Evolved

{
static final long serialVersionUID = -6756364686697947626L;

}

Now, when instances of the evolved class are deserialized from streams (which were
serialized using the original class), the original instance will be read into the evolved
instance. Those fields which weren’t present in the original instance will be set
according to the evolved instance’s no-arg constructor (or to null, if a default con-
structor isn’t defined for the class). Fortunately, when the evolved class is serialized,
the serialVersionUID is ignored and the full evolved class is Serialized (as opposed to
an original form of the evolved class).
To demonstrate, consider the following “original” class:

public class Evolution
implements Serializable
{
public static void main(String[] args)
throws Exception
{
/I Create an instance
1
Evolutio n e = new Evolution();
e.printlt();

/I Serialize it out
1
FileOutputStream fo = new FileOutputStream("evolve.tmp");

JAVA SERIALIZATION 311

ObjectOutputStream so = new ObjectOutputStream(fo);
so.writeObject(e);

so.flush();

fo.close();

/I Deserialize it back in, just to make sure

1

FilelInputStream fi = new FilelnputStream("evolve.tmp");
ObjectinputStream si = new ObjectinputStream(fi);
Evolution e2 = (Evolution)si.readObject();

e2.printlt();
fi.close();
}
public Evolution()
{
m_data = new String("This is a test");
}
public void printlt()
{
System.out.printin("Data : " + m_data);
}

private String m_data = new String("Default value");

}

When the original is run, it first serializes an instance of itself, then deserializes it to
verify that it is deserializable by the original. Next, look at the compatible evolution
of the original class:

public class Evolution
implements Serializable
{
public static void main(String[] args)
throws Exception
{
/I Deserialize the old instance
1
FileInputStream fi = new FilelnputStream("evolve.tmp");
ObjectinputStream si = new ObjectinputStream(fi);
Evolutio n e = (Evolution)si.readObject();
e.printlt();
fi.close();

/I Change the "new" data
1
e.changeData2();

/I Serialize it out to a new file

1

FileOutputStream fo = new FileOutputStream("evolve2.tmp");
ObjectOutputStream so = new ObjectOutputStream(fo);
so.writeObject(e);

so.flush();

fo.close();

312 CHAPTER 12 PERSISTENCE

/I Deserialize it back in, just to make sure
1

fi = new FilelnputStream("evolve2.tmp");

si = new ObjectinputStream(fi);

Evolution e2 = (Evolution)si.readObject();

e2.printlt();
fi.close();
}
public Evolution()
{
m_data = new String("This is a test");
}
public void printlt()
{
System.out.printin("Data ;" + m_data);
System.out.printin("Data2 : "+ m_data2);
}
public void changeData2()
{
m_data2 = new String("This is different.");
}

private String m_data = new String("Default value");
private String m_data2 = new String("Default data2 value");

static final long serialVersionUID = -282360125859716471L;
}

When the evolved class is executed, it first deserializes the instance of the original, to
ensure that it can, then serializes itself back to disk under a different filename. Finally,
as a last check, it deserializes the new instance, to make sure that the new serialization
format was used and not the old.

12.1.5 Replacement

In the event, however, that you must make changes that would make the class incom-
patible with its former serialized representation, Serialization allows a class to nomi-
nate its replacement type in the serialized stream, and to offer a replacement type
when deserialized from the stream. This behavior is implemented with the write-
Replace and readResolve methods, which are prototyped as follows:

<any access modifier> Object writeReplace()

throws ObjectStreamExceptio n{...}
<any access modifier> Object readResolve()
throws ObjectStreamExceptio n{...}

Note that the access specifier given to these methods (public , private , pro-
tected , or package-friendly) is irrelevant as far as Serialization is concerned. It will
use Reflection to identify whether either method exists, and will ignore the access-
specification when using them.

JAVA SERIALIZATION 313

314

The problem with using these methods is that they are called after deserialization
has taken place; that is, on the object that was deserialized from the data stream.
Unfortunately, an incompatible change to the class means that deserialization will fail
before readResolve() can be called to nominate a replacement object in its stead.

All is not completely lost; while it’s not quite as seamless or as transparent as we
might hope, we can use the readResolve() method to construct the new class
using the old one as an argument to a new class constructor (what C++ referred to as
a copy constructor):

public class NewClass

{
. ..
public NewClass(OldClass source)
{
/I Copy over data from ‘source’
}
}

The OldClass must then be written to nominate instances of NewClass when deserialized:

public class OldClass

{
. ..
private Object readResolve()
throws ObjectStreamException
{
return new NewClass(this);
}
}

And, any place where an OldClass was expected from a deserialization operation, the
code must be changed to expect a NewClass instead:

/I code like this:
OldClass obj = (OldClass)objectinputStream.readObject();

/I must be changed to:
NewClass obj = (NewClass)objectinputStream.readObject();

When the NewClass is serialized (listing 12.3), it will be serialized using its new for-
mat, and not the (incompatible) one written by OldClass. If, however, you desire to
keep the old format in place, you can provide a writeReplace() method on New-
Class that creates an OldClass for serialization.

Listing 12.3 Code for NewClass (serialized)

import java.io.*;

/~k~k

* QOldClass is the "old" serialized format we wish to maintain
*/

class OldClass

CHAPTER 12 PERSISTENCE

implements Serializable

{
public OldClass(String data)
{
m_data = data;
}
public String getData()
{
return m_data;
}
public String toString()
{
return ("OldClass.m_dat a = " + m_data);
}
private String m_data;
/I Serialization Replacement method
private Object readResolve()
throws ObjectStreamException
{
return new NewClass(this);
}
}
/**

* NewClass is the "new" serialized format we wish to replace
* QOldClass with.
*/
class NewClass
implements Serializable

{

public NewClass(OldClass source)

{
System.out.printin("Copy-constructing fro m " + source);
m_ref = source;
m_additionalData = null;

}

private Object m_additionalData;

private OldClass m_ref;
/I This is counted as an incompatible change as far as
/I Serialization is concerned--we "removed" a serialized
/I field (m_data) from this new class type, we changed the
/I class name, and so forth.

private Object writeReplace()
throws ObjectStreamException

{
System.out.printin("Nominatin g"+m_oref+ " for" +

"serialization instead of ourselves");

return m_ref;

}

}

JAVA SERIALIZATION 315

316

*/
public class Replacement
{
public static void main(String[] args)
throws Exception
{
/I Serialize out a version of OldClass to work with
ByteArrayOutputStream outl =
new ByteArrayOutputStream();
ObjectOutputStream objOut =
new ObjectOutputStream(outl);
OldClass data = new OldClass("Data value");
objOut.writeObject(data);
objOut.flush();

/I Deserialize written object into a NewClass instance
ByteArraylnputStream inl =

new ByteArraylnputStream(outl.toByteArray());
ObjectinputStream objin =

new ObjectinputStream(inl);
NewClass newData = (NewClass)objin.readObject();

/I Serialize NewClass instance back out to file
ByteArrayOutputStream out2 =

new ByteArrayOutputStream();
ObjectOutputStream objOut2 =

new ObjectOutputStream(out2);
objOut2.writeObject(newData);
objout2.flush();

/I Ensure the two byte arrays (outl and out2) are identical;

/I for this example, we'll just compare sizes

if (outl.toByteArray().length == out2.toByteArray().length)
System.out.printin("Lengths are identical!");

Note that NewClass has nothing to do with OldClass in any way so far as Serialization is
concerned. We’ve made a number of incompatible changes to OldClass, not the least of
which is the fact that we changed its name (to NewClass)! But, as you can see, Seriali-
zation still believes that the serialized versions of OldClass can be read and written by
NewClass. Normally, being able to write out the new class as the old is less of an issue
than being able to read in the new (notice that since NewClass does not have a
readResolve() method, if the writeReplace() method in NewClass is removed,
any serialized OldClass instances will be one-way transformed into NewClass instances),
but being able to go from old to new back to old is possible, as demonstrated.

CHAPTER 12 PERSISTENCE

12.2 BEYOND THE SPECIFICATION

Having spent all this time discussing the mechanics of Serialization and Externaliza-
tion, the curious reader may wonder what good this knowledge can serve when writ-
ing server code. After all, Serialization is really just a JavaBeans thing, isn’t it?

Not exactly. A good working knowledge of Serialization is not only necessary for
usage in RMI (which, as mentioned before, uses Serialization for sending representa-
tion of object instances across the wire), but can also have some direct capabilities in
the server environment.

To start with, this inherent ability to gracefully (and silently) stream objects to
data streams and back allows us some flexibility in the objects” actual location and
environment. For example, nothing prevents us (assuming all objects are Serializable)
from storing objects in a central server on the network. RMI also allows this, but con-
current modification of objects can create problems in an RMI environment. Instead
of adding complicated concurrency locking, we can instead allow clients to check out
objects from this remote storage facility, and check in the objects when they are fin-
ished with them. In addition to being as fast, if not faster, than RM], this check-out/
check-in paradigm can, when combined with one of the distributed ClassLoaders pre-
viously discussed, completely obviate the need for RMI for some purposes.

Secondly, now that we've seen the ability of Serialization to shuffle objects
between JVMs, one begins to wonder if objects need to begin and end life within the
same JVM. They don’t, and the remote construction of objects offers a number of
advantages that local construction of objects can’t match without added complexity.
Again, when combined with one (or more) of the distributed ClassLoaders from pre-
vious chapters, we gain a measure of flexibility unparalleled by other languages or
development environments.

12.2.1 Remote storage of objects

Much of the development work that goes on within an enterprise application centers
around the idea of group-enabling access to data. For example, the employee applica-
tion system developed in chapter 6 is precisely that—the ability for multiple clients to
view and/or modify data from anywhere in the enterprise. Historically, centralized
persistent forms of storage have been used for this role, regardless of their appropri-
ateness toward that task. Specifically, relational databases are used to perform this
role, forcing database administrators and developers into a relational frame of mind
when storing off data. While the centralization of data is a worthwhile thing, for
many systems and applications the use of a relational database is overkill.
Additionally, using a relational database forces the design team into making deci-
sions based specifically on the basis that a relational database is being used. For exam-
ple, implementing the kind of check-in/check-out system described earlier becomes
painful under an RDBMS if the RDBMS itself does not provide some form of table or
row locking. Also, for a number of applications, such as Internet applications or

BEYOND THE SPECIFICATION 317

12.2.2

318

applets, the use of an RDBMS for any purpose is not only inconvenient, but inadvis-
able. (Most security experts recommend leaving the database behind the firewall to
avoid hacking attempts.)

Remember one of object-oriented development’s founding tenets: Encapsulation
is good. There are a variety of persistent mechanisms already at use within the enter-
prise (not the least of which is the classic legacy system mainframe application suite),
and access to these systems is not trivial by any standard.

Fortunately, we can avoid a number of these problems with the creation of a new
GJAS service, the RemoteStorageService. This example code is certainly not ready for
immediate production use (if the service shuts down for any reason, the data stored
therein is lost), but provides a basic framework from which more robust implemen-
tations could easily be derived.

Example: RemoteStorageService and RemoteStorageClient

RemoteStorageService (listing 12.4) provides a check-in/check-out system of data stor-
age on the GJAS server. It uses Serialization to stream the data from the client to the
server, keeping track of check-outs solely by a client-provided identification string.

Listing 12.4 Code for RemoteStorageService

import java.io.*;
import java.net.*;
import java.util.*;
/**
* RemoteStorageService
*/
public class RemoteStorageService extends SocketServer

{

* Use this Socket to answer client requests for serialization

* services. This service, in contrast to others, services only

* one request/response pair, then shuts down. This is

* deliberate, as ObjectOutputStream and ObjectinputStream do
* some activity to the target stream (the socket) during

* their construction; this means that after the client makes

* its request and quits, the server will get an Exception

* claiming the socket "unexpectedly" quit.

* Note also that order of construction of the streams (the

* Objectlnput/ObjectOutput streams) is important;

* because the client's ObjectinputStream is expecting to find
* header information on the server's ObjectOutputStream, they
* must be constructed in offsetting pairs. The server builds

* them in Output-first-Input-second order, so the client must

* build them in reverse (Input-first-Output-second) order. For
* this reason, only use RemoteStorageRequest instances to

* talk to the RemoteStorageService.

CHAPTER 12 PERSISTENCE

public void serve(Socket socket)
throws Exception
{
/I Set up
ObjectOutputStream objOut =
new ObjectOutputStream(socket.getOutputStream());
ObjectinputStream objin =
new ObjectinputStream(socket.getinputStream());

/I Extract the command
String cmd = objin.readUTF();
if (cmd.equals("GET"))
{
/I Protocol: GET, obj name
String objName = (String)objln.readObject();

Object objinTable = m_objectTable.get(objName);
if (objinTable '= null)
{
objOut.writeUTF("SUCCESS");
objOut.writeObject(objinTable);

else

objOut.writeUTF("ERROR");
objOut.writeObject(
new Exception("Object not found"));

}

objOut.flush();

Y /I GET

else if (cmd.equals("CHECKIN"))

{
/I Protocol: CHECKIN, client ID, obj name, obj
String clientID = (String)objln.readObject();
String objName = (String)objln.readObject();
Object obj = objln.readObject();

/I 1s it there?
Object objinTable = m_objectTable.get(objName);
if (objinTable !'= null)
{
/I It's there already; did we check it out?
String ownerlD = (String)m_checkOuts.get(objName);
if (ownerID == null)
{
/I It's not checked out at all
objOut.writeUTF("ERROR");
objOut.writeObject(
new Exception("Object not checked out"));
}
else if (ownerlD.equals(clientID))

{

BEYOND THE SPECIFICATION 319

/I Yes, 'tis checked out, and client owns it

/I Replace the old one; Hashtable allows dupes
m_objectTable.remove(objName);
m_objectTable.put(objName, obj);

/I Remove the checkout
m_checkOuts.remove(objName);

/I Send success
objOut.writeUTF("SUCCESS");

objOut.writeObject(obyj);
}
else
{
/I Yes, 'tis checked out, but client doesn't
/I own it, so they can't check it back in
objOut.writeUTF("ERROR");
objOut.writeObject(new Exception(
"Object checked out t o " + ownerlD));
}
}
else
{
/I It's not there; add it and return success
m_objectTable.put(objName, obj);
objOut.writeUTF("SUCCESS");
objOut.writeObject(obj);
}
objOut.flush();
} // CHECKIN

else . . .

/I CHECKOUT and DIFF also supported; for full details, see
/I the full code listing

...

/I Internal members
private Hashtable m_objectTable = new Hashtable();
private Hashtable m_checkOuts = new Hashtable();

}

The client code, snipped somewhat, looks like this:

public class RemoteStorageClient
implements Serializable

{
n. ..

public RemoteStorageClient(String ID, String host, int port)
{

m_clientID = ID;
m_host = host;

320 CHAPTER 12 PERSISTENCE

m_port = port;
}
/~k~k
* Retrieves a "read-only" (that is, you don't own the lock on
* this object) object by name.
*/
public Object get(String objName)
throws Exception

{
Socket socket = new Socket(m_host, m_port);
ObjectinputStream fromSocket =
new ObjectinputStream(socket.getinputStream());
ObjectOutputStream toSocket =
new ObjectOutputStream(socket.getOutputStream());
/I Send the request: "GET", name
toSocket.writeUTF("GET");
toSocket.writeObject(objName);
toSocket.flush();
/I Check the response; if the response string is anything
/I other than "SUCCESS", throw the next object pulled from
/I the stream (which RemoteStorageService guarantees will be
/I an Exception type)
String response = fromSocket.readUTF();
if (response.equals("SUCCESS"))
{
return fromSocket.readObject();
}
else
{
throw (Exception)fromSocket.readObject();
}
}
/**

* Retrieves the object by name and locks it for exclusive
* modification by this client.
*/
public Object checkOut(String objName)
throws Exception
{
Socket socket = new Socket(m_host, m_port);
ObjectinputStream fromSocket =
new ObjectinputStream(socket.getinputStream());
ObjectOutputStream toSocket =
new ObjectOutputStream(socket.getOutputStream());

/I Send the request: "CHECKOUT", client ID, obj name
toSocket.writeUTF("CHECKOUT");
toSocket.writeObject(m_clientID);
toSocket.writeObject(objName);

toSocket.flush();

BEYOND THE SPECIFICATION 321

322

/I Check the response; if the response string is anything

/I other than "SUCCESS", throw the next object pulled from
/I the stream (which RemoteStorageService guarantees will be
/I an Exception type)

String response = fromSocket.readUTF();

if (response.equals("SUCCESS"))

{
return fromSocket.readObject();
}
else
{
throw (Exception)fromSocket.readObject();
}

}
...

/I other methods supported—“checkin”, “checkout”, “diff", plus
/I a main() for testing.

The protocol between the client and the service is straightforward: clients send a UTF
string down the socket consisting of one of four commands: GETCHECKIN CHECKOUT
and DIFF. When received, the service pulls the appropriate arguments after the com-
mand string. It responds to the client by sending a UTF string, either SUCCESSor
ERRORIf the command is a success, it sends the object or return code as an object
after the response string, whereas if the command is a failure, it will send an Exception
back. For full details, check out the code associated with the book; all follow the same
basic scheme used by get and checkout

The system is not inherently flawless; because it uses Java Serialization, the
RemoteStorageService must have the class bytecode for the actual object stored, either
already loaded or somewhere on its CLASSPATH. If an object is sent whose class code
is not available to the RemoteStorageService, the server will throw a ClassNotFound-
Exception. If it becomes necessary to store arbitrary bytes without having the class
bytecode on the server, simply write the bytecode into an Object-extending subclass
that just stores the byte array:

public class ByteArray
implements Serializable

{
public ByteArray(byte[] array)
{ m_array = array; }
public byte[] m_array;

}

Then, when storing the data, serialize the object to a ByteArrayOutputStream, save
the bytes into a ByteArray, and store the ByteArray into the RemoteStorageService.
Reverse the process when retrieving the object.

CHAPTER 12 PERSISTENCE

Notice what 200 lines of Java code on the server, and 170 lines on the client
(which doesn’t include the test driver), including comments, has now provided for
us—a distributed storage system whose actual internals are irrelevant to the client’s
use. Because it uses Java Serialization, any Java application can make use of it, and
because it uses sockets for its inter-JVM communication, even applets can use it to
store objects on the server from which they came.

Because the actual storage details are encapsulated away from the client, the
RemoteStorageService is free to do whatever it likes when retrieving or storing the
object’s data. From the client’s perspective, these objects could be coming from a rela-
tional database, an object database, or a legacy mainframe application—the client’s
code never changes. In fact, the RemoteStorageService could be enhanced or rewritten
to allow the server to defer the actual storage of the objects to another, dynamically
loaded class instance.

Notice also what Serialization does for us regarding our client-service protocol.
Instead of passing around clear-text strings which must be parsed and interpreted, as
in HTTP, we can send entire objects over the wire, without having to worry about the
details of how to represent those objects in text-based format.

In fact, for a more complex protocol, the request and response protocol could
itself be wrapped in classes, all of which implement Serializable, and the entire request
object serialized over the socket, deserialized on the server and picked apart there. The
advantage in doing this is type-safety and protocol encapsulation—instead of having
to remember when writing new extensions to the protocol to write the correct objects
in the correct order, the Request class or derived class can take care of the details:

RemoteStorageClient clien t=..
n. ..

Object obj = client.request(new RemoteStorageGetRequest(“Test Data”));

This approach would also allow for code reuse when creating subtly different versions
of various request types. One could almost imagine a Java-only HTML server that
uses Serialization to send the various files across instead of HTTP.

Remote storage of objects doesn’t have to be this check-in/check-out system; if
desired, the service could implement more tradtional RDBMS insert/update/select/
delete operations. Doing this starts to move RemoteStorageService into the realm of
an RDBMS server, however, and there are far better database implementations than
anything I could ever produce.

12.2.3 Remote construction of objects

Java Serialization and sockets offer a new wrinkle to the classic Factory patterns. In a
Distributed Factory system, clients send requests for new objects across a socket (or
through other distribution channels, perhaps via RMI) to the Factory, which con-
structs the object and sends the constructed object back over the wire via Serializa-
tion. Advantages of this system are:

BEYOND THE SPECIFICATION 323

324

o Security

System administrators may not want to make the means by which objects are
constructed available on end-user machines. For example, RDBMS systems will
typically be situated behind a firewall, where applets running on the client
machine cannot get to them; instead, the applet must communicate with an
agency running on the web server which in turn communicates with the data-
base (or another proxy system, if the web server sits inside the firewall’s DMZ).

Performance

Many back-end server systems are coming with JVM capabilities installed or as
part of the system; examples include Oracle, DB2, and Lotus Notes. It will often
be faster to construct business objects (or simple data objects containing only the
data desired) on the local machine and send the constructed object over the wire,
than it will be to negotiate the communication in a traditional client-server fash-
ion. So, for example, when working with large query sets consisting of an abun-
dant number of joins, create a query object that gathers the data on the server
(where network bandwidth is not an issue). When the query is complete, the
object is Serialized and sent back.

Availability

In some cases, data sources may be unavailable. Servers may go down once a week
for routine maintenance, or users may demand the ability to be able to work
remotely, without a constant connection to the back-end database. Under these
circumstances, the Remote Object Factory can hold last-known representations
of the data (if holding such information is convenient and/or not too heavy-
weight) and send these back to the clients. To make clients aware of such policies
would be duplicative if this knowledge were coded into the client’s code by hand
each time the client requested a new object.

Centralization

JDBC-using systems require the presence of the JDBC driver on the JVM that
wishes to execute the query, even if the database resides remotely. In a database-
heterogenous environment, where more than one database vendor is in use,
ensuring that potential clients have all the JDBC drivers they require can be a
major chore, especially during version upgrades. (Even those shops that use only
one database can find it a pain, especially if these clients are located geographically
remote from the system administrators.) Having the data gathered on its own
server and sent over the wire in constructed form eliminates the need for the
JDBC driver on the client side, and thus reduces the administration headache.

Encapsulation

I repeat: Encapsulation is good. This is true even of the knowledge of how objects
are constructed. The less knowledge the client system has regarding the internals
of an object, the less code that will need to change on the client system if those
internals ever change. Internals can be exposed, however, if object constructors

CHAPTER 12 PERSISTENCE

12.2.4

require particular parameters or knowledge in order to construct the objects.’

This is the primary motivation for the Factory pattern in general, and carrying it
over into a distributed arena simply makes the Factory now more widely available
(and centralized on the server).

Constructing objects remotely will not be the answer for all problems. It certainly
involves greater overhead—both in maintenance and execution—but having the
details of how objects are constructed can lead to greater payoffs over time. When coupled
with a SocketClassLoader (from chapter 4), objects can now be constructed on the
server and deployed to the client in an on-the-fly basis, without requiring any additional
support on the client machine.

Example: RemoteObjectFactory

The key to being able to create a generic object-creation service lies in Java’s Reflec-
tion mechanism. If we know the name of the class we wish to instantiate, we can get a
list of all the constructors it supports via the java.lang.Class method getConstruc-
tors() . Once we've found the Constructor we desire, we can call its newlIn-
stance() method, passing in an array of Objects as arguments to the constructor:

/I Construct a String without calling “new String(“Test value”);”
Clas s ¢ = Class.forName(“java.lang.String”);

Constructor ctor = null;

for (int i=0; i<c.getConstructors().length; I++)

{
/I Constructor.toString() returns a human-readable version of the
/I constructor with parameter list
if (c.getConstructors()[i].toString().equals(
“String(java.lang.String)”))
{
ctor = c.getConstructorsli];
break;
}
}
if (ctor == null)

; /I What?!? String suddenly lost its copy-constructor?!?

String str = (String)ctor.newInstance(new Object[]

{
new String(“Test value”)
i
System.out.printin(“st r="+ str);

While this would be extremely awkward not to mention extremely type-unsafe—
we’ve lost all ability for the compiler to catch any errors in which the wrong argument
types are passed into the constructor—for use in normal code, for our purposes here

5> JDBC Connection objects as constructor parameters to business objects are one particular example—
you now know that the object must be coming out of a relational database.

BEYOND THE SPECIFICATION 325

it’s precisely what we want. Keep in mind that using Reflection in this manner immedi-
ately removes any type-safety the compiler can provide us. We can pass bogus informa-
tion into the constructor’s arguments array and the compiler will happily comply, since
it has no way of knowing that the argument types don’t match the ones declared. This
means that on the server side, we need to catch Exceptions thrown from the Construc-
tor’s newlnstance() method and pass those back down to the client.

At this point, our only problem is that Constructor (nor Class, for that matter)
is not Serializable. This means we can’t just send the Constructor instance over the
wire to the RemoteObjectFactory to use. Fortunately, this isn’t a problem—we’ll just
send the Class name, string representation of the Constructor, and a Vector contain-
ing all the arguments to the Constructor down the wire. Once there, the Remote-
ObjectFactory can find the Class from the Class name, find the Constructor whose
string representation matches the one we pulled off the wire, and unpack the Vector
into an Object array to pass into the Constructor’s newlnstance method.

The server code looks like this:
import java.io.*;
import java.lang.reflect.*;
import java.net.*;
import java.util.*;

/**
* RemoteObjectFactoryService
*/
public class RemoteObjectFactoryService extends SocketServer

{

* serve() takes a client request, sent via Serialization,
* and extracts the class name, the constructor, and the
* array of args to pass to the constructor, and proceeds
* to attempt to construct an instance of that type. This
* means that both the Service and the client must have the
* bytecode of the exact Class returned available on the JVM's
* CLASSPATH, or ClassNotFoundExceptions will result. (Note that
* the client doesn't need to know exactly what type it's
* getting back, it only needs to have it available via the
* client's ClassLoader--a SocketClassLoader would effectively
* make the entire mechanism load-on-the-fly.)
*
public void serve(Socket socket)
throws Exception

/I Set up
ObjectOutputStream objOut =

new ObjectOutputStream(socket.getOutputStream());
ObjectinputStream objin =

new ObjectinputStream(socket.getinputStream());

try

326 CHAPTER 12 PERSISTENCE

/I Protocol: class-name (UTF), ctor rep (UTF),
/I args (Vector)

String className = objin.readUTF();

String ctorStringRep = objin.readUTF();

Vector args = (Vector)objin.readObject();

/I First, get the Class object for className
Class cls = Class.forName(className);

/I Next, find the Constructor corresponding to
/I ctorStringRep

Constructor[] allCtors = cls.getConstructors();
Constructor ctor = null;

for (int i=0; i<allCtors.length; i++)

{
if (allCtors][i].toString().equals(ctorStringRep))
{
ctor = allCtors]i];
break;
}
}
if (ctor == null)
throw new Exception("Constructo r " + ctorStringRep +

" not found on clas s " + cls.getName());

/I Unpack the args into an Object array

Object[] argsArray = new Object[args.size()];

for (int i=0; i<argsArray.length; i++)
argsArray[i] = args.elementAt(i);

/I Construct the instance
Object instance = ctor.newlnstance(argsArray);

/I Make sure instance is Serializable
boolean foundit = false;
for (int j=0; j<cls.getinterfaces().length; j++)

{
String interfaceName =
cls.getinterfaces()[j].getName();
if (interfaceName.equals(“java.io.Serializable"))
{
foundlt = true;
break;
}
}
if (foundlt)

throw new NotSerializableException(className);
/I Caught in the catch() block a few lines down and
/I sent back over the wire to the client

/I Send it over the wire
objOut.writeUTF("SUCCESS");
objOut.writeObject(instance);

BEYOND THE SPECIFICATION 327

328

}

catch (Exception ex)

{
objOut.writeUTF("ERROR");
objOut.writeObject(ex);

}

objOut.flush();

}
The client code, complete with test driver, looks like this:

import java.io.*;

import java.lang.reflect.*;

import java.net.*;

import java.util.*;
/**

* RemoteObjectFactoryClient

*/

public class RemoteObjectFactoryClient
{

/**

* RemoteObjectFactoryClient constructor

*/
public RemoteObjectFactoryClient(String host, int port)
{
m_host = host;
m_port = port;
}
/**
*
*/

public Object construct(Constructor ctor, Object[] ctorArgs)
throws Exception
{
/I Transform ctorArgs into a Vector for easier Serialization
Vector args = new Vector();
if (ctorArgs != null)
{
for (int i=0; i<ctorArgs.length; i++)
args.addElement(ctorArgsli]);
}

Socket socket = new Socket(m_host, m_port);
ObjectinputStream objin =

new ObjectinputStream(socket.getinputStream());
ObjectOutputStream objOut =

new ObjectOutputStream(socket.getOutputStream());

/I Note that these streams must be constructed in

/I reverse order from how they are constructed in

/I the server class; see the code in RemoteObjectService

/I for more details

CHAPTER 12

PERSISTENCE

objOut.writeUTF(ctor.getDeclaringClass().getName());
objOut.writeUTF(ctor.toString());
objOut.writeObject(args);

objOut.flush();

/I Read back the response string--SUCCESS or ERROR
String response = objin.readUTF();
if (response.equals("SUCCESS"))

{
/I Next object is our serialized object; deserialize
/I and return it
Object obj = objin.readObject();
return obj;

}

else

{
/I Next object is an Exception; deserialize and throw it
Exception ex = (Exception)objlin.readObject();
throw ex;

}

}

/I Internal members
String m_host;
int m_port;
/**
* Test driver
*/
public static void main(String[] args)
throws Exception
{
if (args.length < 1)
{
System.out.printin(
"Usage: java RemoteObjectFactoryClient <hostname:port>");
return;

}

/I Parse out hostname and port

String host;

Integer port;

host = args[0].substring(0, args[0].indexOf(":"));

port = new Integer(args[0].substring(
args[0].indexOf(":")+1, args[0].length()));

System.out.printin("Connecting t o " + host + ™" + port);

RemoteObjectFactoryClient client =
new RemoteObjectFactoryClient(host, port.intValue());

/I Try constructing a few well-known Java objects

/I new Date()
Class dateClass = Class.forName("java.util.Date");

BEYOND THE SPECIFICATION 329

12.3

330

Constructor dateDefaultCtor =
dateClass.getConstructor(null);

Date date = (Date)client.construct(dateDefaultCtor, null);

System.out.printin("new Date() : " + date);

/I new String(String)

Class stringClass = Class.forName("java.lang.String");

Constructor stringCtor =
stringClass.getConstructor(new Class][]

{

Class.forName(“java.lang.String")

i
String str =
(String)client.construct(stringCtor, new Object[]

{

new String("Test value")

i
System.out.printin("new String(String) C "+ ostr);

}

A couple of caveats come with this code. To begin with, any objects passed in as argu-
ments, as well as the return type itself, must be Serializable, because both the argu-
ments and the return type have to be marshaled down the wire and back again. While
this may seem overly restrictive, it’s usually not. Java RMI has the same restriction,
and that usually proves to be the least of an RMI developer’s problems.

Secondly, as with the RemoteStorageService, both the client and the server must
have the class bytecode available to the JVM in order to deserialize the exact type. The
server needs it when attempting the newInstance() call, and the client will need
it when the object is deserialized and returned from the construct() call. This
doesn’t mean the client needs to be aware of what the exact type returned is, only that
the code for that type needs to be available (on the CLASSPATH, in an extension .JAR
file, or loadable via the current ClassLoader). Again, as with the discussion of the
RemoteStorageService, a SocketClassLoader can be used to provide both client and
server with the class bytecode as required.

JDBC

The relational database forms the core of 90 percent of the enterprise’s data. This isn’t
scientific fact, or even an informal poll, but simply anecdotal evidence, witnessed by
the rise in influence and power of the relational database vendors, products, and
advertising. Corporations scoff at products that don’t have some way of storing data
to the relational database. Want-ads and job postings for enterprise developers state
“SQL experience a plus.” When every development tool on the market comes with
classes and objects to help ease the pain of obtaining data from a relational database,
it becomes obvious that the relational database occupies a central place in the corpo-
rate enterprise.

CHAPTER 12 PERSISTENCE

JDBC

One recent category added to the ranks of relational databases are 100 percent
pure Java relational databases; these are databases implemented in Java, and are there-
fore inherently portable to any platform that can run Java. One such RDBMS system
is the IDB RDBMS, which is the one used for the examples in this book. Another is
the more widely known Cloudscape RDBMS. Because the Pure Java RDBMS is imple-
mented in Java, there is no native code that requires porting between platforms, and
allows any Java-compliant platform to run these examples. The 1.91 version of IDB
is found on the publisher’s web site, but be sure to check the IDB website (http://
www.instantdb.co.uk) for later versions.

Because all the examples in this chapter are coded in pure JDBC, however, nothing
prevents you from modifying the JDBC URLs and driver classnames to use your own
database. For example, the following code creates the class_tbl table used by the
JDBCClassLoader class later in the chapter:

import java.io.*;
import java.sql.*;
import java.util.*;
/~k~k
* This code re-creates the schema for the examples used in this chapter.
* Other JDBC-compliant databases could be used by substituting the
* appropriate JDBC driver names and URLs in place of the IDB ones.
*
/
public class CreateSchema
{
public static void main(String[] args)
throws Exception
{
/I Load the IDB driver
Class.forName("jdbc.idbDriver").newlnstance();

1

Propertie s p = new Properties();

Connection ¢ =
DriverManager.getConnection("jdbc:idb:sample.prp”, p);

/I Drop & create the table in which we will store class bytecode
1

Statemen t s = c.createStatement();

s.executeUpdate("DROP TABLE class_thl");

s.close();

s = c.createStatement();
s.executeUpdate("CREATE TABLE class_thl " +
"+
"bytecode binary, " +
"classname varchar(80) " +
)

s.close();

331

12.3.1

332

Converting this to use an ODBC driver (with an appropriate ODBC data source named
“ServerSideJava” already created) would mean changes only to the following lines:

/I Load the JDBC-ODBC driver
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver").newlnstance();

1

Properties p = new Properties();

Connection ¢ =
DriverManager.getConnection("jdbc:odbc:ServerSideJava", p);

This ODBC data source could point to an SQL Server instance, an Oracle instance, or
a Text file. (Note that if you modify the CreateSchema.java file, you should modify
the LoadClass.java file in similar fashion, since it is this class that is used to populate
the class_tbl table with bytecode.)

Most books on JDBC can talk about how to use the APIs provided by JDBC, both
the 1.2 and the 2.0 specifications; what I want to do is discuss not only a useful JDBC-
portable database utility, JDBCTerm (short for JDBC Terminal), but also some of the
more interesting uses of JDBC, using the RDBMS as a repository for data that isn’t data.

Transient data, state data, data that isn’t data

Not all data within a database is business data. Specifically, not all data will be used to
represent entities or objects that the business deals with. Although a significant per-
centage of the total will be tables and data to represent customers, addresses, sales
orders, and inventory, not all applications are straightforward order-entry applications.

Some data will be workflow applications, in which data moves through a specific
set of hands, stopping at virtual station after virtual station awaiting input, process, or
approval before moving on. One example would be an order-tracking system. When
an order is initially taken, the order sits on the sales desk until the customer indicates
the order is complete. The order, once complete, is then sent to Finance to generate
and mail an invoice. From there, the order moves to Shipping for processing, and once
shipped, into the company’s archives or data warechouse for storage and/or retrieval in
the event of a customer call. Should Shipping discover that the inventory isn’t on hand
to support the order, the order can be bounced back to Sales, so that a customer service
rep can call the customer and tell them the unhappy news. Because each of these steps
in the process can span several days, the state of the order must persist across invoca-
tions of the client application. In fact, there would likely be several client applications:
one for Sales, to take the order, one for Finance, to generate the invoice, one for Ship-
ping, to view outstanding orders and mark orders as shipped, and so forth. It’s simply
impractical to expect that all these steps would be conveniently and cleanly supported
in one application, or that all the users would be able to use the same running instance
of the application, and that the application would remain open for the entire length
of time the company is in business.

Toward that end, the database may maintain not only tables to support the logical
objects but also tables to maintain the workflow state. (The actual workflow state table

CHAPTER 12 PERSISTENCE

JDBC

could itself be stored within the database, if it is complex enough or is subject to fre-
quent change.) This holds two advantages for the enterprise: order status is now
recorded within the database, and these tables can also be used to record a history of
the order through the system. The first is useful from a reliability perspective—because
most RDBMS vendors take great pains to ensure that data is not lost even in the event
of a power failure, hence, it’s far less likely that orders will get lost in the system. The
second is important to all parties concerned for both accountability and tracking pur-
poses. Quality control reps can make sure orders aren’t lost on a regular basis, and if
they are, determine who loses them. Managers can now implement targetable, quan-
tifiable goals for their departments (“If we can push fifty orders out this week, I'll dress
up in a chicken suit” or something similar).

In other cases, data may not be data at all, but simply a kind of marker. An appli-
cation may, for example, write an entry into a table indicating the user name and time
stamp the application was started. This would be one way to allow for easier tracking
of current users of the system, or even to prevent the same user from using the client
application more than once. When the user quits the application, the entry is
removed. Other information within the database may be system data, such as user ID
and password tables, or mostly static application data, such as lookup tables (cities,
states or ZIP codes within the US, sales territories or regions for the company, or a list
of the company’s current campuses).

One such example of data that’s not intended to be persistent or tracked is the
idea of a message of the day. Many corporations need to distribute messages to every
employee within a department, team, or even the entire company. This is especially
true in companies that maintain call centers of customer support representatives or
internal help desks. One way is to give each employee an email account. One drawback
to this approach, however, is the administrative burden—these logins must be main-
tained, added, and deleted as employees within the call center fluctuate. With call cen-
ters of several hundred employees, this is no mean feat, and can represent up to
thousands of man-hours per month. In addition, many corporations don’t want these
employees to have access to email, fearing wasted hours spent emailing other friends
within the company (or outside the company, introducing the possibility of email-
transmitted viruses in executable attachments). Coupled with this is the burden of
knowing if the email were read. In an email system, the only way to verify that a mes-
sage was seen is to ask that a return-receipt be generated. With a body of hundreds of
employees receiving the message, this means hundreds of return-receipt emails, per
day. Clearly this is an intolerable situation.

One solution, of course, is to store the message, and a table tracking those who
have seen it (and the time stamp they were shown it) within the database itself. Users,
when they log in to their client application, can be shown the message within a win-
dow, requiring them to click OK (indicating they have read the message) before being
allowed to proceed. As each message is shown to the user, a time stamp is written to
the message-viewed table. Supervisors can then run reports or queries against this table

333

to see which users have not checked their messages recently, or precisely when a user
did see a given message. The message itself can be stored in HTML or RTF format and
displayed in a corresponding JEC/Swing JTextPane, to allow for more complex for-
matting or display.

12.3.2 Example: JDBCClassLoader

One such instance of data that isn’t business data is class bytecode. Recall, from
chapter 2, that one source for class bytecode can be a database column. The code to
do this, presented then, is reproduced here.

Listing 12.5 Code for JDBCClassLoader

import java.sql.*;

public class JDBCClassLoader extends ClassLoader
{
/**
* Constructor
*
* The SQL statement must return at least one row, the first column of
* which will be a BINARY column, and must contai n a ? where the name
* of the fully qualified classname will appear. Example:
* "SELECT bytecode FROM class_tbl WHERE class_tbl.name = ?"

* @param conn The JDBC Connection to use. Must be already connected.
* @param sgl The SQL statement to execute to retrieve the bytecode.
*/
public JDBCClassLoader(Connection conn, String sql)
{
m_connection = conn;
m_sql = new String(sql);

}

/**
* Called by ClassLoader.loadClass when a classname is requested.
*/
public Class findClass(String className)
throws ClassNotFoundException

{ byte[] classBytes = retrieveClass(className);

return defineClass(className, classBytes, 0, classBytes.length);
}
/**

* Internal method to do the actual SQL-retrieval of the bytecode
*/
private byte[] retrieveClass(String className)
{
try
{
/I Create a SQL Statement

334 CHAPTER 12 PERSISTENCE

JDBC

}

Statement stmt = null;
stmt = m_connection.createStatement();

/I Build our SQL statement

String pre = m_sql.substring(0, m_sql.indexOf("?"));

String post = m_sql.substring(m_sql.indexOf("?")+1,
m_sql.length());

String sgl = pre + className + post;

/I Do the query
ResultSet rs = stmt.executeQuery(sql);
if (rs.next())

{
byte[] bytes = rs.getBytes(1);
return bytes;
}
else
return null;
}
catch (Exception ex)
{
ex.printStackTrace();
return null;
}

/I Internal members

I

private Connection m_connection;
private String m_sql;

/**

*

*

*

*

*

*

*/

Test driver routine; assumes an IDB database with the following
schema:

CREATE TABLE class_tbl (

bytecode binary,

classname varchar(80) primary key

);

public static void main(String[] args)

{

throws Exception

/I Load the IDB driver
Class.forName("jdbc.idbDriver").newlnstance();

1

java.util.Propertie

Connection ¢ =
DriverManager.getConnection("jdbc:idb:sample.prp”, p);

s p = new java.util.Properties();

JDBCClassLoader jdbcClassLoader =
new JDBCClassLoader(c,

"SELECT bytecode FROM class_tbl WHERE classname

7,

335

336

Class cls = jdbcClassLoader.loadClass("Hello");
Object h = cls.newlnstance();
/I Should print "Hello, world!"

Given a basic knowledge of JDBC (JDBCClassLoader makes use of only JDBC 1.2
features) and the discussion of ClassLoaders given earlier, the code in listing 12.5
shouldn’t present any problems or surprises. The constructor takes a String represent-
ing the SQL statement to execute (with the ? within it substituted for the actual fully
qualified class name to look up) when a class is requested, and the Connection
instance on which to make the SQL query. In the findClass method, a Statement
is created from the Connection, the SQL string is modified to replace the ? with the
class name requested, and the Statement is executed. If the Statement returns a
ResultSet, the first column of the first row (assumed to be bytecode—if it’s not, a
SQLException will be thrown) is retrieved, stored into an array of bytes , then
handed to defineClass for verification and initialization.

The code could be modified to overload the findClass ~ method to take an SQL
string each time to execute to find the bytecode, but the problem with this approach is
that a ClassLoader can be called without your knowledge. In the following code, for
example, the JDBCClassLoader will have its findClass ~ method called twice, once for
the class “T'woPartHello”, and once for the class that “T'woPartHello” in turn references:

import java.sql.*;

public class TPHClient
{
public static void main(String[] args)
throws Exception
{
/I Load the IDB driver
Class.forName("jdbc.idbDriver").newlnstance();

/I Make the connection

java.util.Propertie s p = new java.util.Properties();

Connection ¢ =
DriverManager.getConnection("jdbc:idb:sample.prp”, p);

/I Set up the JDBCClassLoader to pull from class_tbl
JDBCClassLoader jdbcClassLoader =
new JDBCClassLoader(c,
"SELECT bytecode FROM class_tbl WHERE classname = '?");

/I Load the Class into the JVM
Class cls = jdbcClassLoader.loadClass("TwoPartHello");
Object obj = cls.newlnstance();

/I Use Reflection to find its main() method

/I Reflect on the Class; find the method named "run" that takes
/I no arguments and returns no return value

1

CHAPTER 12 PERSISTENCE

JDBC

java.lang.reflect.Method[] methods = cls.getMethods();
for (int i=0; i<methods.length; i++)

{

System.out.printin("Checking name o f " + cls.getName()
+ "." + methods[i].getName());
if (methods]i].getName().equals("main"))

{
/I methods][i] is the Method that corresponds to the

/I method "void run()". Call it.
1
Object[]] mainArgs =

{
new String[] { }

h
Object ret = methods[i].invoke(obj, mainArgs);
if (ret !'= null)
System.out.printin("??? main()'s not supposed to " +
"return me something!");
break;

}

We have no control over the second call to findClass , because it’s invoked on our
behalf automatically by the JVM. Because of that, we have no way of specifying our
custom argument to findClass

As with the SocketClassLoader, use of this class allows for centralized control of
code updates and revisions. Users no longer need to have the latest code on their local
systems in order to receive the benefit of the latest changes—instead, a small bootstrap
client is loaded, which then knows how to pull code from the database (via the JDBC-
ClassLoader) when requested. Deployment is now centralized, users can remain bliss-
fully unaware of the upgrade or patch, and system administrators and developers can
back the changes out should unexpected problems arise with the latest deployment.

This distributed code approach carries with it some unique advantages and dis-
advantages. Because code no longer resides on the client side, security is improved—
the code cannot fall into unfriendly hands where hacking can ensue. Code can also be
customized to finer-grained levels than can usually be possible with standardized
releases. As discussed in chapter 2, code can now be written customized for a given
user, and deployed within the database without disturbing the other users. This allows
for cleaner code (no more switching between dialog types or menu bar building code
based on user role, for example), at the expense of some more complex file system lay-
out on the developer’s machine.

6 A Dialog class written for the CEO must be in a file called Dialog.java, and a Dialog class written for
the administrator must also reside in a file called Dialog.java. This means the developer must have two
distinct source trees.

337

12.4

338

The most serious drawback to this approach, however, is the fact that the code’
will not reside on the local file system. This in turn implies that network bandwidth
will be at a premium, since all the code must be carried across the wire. Within an
intranet, where bandwidth is usually not an expensive or rare resource, and most users
are physically connected by 10Mbps connections, this is a concern for the largest sys-
tems. However, over extranets or the Internet, this can be a much larger problem, even
with the fastest dial-up connections. Under these circumstances, a hybrid approach
(some GUI code, or likely-to-remain-constant utility classes, can be preloaded on the
local file system and resolved from disk, since the bootstrap ClassLoader will always
be given first crack at resolving a class) may serve best. With the advent of faster CPUs
and higher throughput network connections, however, this may be less of a concern
than you might think.

SUMMARY

The notion of persistent objects is not new to Java; in fact, persistent objects have
been around almost as long as the concept of objects has been. The drive for easy per-
sistent objects has produced a number of products from a number of vendors, and
has in turn spawned a new standard, the ODMG standard for object databases,
intended to make it easier to store objects to some persistent store.

In fact, if we go much further with this concept, we begin to enter the realm of
mobile agents. If a full agent server (such as IBM’s Aglet technology, or ObjectSpace’s
Voyager) is in place on the server, then these remote objects can, in fact, be full mobile
agents, with the ability to migrate from server to client in seamless, transparent fash-
ion. A data-request object becomes a data-request agent, which has the ability to move
(or be moved, if the data can be retrieved faster on another system in the same cluster)
to the server, gather its data, and return. A transaction request becomes a transaction
agent, with the ability to migrate from server to server to server, executing its trans-
actions as it goes, only committing them when all are complete.

In short, a standardized Serialization format now gives Java an ability to provide
object storage and connectivity options that will guarantee to work across JVM imple-
mentations. This is, in fact, one of the central areas where C++ has fallen down; the
lack of a standardized object storage/persistence system has made C++ code intercon-
nectivity difficult, to say the least. With Serialization in place, I can Serialize any object
in the system, store it to disk or other bytestream, and any other JVM can deserialize
it (so long as it has the class definition for the Serialized class available) without any

sort of ambiguity or portability problem.

7 Nor will any of the resources that go with the code, such as .GIF files that are displayed as part of the
Swing GUI. Note that none of the ClassLoaders presented in this book implement the resource-loading
methods to pull from their respective locations (sockets, database, and so forth), but it shouldn’t be too
difficult to see how this could be done.

CHAPTER 12 PERSISTENCE

The relational database system is a technology that’s not going away any time
soon; as a result, developers need to be able to best make use of the database, not just
for data storage and categorization, but also as a centralized point of distribution and
control. JDBC offers Java developers a feature-rich, yet remarkably uncomplicated
interface for obtaining, manipulating, and creating data within the RDBMS.

More importantly, relational database doesn’t have to mean a large-scale server-
based system like Oracle or SQLServer. Instead, 100 percent Pure Java-implementa-
tions, like IDB or Cloudscape (www.cloudscape.com) can be deployed as part of the
Java application to provide a platform-portable, zero-deployment data repository on
end-user machines, if necessary. This can in turn make object- and/or data-storage
requirements a virtual no-brainer: zero development.

12.5 ADDITIONAL READING

* “Java Object Serialization” specification (From serial-spec-JDK1.2.pdf on the
Javasoft web site), Sun Microsystems, 1998.

* Jim Melton and Alan R. Simon, Understanding the New SQL: A Complete Guide
(Morgan Kaufman Publishers, 1993).
Published as a book about ANSI SQL-92’s updates to SQL, this is nonetheless the
best treatise on pure ANSI SQL I've ever run into, the publication date notwith-
standing. If your RDBMS doesn’t implement SQL the way Melton and Simon
describe it, it’s not ANSI SQL-92 compliant.

* “IDBC 2.0 Core API” specification, available online at http://java.sun.com/
products/jdbc/download.html.

* “IDBC 2.0 Standard Extension API” specification, available online at http://
java.sun.com/products/jdbc/download.html.

ADDITIONAL READING 339

13.1

Business objects

13.1 Modeling data 340

13.2 Using the Business Object layer 366
13.3 Summary 370

13.4 Additional reading 371

Building systems on the server is not just an exercise in mechanics—successful sys-
tems not only employ useful implementation tricks, but are intelligently and cleanly
modeled to provide the enterprise with a consistent, logical object model, as well. Sys-
tems which aren’t are usually late, over budget, and inherently weaker than systems
that are. Cleanly designed systems pay off in other ways, for not only are they easier
to maintain over time, but can often outlive the current goals to serve the needs of
other projects.

For many years, designers have been talking about three-tier systems. As with
most buzzwords, many developers are told to develop a system using the three-tier
model without having a solid idea of what such a system is supposed to do, much less
how it looks or behaves. While I refuse to hold myself up as an expert on all forms of
three-tier, or z-tier, systems, in this chapter we will examine one way in which logic
can be partitioned into logical, well-encapsulated layers. This is, in fact, the heart of
the concept behind the tiered system: encapsulation. And, dare I say it yet again,
Encapsulation is good.

MODELING DATA

It’s about time to talk about data that is data, or, more specifically, data that’s not tran-
sient, state, or system-related in nature; it’s time to talk about data that’s real data.

340

13.1.1 Two-tier systems vs. n-tier systems

You may hear the terms two-tier, three-tier and z-tier tossed about without having a
real good idea of what the terms mean. As with most buzzwords, these have lost
some of their definition, but the basic idea remains the same: partition the code up
into logical layers, or tiers, and write the code within each layer such that it accesses
only the layers immediately below it. Typically, the layers are divided into one of the
following groupings:
* Presentation
This is the code responsible for displaying the data and obtaining user input.

* Business Rules or Business Objects
The code is responsible for applying business logic and/or rules to the data and/
or input from the user. It is typically this layer that is responsible for verification
and is typically the “meat” of an enterprise application.

* Data Access or Data Storage
This is the code responsible for storing the data into some permanent nontran-
sient storage system.

This is not, by any means, an exhaustive list of all the possible layers in a tiered
system—the presentation layer, for example, could be broken out into multiple layers
in and of itself. For example, one layer would be responsible for the actual GUI com-
ponents (JLabel, JTable, and so on, in a Swing UlI), and a second layer for the valida-
tion and/or formatting of the data coming in.! The Data Access layer is commonly
separated, especially when dealing with centralized relational databases, into the layer
that is the database itself, and a layer of code that encapsulates dealing with the data-
base (be that JDBC, ODBC, or straight C/C++-level access).

13.1.2 One-tier systems

A single-tier system (figure 13.1) is one in which all
Presentation/GUI the code resides within the same codebase (execut-
able file or system). This means that the Ul ele-
ments can directly save to disk, read from disk, and
so forth. However, as you might imagine, this
makes the code itself extremely heavy (since all file-
access code has to be stored within the codebase), as
well as less reusable (because any attempt to reuse
any part of this code can and usually will have
dependencies on other parts of the system). Because

Business Logic

Data Storage

Figure 13.1 A single-tier system

! Users familiar with Swing will recognize this as Swing’s Model-View-Controller discussion—the first
layer would be the code putting together the various Swing components into JFrames and JDialogs,
and the second layer would be a layer of customized Swing Model classes.

MODELING DATA 341

13.1.3

13.1.4

342

most systems make use of a centralized relational database, however, one-tier systems
are relatively rare. Most often, they will be stand-alone applications for single-user
utilization, such as word processors, HTML editors, games, and so forth.

Two-tier systems

In a two-tier system (figure 13.2), the applica-
tion or system is broken out into two distinct
tiers. Typically (although not always) the sep-
aration comes at the data-access level, with the
data-storage system being (again, not always) a
centralized relational ~database accessed

through a JDBC (or ODBC, in traditional C/
C++ code) driver. Many code-generation and

Presentation
Client

Business Logic

visual-IDE tools build systems of this nature,

Business Logic using data-aware Ul controls or compound
Server controls that directly access database columns

Data Storage or tables so the developer doesn’t have to write
that code. Some tools can even go so far as to

generate the entire Ul for a given table just
Figure 13.2 Two-tier system from the database schema, laying the controls

out in a standard, if somewhat boring and
uninspired, format. Most systems built using the last generation of Rapid Application
Development (RAD) tools such as Visual Basic, Delphi, C++Builder, Visual J++, Caf¢,
JBuilder, and others end up in this model. This is by far the most popular form of
model in the enterprise.

The unfortunate fact about this system is that it leaves the client-side extremely
heavyweight. Because the only centralized portion of the system is the relational data-
base server, the code that accesses and works with the data must reside on each and
every single client’s machine. In addition, any changes to the Ul, the underlying busi-
ness rules, logic or core process, or the database schema itself requires code change (and
a new release to each and every client) to the application/system. As the application
or system gets larger with more functionality, and as requests for new features come
in, the codebase becomes exponentially more difficult to manage. There is no clear-
cut method to accessing data, no clean separation of components, and so forth. Worse,
most RAD tools cannot handle some commonplace enterprise scenarios; for example,
the ability to handle data across not only multiple tables, but multiple databases.

n-tier systems

Where some would be tempted to build a three-tier architecture (with the three tiers
being, as listed before, broken into presentation, business, and data-access codes), this
may not, for some applications, be enough. Additional problems arise, as well, when
working with the practical matter of what goes into what layer. For example, I stated

CHAPTER 13 BUSINESS OBJECTS

the general rule that business logic should reside within the business logic layer, and
presentation logic within the presentation layer. This is good rhetoric, but what about
the situation raised earlier, regarding the validation of data within a UI field? For
example, verifying that a Social Security Number entered by a user is, in fact, one
contained within the database? If this verification code resides within the presentation
layer, then it is a clear violation of the precept that “only presentation logic resides
within the presentation layer.” If, however, the presentation layer does no validation
until the request is made of the business logic layer, we lose the opportunity to inform
the user of the mistake the moment it is made. For simple query-by-some-attribute
screens, this is less of an issue; for the example of a product order sheet, it is simply
unacceptable to inform the user of a mistyped product number at the time the order
is submitted.

This would seem to leave the three-tier model at a loss. If something so simple
as single field validation in a timely manner cannot easily be answered by the three-
tier model, it wouldn’t seem that the three-tier model would be useful whatsoever.

This is where partitioning the model further can be beneficial. Recall, earlier, I
suggested that the presentation layer could be further tiered into the actual composi-
tion of the UI elements into screens, and a layer created that knew how (or what) to
display in the fields. In JFC/Swing terms, this would mean breaking the creation and
layout of the JComponent-derived components in JFrames and JDialogs into the first
layer (the topmost), and the various Model classes used by those UI components into
the second layer. In practical terms, this would mean that, for example, the Product-
ComboboxModel class would have the knowledge of how to retrieve the list of Products
from the underlying Business tier. This means the developer coding the dialog contain-
ing the Product Order screen would only have to instantiate a ProductCombobox-
Model as the model to the corresponding JComboBox instance, and not have to worry
one iota about whether or not the Products displayed were legitimate. For the Social
Security Number example, the same approach can be used. A JTextComponent (the
base class for JTextField and JTextPane) has an associated Document class paired with
it; this SSNDocument class can take the entered number and ask the underlying Busi-
ness tier (which must, of course, have a method or class to provide this behavior) if
the SSN exists within the database. Because most JFC/Swing components have an asso-
ciated Model class tied to them, the Model classes can hold the knowledge of how to
interact with the Business tier, and leave the UI manipulations up to the associated IDE
or code-generating visual tool.

13.1.5 Benefits of an n-tier model

Going this route initially seems like a troublesome amount of work. Not having access to
the database, for example, now means that any queries against the data—for example, to
see if the Product ID or the Social Security Number exists—must now go through an API
change to the Business tier. In addition to requiring more work on the part of more

MODELING DATA 343

344

developers,? it would seem, quite correctly, that the added overhead would incur a per-
formance penalty on the system. After all, wouldn’t it be faster to execute the query
directly, instead of having to go through one, two, or more, layers of intermediate code?

There’s no arguing the point that it would, in fact, be faster to execute the SQL
query directly. There’s also no arguing that the code would execute faster if it were
written in native CPU code, instead of in Java’s portable bytecode format. In fact,
there’s no arguing that the code would execute much faster if it were written in assem-
bly code for that CPU, instead of such wastefully high-level languages as C or C++. If
all of these points hold true, why do programmers bother with languages like C or C++
or Java? We use these languages because speed of development often weighs in far
more heavily than just speed of execution. If speed of execution is the primary focus
of the application, you're in the wrong book.

More importantly, the tiered system offers some advantages that a nontiered sys-
tem simply cannot. Specifically, tiering the system encapsulates the layers from one
another, with the result that changes can be made within the system that won’t affect
the entire codebase. For example, assume that in the 1.0 release of the Product Order
Entry system, Product IDs are ten-digit numeric numbers. During this time, however,
the business acquires (or is acquired by) a competitor which uses fifteen-digit alpha-
numeric numbers. Were the Product ID-validating code written using direct SQL que-
ries, every place within the UI code that executes that query now has to be rewritten
to take into account the new Product ID type. Column sizes have changed, which in
turn means field sizes must change. New types of characters are now accessible, which
means the routines written to validate that the values entered were all numbers now
have to be modified to accept the full range of alphanumerics, instead. In short, one
relatively minor change to the business (the definition of a Product ID) results in a
potentially catastrophic change to the code.

In a tiered system, however, Product (and, most likely, Product ID as well) would
be its own class. The presentation layer wouldn’t focus on the internals of what a Product
ID is, but simply move them around in a more opaque fashion. The Business tier could
even differentiate between an old-style Product ID and a new-style Product ID by cre-
ating two subclasses (or two sets of overloaded methods) to handle either type. Then,
a few years later, after all new code has migrated over to using the new-style Product
ID type, the old Product ID API support is deprecated and phased out.?

2 Typically, different developers or teams of developers will maintain the various tiers. This makes re-
questing a change to a tier much more of a big deal than adding a method or class to the system.

3 Java’s support for the “@deprecated” javadoc tag in this regard is unparalleled. It is the only language
I’'m aware of that provides compile-time support of code evolution. The only other way to determine
whether a method or class is in use within a system (in C++, for example) is to remove it and see what
breaks. This way, the owners of an API can mark it as deprecated, leaving it up to clients when to
change the code making use of that API. The clients will find out the next time they do a compile,
without breaking their code.

CHAPTER 13 BUSINESS OBJECTS

This encapsulation works particularly well at the data-access layer. Design, devel-
opment, and maintenance of a relational database system is a full-time job. Most cor-
porations have individuals or teams specifically dedicated to that task, either as part
of the development team, the system administrative group, or as its own department
within the IT organization. Tuning and optimizing a relational database is something
of a fine art. In short, most Java developers will not have the time, skills, or inclination
to take on the (somewhat overwhelming) task of RDBMS maintenance. By encapsu-
lating all of the details and knowledge about the RDBMS schema within its own code
layer, hidden from any of the other Java developers on the project, the database can
be developed in parallel by a separate team of DBAs and DBEs, who have free reign
to design the table structure as best suits their needs or requirements.

Databases change over time. Users may report certain queries take too long, and
must be optimized, or later data-driven requirements (such as that for ad hoc query
support or reporting) may require a change to the schema. If the knowledge of this
schema is required in the GUI code, then all that code must be revisited and modified
when the schema changes.

I’s also not uncommon for companies or departments to switch database vendors
or products. Due to the differing specific functionality of database products, this may
in turn require changes to the SQL used to access the data, which, again, can cause
code changes. If the code to be changed is scattered throughout the system, tracking
it down across the entire codebase can be tedious and error-prone. We, as object-
oriented programmers, already know the virtues of encapsulation at the class and
object level, and those before us who were procedural programmers knew about the
virtues of encapsulation (they called it modularization). Why not apply it, in turn, to
the basic architecture of the system?

Execution speed isn’t everything, especially not in a system that’s intended to be
deployed within an enterprise. Scalability, reusability, and development time will
often come much more highly requested than just speed of execution of the application.
Moreover, developers quite often attempt to optimize code too early. Believing that
users will spend 80 percent of their time in a particular query, a developer will spend
weeks, even months, attempting to get it as fast as possible. Then, when the applica-
tion is shipped, the query goes unused 95 percent of the time, because users realized
that they didn’t need that particular functionality after all. Scott Meyers said it best:
“Get it right, then worry about making it fast.” If performance is at the top of the users’
requests, tell them that the first release will be a profiling release (or call it the beta
release), so that you can identify which portions of the system need to be profiled.
Most likely, the greatest performance-enhancing steps will be to tune the database,
improve the network bandwidth, or boost the server hardware, all of which would
have far more effect long before code enhancements would kick in.

MODELING DATA 345

13.1.6

13.1.7

346

Business objects, entity relationships

Database designers will already be familiar with entity-relationship diagrams, which may
be a new concept to Java programmers. An entity-relationship diagram, in the classical
sense, describes the entities within a business model. Historically, these diagrams were
used as a starting point from which to build the logical database schema, but we can
make use of them to identify the core business objects for our business object/rule/entity
layer. In fact, the entity-relationship diagram is precisely what we’re looking for in our
business object model—a description of the data the business uses, tracks, and stores.

One warning goes with all of this: while your business object models should
closely mimic the entity-relationship diagrams of a database-driven design, your physi-
cal object model may differ substantially from the corresponding physical database
schema. There are a number of reasons for this, but the principal one is that Java code
is a programmatic language, and the database schema is a description of how the data
should be stored. Within the Java object model, it may make sense to have two related
entities inherit from a common base class, whereas the database schema shows no such
relationship. The database schema may, for reasons of tuning or better data warehouse
support, break a given object’s data representation into several tables, while the Java
object model sees it as a logical unit. Or, in a straight reversal, the Java object model
may implement a given entity as a collection of contained subobjects (in order to avoid
having to execute huge queries to pull back a single object), where the database models
the entity in a single, large, table. This is normal for a system. The key to remember
is that the logical entities, the components, if you will, of the business object model
should have corresponding logical entities modeled within the database.

Example: employee directory

Enough theory. Let’s try putting some of this discussion into practice.

In the following example (which will become the running example for the next
several chapters), the request has come down from on high that we build an employee
database. As usual, the request is vague and full of ambiguities, but after careful ques-
tioning of potential users, repeated nagging for clarification from the higher-ups, and
no small amount of sweat, tears, and agonized decision-making on the analysts’ part,
we’ve managed to nail down the basics of the system:

* An employee holds at least one, but possibly more, positions within the company.

* An employee has at least one, but possibly more, ways of being contacted:
address, email, or by phone (which includes mobile phones, pagers, and/or fax).

* An employee works for a single department within the company.
* An employee reports to a single manager within the company.

* A manager is a specific type of employee, who manages one-and-only-one department
within the company and has a number of employees that report to him/her.

* A department is in turn contained by a larger department.

CHAPTER 13 BUSINESS OBJECTS

Figure 13.3 illustrates primitive combination entity relationship/static-typing
diagram (in UML notation) of this system.

Person
&ﬂrstName : String ContactInfo

& middleName : String - -
&IastNa e : String &desenptmn . String

& SSN : String 4&
Address Email Phone
&sﬁ[reet : String &y email : String &y prefix : String
Sy ity : Strln_g &pnumber : String
&s.tate : String &y suffix : String
& zip : String Position
Employee |%‘fitle . String
ﬁsalar - &description . String
v Q\ &minSalary sint
% EpmaxSalary : int
gD Department
&p manages : Department ,
&p employees : Employee &name : S

Figure 13.3 Entity relationship/static-typing diagram of the Employee system

Note that while it might seem that management is a specific type of Position,
doing so makes modeling the manager-contains-employees relationship more awk-
ward. For example, if managers were simply employees with particular positions,
where then does the list of employees managed by this manager reside? Within the
Position? Hardly—this would require a separate Position instance for each manager
within the system. Within the Employee? Again, a bad design choice, since it implies
that any Employee can have other Employees reporting to him/her.

The example is not intended as a right-way/wrong-way discussion of good design.
In fact, this design violates one of the principal rules of current design thinking, in that
roles (Employee, for example, is usually a role that a Person plays) shouldn’t be mod-
eled using inheritance, as we do in the model in figure 13.3. I do so here for a number
of reasons: First, because the Employee model shown is one that’s been used as an
example in a number of discussions, thus it will be an easily recognizable example and
requires less effort to understand and parse. Secondly, and more importantly, the Person-
Employee-Manager relationship demonstrates how an inheritance relationship can
function in the various implementations of the model we will be building.

MODELING DATA 347

13.1.8

348

There are plenty of books on the market that talk in far greater detail about how
to model business objects, rules, and logic in a three- or n-tier system. This example
is simply intended as a practical example of how business objects can in turn map into
concrete Java classes and system tiers, with the focus intended on the various imple-
mentation approaches and details, rather than the object model itself. To put it
bluntly, this is the way I designed it, and, as the saying goes, “Your mileage may vary.”
This is also not a full-fledged system—the presentation layer is minimal, and the data-
base layer is purely functional and not at all intended as a paragon of good relational
database design. The entire point of the example is the business objects layer, and the
opportunities it offers for future development and maintenance.

Business objects layer interface layer

As we can see from the entity-relationship model, we have a number of entities? the
system is attempting to track. Listing them, we have Employee, Position, Department,
Manager, and Contact Information. 1 add the Person entity as an effort toward reus-
ability—people that aren’t employees may be modeled within this system at a later
date (such as contractors, or perhaps the company would like to add employees’
immediate family members within the system for benefits tracking). Remember, the
business model for this could later be extended or merged with other systems, or even
reused within an entirely different system. Always keep an eye out for potential reus-
ability when modeling the business objects.

This code may be different than you expect. These are not abstract (or concrete)
Java classes that know how to save themselves and restore themselves from storage.
Instead, I build this layer as a series of interfaces, all of which know about each other
and help to model the interaction of the business objects, yet offer no hints as to how
the business objects are actually implemented. This approach, which I call inzerface-
based design, is not new to Java. Microsoft’s Component Object Model is built on this
concept, and, to be quite honest, uses it quite well.

Let’s take a second to examine the code:

Person has four get/set pairs, FirstName, MiddleName, LastName, and SSN. We
encapsulate these using get/set methods, rather than as public members, to preserve
the fact that the actual data may not even reside within this class, or even this JVM.
That is an implementation detail, and will follow later. The code looks like this:

package Employee;

public interface IPerson

{
public String getFirstName()

4 1 use the term entity deliberately here, because we haven’t yet given thought to whether this should be
a single class or multiple related classes. We want to avoid the kind of premature pigeonholing that
referring to it as a class might create.

CHAPTER 13 BUSINESS OBJECTS

throws BusinessLayerException;
public void setFirstName(String fName)
throws BusinessLayerException;

public String getMiddleName()
throws BusinessLayerException;
public void setMiddleName(String mName)
throws BusinessLayerException;

public String getLastName()
throws BusinessLayerException;
public void setLastName(String IName)
throws BusinessLayerException;

public String getSSN()
throws BusinessLayerException;
public void setSSN(String ssn)
throws BusinessLayerException;

public IContactinfo[] getContactinfo()
throws BusinessLayerException;

public void addContactinfo(IContactinfo contactinfo)
throws BusinessLayerException;

public void removeContactinfo(IContactinfo contactinfo)
throws BusinessLayerException;

}

Note that because this is an interface, and not a full-fledged class, the class name is
prefixed with “I”. This is another COM holdover, but makes sense when working in
an interface-based design paradigm. The “I”, of course, stands for “interface.” Notice
also that each method throws the BusinessLayerException type; this provides us the
ability to signal a variety of errors, from business rule or logic errors (i.e., SSN must
have digits in the form nnn-nn-nnnn) to underlying implementation errors (i.e.,
RMIExceptions in the RMIModel, SQLExceptions in the RDBMSModel, or commu-
nications errors in a CORBA model).

The IEmployee interface extends the IPerson interface because, as we stated
in our analysis discussion and in figure 13.3, an Employee is a specific type of Person.
This means, of course, that IEmployee instances should have the same methods
available on them as IPerson instances, and the only way to guarantee this in Java
is to extend IEmployee from IPerson

The code looks like this:

package Employee;

public interface IEmployee extends IPerson
{
public IPosition getPosition()
throws BusinessLayerException;
public void setPosition(IPosition position)
throws BusinessLayerException;

public int getSalary()

MODELING DATA 349

350

throws BusinessLayerException;
public void setSalary(int salary)
throws BusinessLayerException, lllegalSalaryException;

}
Note that setSalary not only throws a BusinessLayerException , but also an
lllegalSalaryException . This is the means by which we enforce business

rules. If an employee’s salary is set to something that is defined to be illegal (in this
case, we will decide that a salary above the employee’s position’s maximum salary is

illegal), then we throw an lllegalSalaryException . These sorts of exceptions
can be set on many more methods than just setSalary (IPerson ’s setSSN is a
perfect example, where lllegalSSNException could also be thrown if a String

consisting of something other than nnn-nn-nnnn is given). I choose not to in this
example for simplicity. As an alternative, IllegalSalaryException could also be made a
subclass of BusinessLayerException, so that the IllegalSalaryException wouldn’t have
to be explicitly named as part of the method’s throws declaration. This makes the
method more generic and maintainable, at the expense of the code-level documenta-
tion regarding the types of Exceptions it throws.’

Manager is, of course, a specialized Employee, one which in turn contains other
Employees. The getEmployees method returns an array of Employee instances
directly from the database, the addEmployee method screens the Employee passed
in to make sure they’re not already being managed by this Manager, and the remove-
Employee method ensures that the Employee specified is one that this Manager actu-
ally manages before doing the database update. Pretty straightforward, but notice that
the implementation of these methods defines our business logic—we have decided
that more than one Manager may handle a given Employee (because we do not explic-
itly prevent it), and that Managers can have no Employees to manage (again, because
we don’t explicitly code against it). The business layer is the one layer whose imple-
mentation has ramifications throughout the entire system, so make certain that all
cases are covered when coding,.

The code appears as follows:

package Employee;

public interface IManager extends IEmployee

{
public IEmployee[] getEmployees()

5 There are a number of valid arguments in both directions on this issue. Specifying the exact Exception
types thrown gives developers a type-safe means by which they can ascertain which Exceptions will be
thrown from a method call. Because documentation is never guaranteed to be correct (or even present),
this compiler-enforced type-safety is often the only documentation a developer gets. On the other
hand, adding a new type to the method’s throws declaration will cause every client call of that method
to suddenly require modification (to deal with the new throws type), which is a maintenance night-
mare and restricts change in the underlying implementation. As with most concepts of this type, make
your own decisions, but be consistent.

CHAPTER 13 BUSINESS OBJECTS

throws BusinessLayerException;

public void addEmployee(IEmployee employee)
throws BusinessLayerException;

public void removeEmployee(IEmployee employee)
throws BusinessLayerException;

}
Again, additional Exception types could be added here to enforce further business
rules, such as having addEmployee throw DuplicateEmployeeException , or

removeEmployee throw UnknownEmployeeException

Position is a read-only entity within this system; users may not, using our object
model, modify the values of any Position objects. We accomplish this by not providing
any set methods for any of the attributes Position holds.

The code looks like this:

package Employee;

public interface IPosition

{
public String getTitle()
throws BusinessLayerException;

public String getDescription()
throws BusinessLayerException;

public String getCategory()
throws BusinessLayerException;

public int getMinSalary()
throws BusinessLayerException;

public int getMaxSalary()
throws BusinessLayerException;

}

Not much more to say about this, except to reiterate that Positions within this system
are defined read-only, but later applications could change this by adding setTitle
setDescription , setCategory , setMinSalary, and/or setMaxSalary meth-
ods. The key point to make about this is if this change does occur, users of the old
IPosition will not have to change any code.

As discussed earlier, Phone, Address, and Email are all specific types of Contact
Information. As a result, IPhone , IAddress , and IEMail all extend IContact-
Info . IPhone has three attributes, prefix (area code and/or country code), num-
ber , and suffix (extension, PIN number for pagers, and so on) with corresponding
get/set methods. IEMail contains one attribute, Email , which is the textual repre-
sentation of the user’s SMTP email address. IAddress contains Street, City, State (or
province), ZIP (or postal code) and Country.

The code (in multiple files) looks like this:

/I IContactInfo.java

1
package Employee;

MODELING DATA 351

352

public interface IContactinfo

{
public String getDescription()
throws BusinessLayerException;
public void setDescription(String desc)
throws BusinessLayerException;
}

/I 1Address.java
1
package Employee;

public interface IAddress
{
public String getStreet()
throws BusinessLayerException;
public void setStreet(String street)
throws BusinessLayerException;

public String getCity()
throws BusinessLayerException;
public void setCity(String city)
throws BusinessLayerException;

public String getState()
throws BusinessLayerException;
public void setState(String state)
throws BusinessLayerException;

public String getZip()

throws BusinessLayerException;
public void setZip(String zip)

throws BusinessLayerException;

public String getCountry()
throws BusinessLayerException;
public void setCountry(String country)
throws BusinessLayerException;

}

/I IEMail.java
1
package Employee;

public interface IEMail

{
public String getEmail()
throws BusinessLayerException;
public void setEmail(String email)
throws BusinessLayerException;
}

/I IPhone.java
1
package Employee;

CHAPTER 13

BUSINESS OBJECTS

public interface IPhone
{
public String getPrefix()
throws BusinessLayerException;
public void setPrefix(String prefix)
throws BusinessLayerException;

public String getNumber()
throws BusinessLayerException;
public void setNumber(String number)
throws BusinessLayerException;

public String getSuffix()
throws BusinessLayerException;
public void setSuffix(String suffix)
throws BusinessLayerException;

}

Again, additional exception types could be added here in a production system.
IAddress , especially, could use InvalidZipException on setZip() , and
IPhone could use InvalidNumberException on setNumber() , or Invalid-
PrefixException on setPrefix()

IDepartment , of course, is the last interface in the Business Interface layer. The
code appears as:

package Employee;

public interface IDepartment

{
public String getTitle()
throws BusinessLayerException;

public String getDescription()
throws BusinessLayerException;
public void setDescription(String desc)
throws BusinessLayerException;

public IDepartment getParentDepartment()
throws BusinessLayerException;

public IDepartment[] getContainedDepartments()
throws BusinessLayerException;

public IManager getManager()
throws BusinessLayerException;
public void setManager(IManager mgr)
throws BusinessLayerException;

}

Note, again, that additional checks would be desired in a production system; for
example, if the enterprise decides that a Manager can run only one Department, then
setManager() might throw lllegalManagerException

MODELING DATA 353

354

That’s our Business Objects Interface layer. At this point, it doesn’t seem like
much, but we already know enough to set up client code that can fully drive and exer-
cise the Business Objects for this system without knowing a thing about the actual
implementation. In fact, it’s a good idea to do so, not only for regression and unit testing
purposes, but to ensure that we have, in fact, given clients of this system the methods
and behaviors they need to write the front ends to the system.

The code in listing 13.1 simply runs through various elements in the system,
printing out information about each one:

Listing 13.1 Code for the Business Objects Interface layer

/**

* Test driver

*/

public static void main(String[] args)
throws Exception

{
/I Build the EmployeeModel; getEmployeeModel is a method that
/I (somehow) obtains the appropriate IEmployeeModel--it might
/I create an RDBMSModel with a JDBC Connection, or it might not;
/I the point is, we don't need to know the exact type of
/I IEmployeeModel we'’re using in order to use it.
IEmployeeModel model = getEmployeeModel();

/I Get all Persons in the database
System.out.printin("\n\nAll Persons:");
IPerson[] persons = model.findAllPersons();
for (int i=0; i<persons.length; i++)
printPerson(personsi]);

/I Get all Departments in the database

System.out.printin("\n\nAll Departments:");

IDepartment[] depts = model.findAlIDepartments();

for (int i=0; i<depts.length; i++)
printDept(deptsli]);

/I Get all Positions in the database
System.out.printin("\n\nAll Positions:");
IPosition[] positions = model.findAllPositions();
for (int i=0; i<positions.length; i++)
printPosition(positionsi]);

/I Get all Employees in the database

System.out.printin("\n\nAll Employees:");

IEmployee[] employees = model.findAlIEmployees();

for (int i=0; i<employees.length; i++)
printEmployee(employeesii]);

/I Get all Managers in the database

System.out.printin("\n\nAll Managers:");

IManager[] mgrs = model.findAlIManagers();
for (int i=0; i<mgrs.length; i++)

CHAPTER 13 BUSINESS OBJECTS

printManager(mgrsli]);
}

private static void printPerson(IPerson person)
throws Exception

{
System.out.printin(person.getLastName() + ", " +
person.getFirstName()+ "+
person.getMiddleName()+ " "+

person.getSSN() + ")");

IContactinfo[] contactinfo = person.getContactinfo();
for (int j=0; j<contactInfo.length; j++)
{
/I Print ContactInfo
System.out.printin(" "+
contactinfo[j].getDescription() + " " +
contactinfo[j].toString());

}
}

private static void printEmployee(IEmployee employee)
throws Exception

{
System.out.printin(employee.getLastName() + ", " +
employee.getFirstName()+ "+
employee.getMiddleName() + " (" +
employee.getSSN() + "): " +
employee.getPosition().getTitle());

IContactinfo[] contactinfo = employee.getContactinfo();
for (int j=0; j<contactinfo.length; j++)
{
/I Print Contactinfo
System.out.printin(" "+
contactinfo[j].getDescription() + " " +
contactInfo[j].toString());

}

}
private static void printDept(IDepartment dept)

throws Exception

{

System.out.printin(dept.getTitle() + " " +
dept.getDescription());

System.out.printin(" Run by " +
dept.getManager().getLastName() + ", " +
dept.getManager().getFirstName()+ "+
dept.getManager().getMiddleName());

}

private static void printPosition(IPosition pos)
throws Exception
{
System.out.printin(pos.getTitle() + "(" +
pos.getMinSalary()+ "to "+

MODELING DATA 355

356

pos.getMaxSalary() + "): " +
pos.getDescription());
}
private static void printManager(IManager mgr)
throws Exception
{

System.out.printin(mgr.getLastName() + ", " +
mgr.getFirstName()+ "+
mgr.getMiddieName());

IEmployee[] employees = mgr.getEmployees();

for (int i=0; i<employees.length; i++)

{

System.out.printin(" "+
employeesfi].getLastName() + ", " +
employeesi].getFirstName()+ "+
employees[i].getMiddleName());

This code can either be part of each IEmployeeModel -implementing class’s inter-
face, to allow for convenient testing, or a stand-alone class to exercise the system from
outside the model.

One thing that should be obvious—and a bit confusing—is that none of these
methods has any way of creating, obtaining, or removing objects from the system. In
the example above, we presume that we already have objects in the database to view
and display. This certainly won’t be the case with an empty database, so how do we
create a new Person?

Observant readers will have already spotted, in listing 13.1, the use of an interface
not previously discussed. Listing 13.2 shows the IEmployeeModel interface, which
is at the core of the interface layer.

Listing 13.2 Code for IEmployeeModel

package Employee;
/~k~k
* This class represents our business object layer
* "model".
*/
public interface IEmployeeModel
{
/**
* Create |Person object
*/
public IPerson createPerson(
String firstName, String middleName, String lastName,
String ssn)
throws BusinessLayerException, DuplicateObjectException;

CHAPTER 13 BUSINESS OBJECTS

/**
* Create IEmployee object
*/
public IEmployee createEmployee(
String firstName, String lastName, String middleName,
String ssn, IPosition position, int salary)
throws BusinessLayerException, DuplicateObjectException;
/**
* Create IEmployee from IPerson
*/
public IEmployee createEmployee(IPerson person,
IPosition position, int salary)
throws BusinessLayerException, DuplicateObjectException;
/**
* Create IManager object
*/
public IManager createManager(
String firstName, String lastName, String middleName,
String ssn, IPosition position, int salary)
throws BusinessLayerException, DuplicateObjectException;

/**
* Create IManager from IEmployee
*
public IManager createManager(IEmployee employee)
throws BusinessLayerException, DuplicateObjectException;
/**
* Create |Department object
*
public IDepartment createDepartment(
String name, IDepartment parent)
throws BusinessLayerException, DuplicateObjectException;
/**
* Create IPosition object
*/
public IPosition createPosition(
String title, String desc, int minSalary, int maxSalary)
throws BusinessLayerException, DuplicateObjectException;
/**
* Create IEMail object
*/
public IEMail createEMail(String email)
throws BusinessLayerException, DuplicateObjectException;
/**
* Create IPhone object
*
public IPhone createPhone(
String prefix, String number, String suffix)
throws BusinessLayerException, DuplicateObjectException;

MODELING DATA

357

358

/**
* Create |Address object
*/
public 1Address createAddress(
String street, String city, String state, String zip,
String country)
throws BusinessLayerException, DuplicateObjectException;
/**
* Query for all Persons
*/
public IPerson[] findAllPersons()
throws BusinessLayerException;
/**
* Query for all Persons by last name
*/
public IPerson[] findPersonsByLastName(String lastName)
throws BusinessLayerException;
/**
* Query for all Persons by SSN
*
/
public IPerson[] findPersonsBySSN(String ssn)
throws BusinessLayerException;
/**
* Query for all Employees
*/
public IEmployee[] findAIIEmployees()
throws BusinessLayerException;
/**
* Query for all Managers
*/
public IManager[] findAlIManagers()
throws BusinessLayerException;
/**
* Query for all Positions
*/
public IPosition[] findAllPositions()
throws BusinessLayerException;
/**
* Query for all Departments
*
/
public IDepartment[] findAlIDepartments()
throws BusinessLayerException;
/**
* Query for "root" Department
*
/
public IDepartment findRootDepartment()
throws BusinessLayerException;

[x*

CHAPTER 13

BUSINESS OBJECTS

* Remove a Person from the system
*/
public void removePerson(IPerson person)
throws BusinessLayerException, IntegrityConstraintException,
UnknownObjectException;
/**
* Remove an Employee from the system
*/
public void removeEmployee(IEmployee employee)
throws BusinessLayerException, IntegrityConstraintException,
UnknownObjectException;
/**
* Remove a Person from the system
*/
public void removeManager(IManager manager)
throws BusinessLayerException, IntegrityConstraintException,
UnknownObjectException;
/**
* Remove a Department from the system
*/
public void removeDepartment(IDepartment dept)
throws BusinessLayerException, IntegrityConstraintException,
UnknownObjectException;
/**
* Remove a Position from the system
*/
public void removePosition(IPosition position)
throws BusinessLayerException, IntegrityConstraintException,
UnknownObjectException;
/**
* Remove an Address from the system
*/
public void removeAddress(IAddress address)
throws BusinessLayerException, IntegrityConstraintException,
UnknownObjectException;
/**
* Remove a Phone from the system
*/
public void removePhone(IPhone phone)
throws BusinessLayerException, IntegrityConstraintException,
UnknownObjectException;
/**
* Remove an EMail from the system
*/
public void removeEMail(IEMail person)
throws BusinessLayerException, IntegrityConstraintException,
UnknownObjectException;

MODELING DATA 359

360

This class forms the starting point from which any use of the Business Layer originates.
Users of the Employee package (which is the package holding all the Business Layer
code) may not create, access, or otherwise know about Employee instances directly.
They must go through this interface. Again, this is done deliberately, in order to encap-
sulate knowledge about the actual layout of the data away from those who want to use it.
Because this is an interface, users do not create an instance of IEmployeeModel
directly. Instead, they create instances of a class that implements IEmployeeModel
such as the RDBMSModel class presented in chapter 14:

/I Set up JDBC Connection
Connection conn = null;
try
{
/I Load the JDBC driver into the JVM
Class.forName("jdbc.idbDriver");
java.util.Propertie S p = new java.util.Properties();
conn = DriverManager.getConnection("jdbc:idb:employee.prp”, p);

](;atch (Exception ex)

{
ex.printStackTrace();
return;

}

/I Build the EmployeeModel
IEmployeeModel model = new RDBMSModel(conn);

You may be curious why, after going to such great lengths to hide the fact that we're
using a relational database, I then force users to make the JDBC Connection instance
to pass in to RDBMSModel. For this particular example, it makes little difference
whether this Connection takes place in the RDBMSModel constructor or the user’s
code. In a production system, however, usually users will not create the Model class
directly, but receive it from someplace else (perhaps one of the custom ClassLoaders
discussed in chapter 2), as in:

ClassLoader classLoade r=...
/I obtain the ClassLoader from someplace

IEmployeeModel model = (IEmployeeModel)
ClassLoader.loadClass(“Employee.EmployeeModel”).newlnstance();

Or the mechanics of using the ClassLoader itself could be buried within some routine
inside the code that uses the Business Layer:

public IEmployeeModel getEmployeeModel()
{

/I Details unimportant to the user

}
IEmployeeModel model = getEmployeeModel();

IEmployee[] employees = model.findAlIEmployees();

CHAPTER 13 BUSINESS OBJECTS

Note the simple power expressed in the foregoing snippet. Suddenly, as we’ve been
talking about all along, the user doesn’t know, nor does he care where the Employee
objects are coming from, how they work, or how they store themselves off. The
Employee Business Object Layer client simply uses them. The objects may be stored
in a database, may be stored locally to disk via Serialization, or stored remotely via
RMI, CORBA, or some other form of distribution. We could even change the location
of these objects behind the scenes, and users would neither know nor care.

Some readers may, at this point, be curious to know how problems are handled.
Normally, in a JDBC or RMI based system, exceptions of specific type are thrown to
signal the caller that the request could not be completed, or was completed abnor-
mally. “If I no longer know where the objects reside,” they ask, “how can I know which
exceptions to catch and handle? Or do I have to handle all of them?”

Unfortunately, there is no easy answer, because there are really two schools of
thought on the issue. The first holds that any exception, regardless of cause or type,
should be propagated upward to the caller, so they can display some type of informa-
tive screen to the user. The second holds that because the caller, due to encapsulation,
has no real way of doing anything about the error, propagating the exception to them
is simply a waste of time and effort. I hold more with the second approach than the
first. Reasonably, what can I expect the user to be able to do about it if the database
to which I am attempting to connect is down? For that reason, none of the interface
classes presented here throw any kind of standard Exception . Instead, I have Busi-
nessLayerException , a class which is thrown in case a transaction or request fails
(for example, if a setName or similar method fails for some reason). This class in turn
contains the actual Exception thrown from the lower layers, so that presentation-
layer code can access it if desired. This way, clients of the Business Interface Layer need
only catch one type of Exception from calls to that layer, and still do not have to know
anything about the actual lower-object layer.

Querying for objects in the system is as easy as calling one of thefind() methods
on IEmployeeModel . Any place where client code would normally execute a
SELECT statement on the database, or begin deserialization of a serialized object
stream file, the client instead asks the IEmployeeModel instance it holds for an array
of conformant types:

/I Get all Persons in the database
System.out.printin("\n\nAll Persons:");
IPerson[] persons = model.findAllPersons();

Above, the code asks the system for all Person objects in the database. If none were
found, findAllPersons() returns NUll , and if the system couldn’t comply, a
BusinessLayerException is thrown. No further knowledge of how these objects
are stored is necessary. The implementing IEmployeeModel takes care of all that.

Creating a new object within the system also requires the use of the [IEmployee-
Model instance:

MODELING DATA 361

362

/I Create a new Person in the system

IPerson person =
model.createPerson(“Neward”, “Charlotte”, “Anne”, “123-45-6789");
/I Add new Contactinfo instances to person as necessary

/I Make the above Person an Employee
IEmployee employee =
model.createEmployee(person, model.findPositionByName(“CFQO"));

/I Now make her a Manager
IManager manager =

model.createManager(person);
This would seem to be counterintuitive to good object-oriented design. In fact, it’s
not, because we have simply moved knowledge of how to create Business Objects to
the one class that knows most about how to create them, the Model class.

Removing an object from the system again requires the IEmployeeModel
/I Remove given Manager from the system
model.removeManager(manager);

/I This recursively removes the manager-as-Employee and

/I the manager-as-Person, so explicitly calling those

/I methods is unnecessary
Should clients require an additional method of querying for, creating, or removing
objects from the system, additional methods must be added to IEmployeeModel
While this approach may seem restrictive at first (and there’s really no doubt about it,
it is more restrictive), it offers some advantages in return:

o Sanity-check
When clients request the additional query method, it offers the designers a chance
to evaluate the legitimacy of the request and offer feedback to the clients. Some
queries will be legitimate (such as findEmployeesByLastName() or find-
ManagersByLastName()), while others can be handled given the existing API
(instead of findManagersByDepartment() , use a new query, findDepart-
mentByName() and the returned IDepartment object’s getManager()).

* Knowledge of use

When designers are explicitly requested for new ways to access, create, or query
for objects, they are (by definition) being told how clients are using the system.
This knowledge in turn allows Business Object implementors better understand-
ing of how the system is being used, and can optimize and tune accordingly.
Some designers and coders will scoff at this, taking the position that “I know
how they’ll be using it, I don’t need them to tell me.” This is fantasy, pure and
simple. Step onto any high school or college campus and take careful note of the
sidewalks and surrounding grass; I have never been on a campus that didn’t have
at least one carefully worn dirt path through the grass. The moral? The architect
who laid the sidewalks thought he knew, but didn’t, which paths the students
would take. Designers cannot know how others will use their system. You might
know how you would use it, but that doesn’t mean that others will.

CHAPTER 13 BUSINESS OBJECTS

* Control over future implementation

Enterprise systems are constantly moving targets. Even as current phases are
being implemented, future phases are on the drawing board. By forcing clients
to go back to the Business Object architects with new requests, control over how
the objects are being used remains firmly in the hands of the Business Objects
team. This allows the Business Objects folks to prevent any uses or methods
within the Business Objects layer that might, in turn, prevent future implemen-
tation from taking place. Don’t believe you need this kind of control? Take a les-
son from Microsoft—in Undocumented Windows,® Andrew Schulman describes
Microsoft’s woes in developing Windows 3.1 with full backward compatibility,
caused in no small part because developers of applications for Windows (even
within Microsoft) were decompiling and reverse-engineering functions and
structures that Microsoft held as reserved for future implementation. As a result,
those reserved fields had to be left as-is, and new schemes used. If you don’t keep
complete control over your API, you will lose it.

* Ability to optimize

Because clients are removed from knowing the exact class to use, we can later add
implementation optimization efforts, such as using stateless objects (a2 /a
Microsoft Transaction Server statelessness) or object pools to boost performance.
Intelligent on-the-fly optimizations can be used; in a remote object Model sys-
tem, if the client happens to be running on the same machine as the server, a
lightweight RPC system might be used instead of the full remote proxy, thus
reducing overhead. What’s even better, because client code will usually request
the IEmployeeModel instance to use from some sort of object-creational class
or method, the decision regarding which optimized type to use (local or remote
proxy) can be done at run time, based on whether the machine is local or
remote; this sort of on-the-fly decisionmaking is only possible if the user’s code is
completely abstracted away from the details of the underlying model.

o FEasier enhancement

If all access to the objects is through a single class, adding features to the system
as a whole becomes simpler. One common need is for security, or, more accu-
rately, user roles within the system. Some users may be authorized to add,
remove, or update objects within the system, while others are permitted read-
only access. Some objects may be inaccessible to anyone other than system
administrators, and so forth. Modifying IEmployeeModel to support this can
be boiled down to adding an overloaded method for every method currently
available, as in:

Undocumented Windows, by Schulman, et al (Addison-Wesley)

MODELING DATA 363

/I IEmployeeModel with user roles added in
1
public interface IEmployeeModel

{
/**
* Query for all Persons, using default (guest) access
*
/
public IPerson[] findAllPersons();
/**
* Query for all Persons, using specified access
*
/
public IPerson[] findAllPersons(IlUserRole role);
/**
* Query for all Persons by last name, using default
* (guest) access
*/
public IPerson[] findPersonsByLastName(String lastName);
/**
* Query for all Persons by last name, using specified access
*
/
public IPerson[] findPersonsByLastName(String lastName, IUserRole role);
/I And so forth, and so o n...
}

/I or, an alternative approach:

/I IEmployeeModel with user roles added in
1

public interface IEmployeeModel

{

/**

* Specify caller user role

*/

public void setUserRole(lUserRole role);

[x*

* Query for all Persons

* @throws UserRoleException (subclass of
* BusinessLayerException) if the user's role is prevented
* from finding all Persons.
*/
public IPerson[] findAllPersons()
throws BusinessLayerException;

[**

* Query for all Persons by last name, using default
* (guest) access

*

* @throws UserRoleException (subclass of

364 CHAPTER 13 BUSINESS OBJECTS

* BusinessLayerException) if the user's role is prevented
* from finding all Persons.

*/

public IPerson[] findPersonsByLastName(String lastName);

/I And so forth, and so o n...

}

Enhancing the system in this manner requires no code changes to clients that don’t
use user roles, but those clients may in turn be locked out of certain parts of the sys-
tem, since they (by default, for security reasons) are given the lowest access available.
The key is that what would otherwise be a major feature change is now manageable.
Imagine what implementing security would have meant (in terms of man hours to
implement) had clients been given direct access to the database or middleware system.

In short, just about every argument in favor of encapsulation of objects works as
an argument in favor of encapsulation of the business object layer. In fact, those readers
familiar with the GoF book of patterns will already recognize that the Business Object
Interface layer is a Fagade pattern.

Moreover, the entire idea of an z-tier logical model is an extension of the Fagade
concept. By encapsulating the complexity of the actual implementation away from the
user, implementors gain an amount of flexibility in tailoring the implementation to
specific needs, as well as responding to user requests or technology changes, without
breaking client code. For example, if and when the enterprise decides to move to an
EJB server architecture, the Business Object Interface implementation can be modified
to use EJB concepts under the hood, without changing client code.” The same holds
true for CORBA, or even Microsoft’s Java/COM model.

If all this discussion of the Business Object Interface Layer and its associated
Model class also reminds you of the old Model-View-Controller pattern, you’re not
too far off. The various interfaces of the Business Object Interface Layer are the View
classes; the Model classes are buried away in the underlying layer (which we examine
next chapter), and the Controller class is the IEmployeeModel -implementing class
we keep referring to. Remember, patterns can nest—not only can patterns be used
between subsystems, but within subsystems, as well. In this case, the Bridge pattern
helps us cleanly divide the entire system into Presentation and Business Object layers,
as well as divides code within the Business Object layer between interface and imple-
mentation. The Model class itself may (but doesn’t have to be) a Singleton, and par-
ticular client code may select which IEmployeeModel -implementing class to use via
a Factory Method or Abstract Factory.

7 One possible exception to this is to add the java.rmi.Remote interface as a base class to the inter-
faces specified by the Business Object Interface layer, but we already have to do this to support RMI
in a later chapter. Adding the java.rmi.Remote , much as adding java.io.Serializable, adds no addi-
tional methods that need to be implemented; it’s just a placeholder and flag to the rmic RMI stub/
skeleton compiler. Even the need to catch java.rmi.RemoteExceptions should be handled silently.

MODELING DATA 365

13.2

13.2.1

13.2.2

366

USING THE BUSINESS OBJECT LAYER

For all the wonder of our clean, encapsulated Business Object layer, in and of itself it
pays no bills. True payoff comes when using the Business Object layer to view,
manipulate, and otherwise use the data it models and represents. Despite how the
data is used, either in a GUI application or in some kind of batch-driven background
process, this is the Presentation layer. Again, the Presentation layer itself can have
more than one layer within it (as the JFC GUI application does), but this should only
be done where it is convenient and has concrete advantages. The UI code, for exam-
ple, presented here uses another model-view design, while the import/export code
does not.

Classic presentation code: GUIs

The Employee system example comes with two presentation-layer GUI applications
for users to execute and use. The first, OrgTree, provides a tree-based hierarchy of the
corporation’s Department tree, in a split-view Explorer-like interface. The second,
EmployeeView, provides a more address-book-like view of the Employees within the
company, organized alphabetically and with each Employee’s Contact Information
listed in the data view.

In both applications, the UI code makes no assumptions about how the data
arrived there. The data could be coming from a relational database, via RMI or CORBA,
or even be an exported file of the data (discussed next). To stress this, each application,
when started, presents the user with a dialog box indicating the IEmployeeModel
choices (discussed in further detail in the next chapter) and allows you to choose which
one to use. If further details are necessary to create the Model (such as JDBC URL,
RMI, CORBA server location, XML, or Serialized filename), a subdialog containing the
fields appears.

Example: OrgTree

OrgTree is a simple tree-based display of the company’s Departmental organization.
Each node in the tree to the left side of the main window is a Department within the
company, and the panel to the right lists the Employees working for the Manager
managing that Department. Note that the display is not recursive. Employees work-
ing for a Department contained by another Department will only show up once, not
in each parent node all the way back to the root. Notice how, by creating our own
customized TreeModel class (listing 13.3), we’ve almost trivialized the work necessary
to build this Departmental tree, and the custom ListModel (for the right-hand panel)
does the same for listing the Employees of the Department.

CHAPTER 13 BUSINESS OBJECTS

Listing 13.3 Code for the DepartmentTreeModel

/**
* DepartmentTreeModel: Swing JTree model class for displaying
* the organization chart, according to the IEmployeeModel.
*/
class DepartmentTreeModel
implements TreeModel

{
public DepartmentTreeModel(IEmployeeModel model)
{
m_model = model;
}
public void addTreeModelListener(TreeModelListener 1)
{
m_listeners.addElement(l);
}
public Object getChild(Object parent, int index)
{
try
{
IDepartment dept = (IDepartment)parent;
IDepartment[] children = dept.getContainedDepartments();
if (children != null)
{
return children[index];
}
else
return null;
}
catch (BusinessLayerException bIEX)
{
blEx.printStackTrace();
return null;
}
}
public int getChildCount(Object parent)
{
try
{
IDepartment dept = (IDepartment)parent;
IDepartment[] children = dept.getContainedDepartments();
if (children != null)
return children.length;
else
return O;
}
catch (BusinessLayerException bIEX)
{

blEx.printStackTrace();
return 0O;

USING THE BUSINESS OBJECT LAYER

367

368

}

}
public int getindexOfChild(Object parent, Object child)
{
return O;
}
public Object getRoot()
{
try
{
return m_model.findRootDepartment();
}
catch (BusinessLayerException bIEXx)
{
blEx.printStackTrace();
return null;
}
}
public boolean isLeaf(Object node)
{
try
{
IDepartment dept = (IDepartment)node;
if (dept.getContainedDepartments() != null)
return false;
else
return true;
}
catch (BusinessLayerException bIEX)
{
blEx.printStackTrace();
return true;
}
}
public void removeTreeModelListener(TreeModelListener 1)
{
m_listeners.remove(l);
}
public void valueForPathChanged(TreePath path, Object newValue)
{
/I unimplemented
}

/I Internal members

1

IEmployeeModel m_model;

Vector m_listeners = new Vector();

CHAPTER 13 BUSINESS OBJECTS

If you are unfamiliar with TreeModel’s methods, I'd recommend you pick up a good
Swing book before diving too deeply into the code. DepartmentTreeModel takes an
IEmployeeModel in its constructor and stores it internally. If we chose to, we could
extract the root IDepartment (which is all we need the IEmployeeModel instance
for) in the constructor and not store the model instance, but it costs us nothing to
hold it. Also, notice that because DepartmentTreeModel is stateless in its interactions
with the containing]JTree instance, getChild has to rely on the assumption that
IDepartment.getContainedDepartments returns the array of contained
IDepartment instances in exactly the same order every time it is called. If this
assumption proves false, then DepartmentTreeModel needs to undertake other methods®
to make certain the children can be found in order every time.

Now look at what’s required to build a JTree that knows how to display, hierar-
chically, all of the Departments in the Employee system:

JTree tree = new JTree(
new DepartmentTreeModel(getEmployeeModel(args)));

where getEmployeeModel(args) returns to us an IEmployeeModel .7 If the
simplicity of the above doesn’t set your heart pounding and head spinning, then you
never had to try to code one of these things the Hard Way, building the tree by hand.
JEC’s Model-View system makes the development of complex user-interfaces absurdly
simple. What’s more, because OrgTree uses the IEmployeeModel as its interface to
the data, we can now use this application (or, more realistically, the classes developed
during the development of this application) to view Employee system data from other
sources. Had we written the DepartmentTreeModel to use JDBC or RMI instead of
IEmployeeModel , it would be useless to us when we move the system from a
JDBC-based system to an RMI-based approach.

Note that this is not the most efficient use of the IEmployeeModel ; each time
we need a new child, we requery the model:

public Object getChild(Object parent, int index)
{
try
{
IDepartment dept = (IDepartment)parent;
IDepartment[] children = dept.getContainedDepartments();
if (children != null)
{

return children[index];

}

8 Such as retrieving the array once, and storing it in a Hashtable or Dictionary, keyed to the IDepartment
instance that produced it.

9 In typical systems, the Model being used will be obtained from a similar method or class, but here the
getEmployeeModel() method allows users to choose which of the IEmployeeModel -implementing
classes discussed in this book to use.

USING THE BUSINESS OBJECT LAYER 369

13.2.3

13.3

370

else

return null;
}
catch (BusinessLayerException bIEX)
{
blEx.printStackTrace();
return null;
}

}

In a model that involves significant time delays or processing (such as using JDBC or
RMI in the model), this can prove overly costly. These costly trips to the model could
be optimized away by making the trip once, and caching the result locally. However,
this sort of optimization is arguably more appropriately belonging in the IEmployee-
Model and not in client code; the model knows better whether such optimization is
necessary, and how best to optimize for it. Such optimization also carries with it an
inherent danger if used in the client code—if the underlying model changes, and we
keep using local cached results, we won’t see the changes. This can in turn lead to sig-
nificant problems downstream. Once again, however, it must be stated that because we
abstracted away the details, we can silently make this optimization without changing
a lick of user’s code.

Feeling cheated?

You’'ll notice that the sample application doesn’t make use of every business object
method, nor is every business object exercised to its fullest; for example, I don’t have a
PositionEditor, or even an application that adds Employees to the system. This is
deliberate, for two reasons. First, it’s common for corporations to want to give limited
access to all members of the corporation or outside the corporation (across the Inter-
net, for example). Second, more practically, I wanted to keep this sample as simple as
possible. Given how the model encapsulates away the details of the creation, manipu-
lation, and removal of the actual data objects, it shouldn’t be too difficult for readers
to implement other editors, if desired.

SUMMARY

One of the principal goals of any enterprise development group is to produce systems
that are maintainable, scalable, and reusable. An encapsulation layer between the
actual storage mechanism and the code which presents or manipulates it aids in the
reusability of the system as a whole. This layer, known as the Business Object layer,
serves to protect the system from an inability to evolve because if we change this, all
this code over here breaks. For example, we can start with a system that uses a simple
Hashtable as its storage mechanism in order to expedite prototyping and rapid devel-
opment in the early stages of project planning and architecture. Later, relational data-
bases can be used, by simply modifying code beneath the Business Object layer to store
to an RDBMS rather than a Hashtable. Additional legacy systems can be brought into

CHAPTER 13 BUSINESS OBJECTS

the system by extending the Business Object layer to represent the new data types, and
developing a Data Access layer that understands the different databases and where to
retrieve data for which requests. (We implement both of the above-mentioned models
in chapter 14.)

The Business Object layer also provides for the ability to add distribution capa-
bilities into a system that lacks it; by virtue of the encapsulation provided by a Business
Object layer, we can add a distributed capability without having to rewrite significant
portions of user code; we talk about this in chapter 12, when we add RMI and other
distributed technologies to the mix.

A Business Object layer provides developers with flexibility to meet the changing
needs of the business. By providing, up front, the ability for a system to evolve, we run
less risk of being caught off-guard by user requests. This inability to evolve is the prin-
cipal reason many systems are started over from scratch. It’s awkward to change and
grow the system as users become more familiar with it. By providing layers of encap-
sulation wherever feasible, we protect ourselves (and our jobs) against unreasonable
user requests. And as much as it might be exciting for us as developers to throw the
current system away and start over, most clients are less than enthusiastic about accept-
ing the kind of costs, both in time and in money, that a complete rewrite involves.

13.4 ADDITIONAL READING

* Desmond D’Souza and Alan Cameron Wills, Object, Components, and Frameworks
with UML (Addison-Wesley, 1999).
This is a great book for any developer involved at the design or analysis level,
with clear focus on building shared business models, as well as providing a gener-
alized approach to developing software that meets (or exceeds) client needs. It’s
not a lightweight book, by any means, weighing in at just under 700 pages (not
counting appendices, index, or glossary), but it’s possibly one of the best books
any developer or architect will find.

o Pattern Languages of Program Design, ed. James O. Coplien, Douglas C. Schmidt,
(Addison-Wesley, 1995).

o Pattern Languages of Program Design 2, ed. John Vlissides, James O. Coplien, and
Norman L. Kerth, (Addison-Wesley, 1996).

* Pattern Languages of Program Design 3, ed. Robert Martin, Dirk Riehle and
Frank Buschmann (Addison-Wesley, 1997).

ADDITIONAL READING 371

14.1

CHAWPTTEHR 1 4

Business object models

14.1 Example: HashtableModel 372
14.2 Example: RDBMSModel 380
14.3 Summary 400

14.4 Additional reading 401

In the previous chapter, we talked about building a business object model; in this chap-
ter, we'll explore two potential implementations of it. The first, HashtableModel, is a
simple implementation using a standard Java java.util. Hashtable instance as the storage
mechanism for the business objects. The second, RDBMSModel, will be the more
familiar relational-database-back end approach.

EXAMPLE: HASHTABLEMODEL

The HashtableModel is a simple model, the usefulness of which is limited to proto-
types and those systems guaranteed to remain 24/7 for life. As its name implies, the
HashtableModel stores all business objects in a simple Java Hashtable, giving it very
fast response time at the expense of lacking any sort of persistent capability whatso-
ever. In other words, if the server goes down, all objects are lost. Despite its limita-
tions, it serves as a useful starting point for both data-access models as well as a
prototype model for working out the kinks in your Business Object Interface layer.
The HashtableModel is a prototyping and proof-of-concept model that stores
any objects created in local Hashtable instances. Because of its lack of persistent capa-
bility, it will be useful only during prototyping, early development, and early testing.
This doesn’t mean you should dismiss it out of hand. Because of its characteristics
(fast, temporary storage), a model that wishes to employ an optimization scheme could
use the HashtableModel as a caching system. The HashtableModel could be a most

372

recently used cache, moving the objects out of the cache down to persistent storage
as time and/or the optimization strategy permits.

HashtableModel is also the easiest to understand, since there is no mapping of
Java objects to persistent storage object representations. Because the Hashtable is the
persistent layer, no translation to the persistent layer (as we will see with RDBMS-
Model) is necessary. This in turn means that the HashtableModel can closely mimic
the model for the Business Objects layer, which may or may not be true for other models
requiring mapping or translation.

The code for HashtableModel can be found in HashtableModel.java.

14.11 Overview

The core of the HashtableModel comes from a collection of java.util. Hashtable
objects stored as private members of the class:

public class HashtableModel
implements IEmployeeModel

{
/I . . . De tails omitted for the moment
/I Internal members
private Hashtable m_persons = new Hashtable();
private Hashtable m_employees = new Hashtable();
private Hashtable m_managers = new Hashtable();
private Hashtable m_positions = new Hashtable();
private Hashtable m_departments = new Hashtable();
}

Observant readers will note a couple of curious points. First, there is no Hashtable for
the contact information types—IContactinfo , IPhone , IAddress , and IEMail
This is because in the HashtableModel, the IPerson /Hashtable type (called Hash-
tablePerson) itself can store these instances. Secondly, there are three Hashtable
instances for persons, employees, and managers. This means that a given IManager
type (called HashtableManager) must be stored in all three Hashtables—once as an
IPerson , once as an IEmployee , and once as an IManager . If managers must be
employees, and employees must be persons, couldn’t the system save a bit in execution
and omit some redundancy if only one Hashtable stored all three types?

The answer is complex. Yes, it would prevent a certain amount of redundancy.
Yes, this in turn would save execution time. However, grouping all three types under
one umbrella (as Persons) would make it more difficult to extract one as an Employee
or Manager. Consider that an operation such as findAllManagers involves the code and
would have to iterate over all Persons in m_persons , testing each one (via a successful
cast to an IManager or some other HashtableModel-specific method) to see if it were
an IManager type, and, if so, store it in the return array. What execution time is saved
by storing such in one Hashtable is now lost.

Before we delve too deeply into the HashtableModel class, let’s examine the
actual Hashtable types that the HashtableModel will be handing back to callers.

EXAMPLE: HASHTABLEMODEL 373

14.1.2

374

HashtablePerson, HashtableEmployee, HashtableManager

In the HashtableModel, we create one class for each of these types. Because every
employee is a person, and every manager is an employee, we use inheritance to help
maintain that relationship:

class HashtablePerson
implements |Person

{
. ..

}

class HashtableEmployee extends HashtablePerson
implements IEmployee

{
n. ..

}

class HashtableManager extends HashtableEmployee
implements IManager

{
In. ..

}

HashtablePerson holds no real mysteries. It holds one String member for each of the
four basic attributes of a Person—first name, middle name, last name, and SSN—as
well as a Vector! for contact information. Remember, in the Hashtable model, all
IContactInfo instances are stored directly within the Person instance itself, with
no “external” storage involved. This means the methods addAddress , addPhone ,
and addEMail add the created HashtableAddress, HashtablePhone, and Hashtable-
EMail instances directly to the HashtablePerson’s m_contactinfo ~ member.

Note that the HashtablePhone, HashtableEMail, and HashtableAddress classes do
not have constructors other than the no-arg version that sets all members to null. Hash-
tablePerson appears to have direct access to the members of these classes, and readers may
wonder why, after all the work I've undertaken to preserve encapsulation, I would
choose to break it here. The truth is that while encapsulation between layers is absolutely
necessary, encapsulation within a layer, especially within such tightly coupled classes as
those inside a data-access model, can be counterproductive. In truth, either method
(encapsulated or not) can be used within the model. HashtablePerson, Hashtable-
Employee, and HashtableManager all employ full encapsulation, while the rest of the
classes within the HashtableModel do not. Within this model, it makes little difference,
but inside of other models (most notably the RDBMSModel), this may change.

HashtableEmployee extends HashtablePerson, in order to reuse its implementation
of the methods that IEmployee inherits from IPerson . This is an implementation

' Normally, in a Java2-centric system, I would use the new Collections classes and APIs to do the object
storage and manipulation; however, because a large number of Java developers still seem somewhat un-
comfortable with the Collections API, I've used the “old” collection classes and APIs (Vector and Enu-
meration, specifically) in the implementation.

CHAPTER 14 BUSINESS OBJECT MODELS

decision only—if it made more sense to have HashtableEmployee define its own ver-
sion of these methods, it could do so without clients” knowledge. So long as Hash-
tableEmployee fully implements every method of IEmployee , clients’ requirements
are fully met.

HashtableEmployee stores a reference to the IPosition that this employee holds
as the internal member m_position . We could have stored it as a HashtablePosition
had we needed access to any special methods of HashtablePosition; because we don’t,
it makes no difference to store it as an IPosition or a HashtablePosition.

Also note a tiny bit of business logic inside the setSalary = method of
HashtableEmployee:

public void setSalary(int salary)
throws BusinessLayerException, lllegalSalaryException

{
if (salary > getPosition().getMaxSalary())
throw new lllegalSalaryException("Max salary is " +
getPosition().getMaxSalary());
m_salary = salary;
}

If the proposed salary is greater than the employee’s position allows, an lllegalSalary-
Exception is thrown. This a bit dangerous, since it means that this business logic will
need to be reimplemented in every model class we create. For only a few classes, and
just a little logic, this is manageable, but without careful monitoring, keeping track of
this across all classes could quickly spiral out of control. Should that happen, one
potential alternative is to create an abstract base class, AbstractEmployeeModel, which
contains no data-storage mechanism but simply implements just this business logic.
Model classes would then extend this AbstractEmployeeModel, calling up to its methods
wherever convenient. Another approach would be to make use of a Bridge pattern,
with the business logic in the Abstraction or RefinedAbstraction class, and the actual
implementation residing in the Concretelmplementor. If your system plans to make
use of multiple models, this is the better approach; it centralizes the business logic,
yet still allows the implementation to vary from model to model.

HashtableDepartment, HashtablePosition, and the various Hashtable implemen-
tations of the contact information classes are similarly coded.

14.1.3 HashtableModel: Creating objects

Creating objects within the HashtableModel (listing 14.1) is conceptually as simple
as calling new, storing the created object into the corresponding Hashtable within
HashtableModel, and returning the newly created object to the caller.

Listing 14.1 Code for creating object with HashtableModel

/**

* Create IPerson object
*/

EXAMPLE: HASHTABLEMODEL 375

public IPerson createPerson(
String firstName, String middleName, String lastName,
String ssn)
throws BusinessLayerException, DuplicateObjectException

{
if (m_persons.get(ssn) == null)
{
HashtablePerson person =
new HashtablePerson(firstName, middleName,
lastName, ssn);
m_persons.put(ssn, person);
return person;
}
else
{
throw new DuplicateObjectException();
}
}
/**

* Create |IEmployee object

*/

public IEmployee createEmployee(
String firstName, String lastName, String middleName,
String ssn, IPosition position, int salary)
throws BusinessLayerException, DuplicateObjectException

{
if (m_employees.get(ssn) == null &&
m_persons.get(ssn) == null)
{
HashtableEmployee employee =
new HashtableEmployee(firstName, lastName,
middleName, ssn, position, salary);
m_persons.put(ssn, employee);
m_employees.put(ssn, employee);
return employee;
}
else
{
throw new DuplicateObjectException();
}
}
/**

* Create IEmployee from IPerson
*/
public IEmployee createEmployee(IPerson person,
IPosition position, int salary)
throws BusinessLayerException, DuplicateObjectException

376 CHAPTER 14 BUSINESS OBJECT MODELS

if (m_employees.get(person.getSSN()) == null)

{
HashtableEmployee employee =
new HashtableEmployee(person.getFirstName(),
person.getLastName(),
person.getMiddleName(),
person.getSSN(), position, salary);
m_persons.remove(employee.getSSN());
m_persons.put(employee.getSSN(), employee);
m_employees.put(employee.getSSN(), employee);
return employee;
}
else
{
throw new DuplicateObjectException();
}

Let’s take these one at a time, although there’s nothing complicated in what’s going
on here. The createPerson method first verifies that no object already exists
within the m_persons Hashtable (to prevent duplication), then takes the first name,
middle name, last name and SSN fields, creates a new HashtablePerson object, and
stores it in m_persons before returning it.

The createEmployee method comes in two flavors, one taking an IPerson
object (make an Employee out of this Person), the other taking all of the Person and
Employee field data as parameters. In the version that takes all of the fields individu-
ally, if such an individual already exists in the m_persons array, it’s considered a
DuplicateObjectException. Why not simply take the Person in the m_persons array
and “promote” them to an Employee?

My reasoning is simple: if the Person should be promoted to an Employee, then
the client should be calling the second version of createEmployee (the one taking
an IPerson object as a parameter). If we were to allow the first version to “promote”
a Person found in the system already to an Employee, then there’s no reason to have
both versions of the method. Alternatively, if we were to strike the second method,
there would be no way of explicitly promoting Person objects to Employee objects.
In this particular system, nothing more than creating an Employee object where a
Person object once stood is required. However, more sophisticated systems may
require different processing (for example, removing the old Person object and replac-
ing it with the new Employee object, and so on). The same argument goes for the
createManager method.

The createDepartment and createPosition methods are straightfor-
ward. Merely create the appropriate HashtableModel object, place it within the appro-
priate Hashtable inside the HashtableModel, and return it to the caller.

EXAMPLE: HASHTABLEMODEL 377

14.1.4

378

HashtableModel: Finding objects

Once objects have been created, we need implementations that know how to find
particular ones or retrieve the entire set of objects from the model. The Hashtable-
Model will suffer most in this area, since the Hashtable implementation from Java
doesn’t allow for anything other than retrieval-by-key, or else iteration over the entire
set. This means that retrieving a set of objects (finding all Persons by last name, for
example) will require iteration over the entire set, returning only those which match
the criteria.

/**

* Query for all Persons by last name

*/

public IPerson[] findPersonsByLastName(String lastName)
throws BusinessLayerException

{
/I Filter out only those Persons with the given last
/I name
Vector tmp = new Vector();
for (Enumeratio n e = m_persons.elements();

e.hasMoreElements();)

{

IPerson person = (IPerson)e.nextElement();
if (person.getLastName().equals(lastName))
tmp.addElement(person);

}

/I Return the collection as an array of IPerson
IPerson[] retArray = null;

if (tmp.size() > 0)

{

retArray = new IPerson[tmp.size()];

for (int i=0; i<retArray.length; i++)
retArray[i] = (IPerson)tmp.elementAt(i);

return retArray;

}

else
return null;

}

The queries themselves should, as with everything else in the HashtableModel, be
straightforward and simple. For those methods looking to return all of some object, sim-
ple iteration over the contents of the corresponding Hashtable, copying the elements to
an array to return is enough. For those methods looking to apply some filter, we apply
the filter and add the current element only if the filter passes. The only method which
breaks this model (slightly) is findRootDepartment() , which returns immediately
as soon as it finds a Department object with no parent Department.

CHAPTER 14 BUSINESS OBJECT MODELS

14.1.5 HashtableModel: Removing objects

And, as you would expect, removing objects from the HashtableModel is as straight-
forward as it was to create them:

/**
* Remove a Person from the system
*/
public void removePerson(IPerson person)
throws BusinessLayerException,
IntegrityConstraintException,
UnknownObjectException
{
m_persons.remove(person.getSSN());

}

/**
* Remove an Employee from the system
*
/
public void removeEmployee(IEmployee employee)
throws BusinessLayerException,
IntegrityConstraintException,
UnknownObjectException

{
m_employees.remove(employee.getSSN());
m_persons.remove(employee.getSSN());
}
Because we're dealing with transient, in-memory storage systems only, removing an object
is as simple as calling the Hashtable.remove() method with the object in question.

Notice that there are no methods for creating, finding, or removing the Hash-
tableModel contact information classes; this is taken care of in the Person class (Con-
tactlnfo is associated directly with Person), so it is not necessary to create, find, or
remove here. This does not, however, force us in this implementation to create/find/
remove those objects in Person. In fact, thanks to the Business Object Interface layer,
we could do all creation, location and removal of those objects from within the Hash-
tableModel implementation itself.

14.1.6 Conclusion

As tempted as we might be to make use of the HashtableModel as a basic storage sys-
tem, HashtableModel suffers from serious flaws that prevent its use without restric-
tion. The key problem is its in-process design; because the Hashtable which stores all
the objects exists nowhere outside this process, it is inherently unshareable. Coupled
with the fact that HashtableModel lacks any form of communications capability,
HashtableModel doesn’t work well by itself.

If HashtableModel is intended as the central storage for a system, then it requires
the ability to communicate with other processes (or rather, the ability to allow other
processes to communicate with it). This implies the use of RMI, CORBA, or sockets

EXAMPLE: HASHTABLEMODEL 379

14.2

380

to permit such communication. This is easily accomplished, but requires more effort;
is it really worth it? Doing so would start to encroach on the basic aspects of a light-
weight RDBMS, such as InstantDB, or a pure Java RDBMS, like Cloudscape.

HashtableModel works well in conjunction with other models, such as the
RDBMSModel, as a cache or local object storage facility. For example, in a distributed
system with noncontinuous connectivity (perhaps a local client which uses a dial-up
connection to periodically update its local cache of data and send updates), local
changes can be stored into a HashtableModel. Upon update, the objects are pulled
from the HashtableModel and updated against the central model. Alternatively, when
coupled with Serialization, the HashtableModel can provide a simplistic import/
export facility. (Both ideas presume some sort of ability to shuffle objects from one
Model instance to another.)

ExXAMPLE: RDBMSMODEL

We'll now examine the RDBMSModel, the model likely to be in use most of the time.
As its name implies, this model is the one used to manipulate data stored in a rela-
tional database, using JDBC to do the actual communication to the RDBMS driver,
whatever that may be.

This approach will be the one most likely used for a variety of reasons:

* The data the application needs to use or have access to may already be stored, in
its own schema, within a relational database. The company isn’t interested in
migrating its data to another data-storage system. So, whether the IT department
likes it or not, it’s stuck with using an RDBMS.

* Even if the data the proposed application uses isn’t already stored within an
RDBMS, the company may have standardized its data-storage systems on a spe-
cific RDBMS vendor/platform. Again, the decision where to store the data is no
longer open to question—the data will be stored in the RDBMS selected.

* RDBMS systems have a wide variety of third-party tools available to ease in its
development and administration. Reporting tools like Crystal Reports make cre-
ating ad hoc reports simple. Database wizards such as those that come with
Microsoft Access make the prototyping and subsequent engineering of database
schema easier. And ODBC-like single-interface engines provide a certain measure
of portability across vendor systems to allow developers to learn one set of APIs
and have their code port across all platforms.

* Data warehousing has become the latest hot buzzword in the data-storage indus-
try. Building a data warehouse, a final repository for all of the company’s data, is
fast becoming an industrywide project. Because most data warehouses are built
on top of the relational model, and because many in-house projects work with,
around, or directly on top of the company’s data warehouse, it is convenient to
stick with the relational model for data storage.

CHAPTER 14 BUSINESS OBJECT MODELS

Fortunately, due to the vendor-independent nature of JDBC, any database system
can be used as the final storage system for the RDBMSModel, so long as we have a
JDBC driver for it.

14.21 RDBMSModel: Storing Business Objects in an RDBMS

The RDBMSModel inherently faces a clash of opposing forces: it attempts to mix a
relational-ordered view of the world and an object-ordered view. In effect, we are
mapping classes to tables, objects to rows, and object members to columns. If only it
were that easy.

This blending of the two, called an object-relational model, or an object-relational
mapping layer or model, leads to problems at both the design and the implementa-
tional levels. Because the model is neither all object-based, nor all relational-based,
trade-offs within each must be made with an eye toward the other. These compromises
can, in turn, lead to lesser performance or more awkward manipulation than a pure
model of either form would.

Numerous tools, both commercial and freeware, exist that attempt to automati-
cally take care of this object-to-relational mapping. Unfortunately, automated tools
cannot accommodate all necessary design forces in creating this object-relational map-
ping layer. For example, most automated tools assume that the database schema can
be modified to fit the object model, which is untrue more often than not. Worse,
many databases are deliberately denormalized for better performance, and asking an
automated tool to recognize the relationship between two tables that have no explicit
relationship is asking the impossible.

Instead, many of these object-relational layers must be created and coded by hand
by system designers and architects. In fact, as might be expected, numerous pattern
languages and papers talk directly about this topic: the “Crossing Chasms: A Pattern
Language for Object-RDBMS Integration” paper by Kyle Brown and Bruce G. White-
nack,? or the “Accessing Relational Databases” paper by Wolfgang Keller and Jens
Coldewey” are two examples.

Because designing and developing an object-relational layer is a subject that could
comprise an entire book in and of itself, 'm not going to spend a lot of time ratio-
nalizing or justifying the decisions I've made in the RDBMSModel here. Instead, I will
focus on the specific implementational needs of the model and leave the philosophical
design decisions to be discussed in other forums. The implementation here is not
intended as a one-size-fits-all design approach—no such silver bullet exists. Instead,
examine this code critically, deciding for yourself which parts work, and which do not.

2 Pattern Languages of Program Design 2 (ed. by John Vlissides, James O. Coplien, and Norman L. Kerth
(Addison-Wesley 1996), pp. 228-238

3 Pattern Languages of Program Design 3 (ed. by Robert Martin, Dirk Riehle, and Frank Buschmann
(Addison-Wesley 1997), pp. 313-343

ExAMPLE: RDBMSMODEL 381

14.2.2 Overview

The basic SQL schema can be found as a .SQL file on the publisher’s web site; it
defines nine tables—person, employee, manager, manager_employees, dept., position,
address, email, and phone. In this database, just about every class models into a stand-
alone table, using integers for primary keys on each table. I deliberately attempted to
keep the database as simple as possible. However, a few notes, about how the schema
matches up against the class model, are in order:

* The manager_employees table is a link table to tie together manager and
employee instances. We could have placed a foreign key in the employee table
linking against the manager table, but it’s possible that an employee could report
to more than one manager (the dotted-line on the organization chart). By model-
ing this relationship as a separate table, we allow for many-to-many relationships
between Managers and Employees.

* When I first began to work with this model, ContactInformation was a separate
table, and each of the derived class tables (address, email, and phone) held a for-
eign key to the corresponding row in contact_info. However, it became apparent
fairly quickly that this wasn’t going to work well from the object perspective—
the SQL to find all ContactInformation for a given Person started to get really
ugly. I chose instead to denormalize the Contactlnfo-Email/Address/Phone rela-
tionship, and propagate the description field to each individual table. Again, this
is the power of the Fagade; these decisions can be made and later changed with-
out having to break any client code.

* Database designers may take issue with the fact that I've defined an arbitrary
integer as my primary key, with no indexes or constraints using other columns to
prevent logical duplication. For example, nothing prevents me from having two
Person rows in the database with unique IDs, but identical SSNs. ’'m not arguing
that such indexes or constraints aren’t necessary; in fact, they are, and will be,
when using an object-relational layer in a system of even the smallest size or
complexity. I leave them out here just for simplicity’s sake.

* Good database performance tuners will immediately note the lack of any
indexes on these tables. This is a database-implementation issue that, if used,
will be well-shielded from the client; whether or not a column (or group of col-
umns) is indexed will be completely opaque to the user of RDBMSModel.
Again, remember, one of the advantages of encapsulating the database in this
manner is to allow for parallel development—database gurus can work on
database tuning and performance long after (or during) the development of the
client code.

Part of supporting the object-relational approach is supporting the database over-
head—things like establishing the database connection. Look briefly at some of the
helper methods in RDBMSModel that weren’t necessary in HashtableModel:

382 CHAPTER 14 BUSINESS OBJECT MODELS

public RDBMSModel(Connection conn)

{
s_connection = conn;
}
public static Connection getConnection()
{
return s_connection;
}

private static Connection s_connection = null;

The RDBMSModel constructor expects a JDBC java.sql.Connection object to be
passed in. This allows clients to decide precisely which database they wish to use for
storage and retrieval of these objects. It might be marginally easier for clients to use if
the knowledge of the database driver, username, and password were hard coded within
the RDBMSModel code, but doing so would limit the functionality of the RDBMS-
Model in a number of ways:

* No vendor-independence
As it stands, RDBMSModel will work with any JDBC-compliant database, from
Oracle to IDB. This allows RDBMSModel clients flexibility in determining
which database to use for storage.

o Single-instance restrictions
If RDBMSModel were to embed the database connection knowledge within itself,
clients would be unable to open multiple connections. As it stands, nothing pre-
vents a client from instantiating one RDBMSModel around a JDBC-ODBC con-
nection to an Access database on a network sharepoint, another RDBMSModel
around an Oracle JDBC driver to the corporate data warehouse, a third to a JDBC
IDB driver pointing to the local machine, and using all three when storing/retriev-
ing objects. This achieves a crude form of mirroring and fault-tolerance, assuming
the client takes care to preserve transactional semantics (only update when all three
can update, and so forth).

* Home-grown security model

Most database vendors implement user-level security permissions at either the
database-object or database-instance level. If database-connection semantics
were embedded within the application, this would prevent us from using the
database’s own security model for user-validation and permissions, and force us
to implement our own security/validation model. Why go to the extra effort,
when we can let the DBAs define who gets to see what, and just let the database
itself enforce i?

By requiring the java.sql.Connection object to be prebuilt, we force the client to
perform a relatively trivial task—create the appropriate JDBC driver, obtain the user’s
login and password, and connect to the database. This removes from RDBMSModel
the need to make these assumptions up front.

ExAMPLE: RDBMSMODEL 383

14.2.3

384

Ciritics will argue that this approach violates encapsulation. Clients need to know
something about the RDBMS in order to be able to use it, instead of being able to just
use IEmployeeModel methods without knowing or caring what it uses underneath.
To a certain degree, that’s true—at the time the RDBMSModel is constructed, a
java.sql.Connection object needs to be ready and waiting. However, I maintain that
whatever code (be it a Factory Method, Abstract Factory, or Singleton Pattern) already
knows that it wants to create an RDBMSModel. If this knowledge is already present
at that time, then obtaining a Connection object and passing it into the RDBMSModel
constructor is not violating encapsulation any more than it already was.

Once inside the RDBMSModel constructor, we store it in a static member and
create a public static method, getConnection , to retrieve it for use in the RDBMS
classes. A few paragraphs ago, I stated that I wanted to be able to use multiple
RDBMSModel instances. If I store the Connection instance in a static member, then
I can’t use multiple RDBMSModel instances, or the second constructor will over-
write the contents in the static member, losing the first’s Connection object. This
is done deliberately, to contrast the approach in HashtableModel (where the
HashtableDepartment contains a reference back to the HashtableModel with which
it is associated) with the Model of our object. Again, in a production system, this
reference to the RDBMSModel would need to be spread to each and every class in
the RDBMSModel system (since all of the classes need to get at the Connection for
this RDBMSModel).

This shared Connection object offers a few advantages as well as drawbacks.
Because we're using one Connection over and over again, we should see better per-
formance than if we were to open and close Connections each time we used one. This
also allows us to share transactional semantics across object/tables and method calls,
should we desire to do so.

RDBMSModel contains other helper methods that we will cover as we run across
them as we go over the RDBMSModel Business Object Interface-implementing classes.

RDBMSPerson, RDBMSEmployee, RDBMSManager
We start, as we did with HashtableModel, by looking at the Person/Employee/Manager

relationship. One of the preeminent drawbacks with a relational database system
comes from the fact that relational databases do not model object inheritance rela-
tionships well. There have been a number of patterns written specifically to address
this issue, mostly centering on the trade-off of purism versus performance. If we
model the relational schema in a purist fashion, each class is its own table, and
derived class tables hold foreign keys into base-class tables. However, this hurts per-
formance—each table must be joined with any parent class tables when retrieving a
derived type. The alternative is to model each derived class as its own table, but in
that instance, we're losing the commonality a base class is supposed to give us. For
example, unique constraints on one derived class table would not (without special
database programming) apply to other derived class tables.

CHAPTER 14 BUSINESS OBJECT MODELS

In this, admittedly simple, schema, each class receives its own table. I choose pur-
ism over performance because I can—I'm not concerned with performance of this
application. As with any production system, part of the test cycle must include per-
formance testing to determine if tuning or reengineering of the schema needs to hap-
pen. Because we’ve hidden the actual SQL from clients of this model, we can tune and
reengineer the database as much as desired without breaking (or even modifying the
semantics of) client code. Should this system suddenly have to support 100,000 con-
current users, modifications can be made to these classes (and others in this file), and
any existing applications would run flawlessly with the new changes without requiring
a line of code to be changed.

Now, let’s dive into the code. We'll start with RDBMSPerson. There’s a lot more
to the RDBMSPerson class than there was to the HashtablePerson class. This is
expected, since storing objects in relational databases requires much more work than
storing the in-memory object to a Hashtable:

class RDBMSPerson
implements |Person

RDBMSPerson(int personiD)

throws BusinessLayerException
{

try

{

/I Retrieve Person info by ID
Connectio n ¢ = RDBMSModel.getConnection();
Statement stmt = c.createStatement();
ResultSet rs = stmt.executeQuery(
"SELECT ID, f_name, m_name, |_name, ssn " +
"FROM person WHERE person.i d = " + personID);

if (rs.next())

{
m_id = rs.getint("ID");
m_firstName = rs.getString("f_name");
m_middleName = rs.getString("m_name");
m_lastName = rs.getString("l_name");
m_SSN = rs.getString("ssn");

else
throw new BusinessLayerException("Person ID " +
personl D + " not found");

}
catch (Exception ex)
{

ex.printStackTrace();

throw new BusinessLayerException(ex);

EXAMPLE: RDBMSMODEL 385

386

Note that the constructor expects an integer representing the Person’s primary key—the
PersonID field—so as to be able to load the data from the person table in the RDBMS.
We know that any constructor call that comes in on Person is a look-up, because if the
system wanted to create a Person, it would use the creational methods on the RDBMS-
Model implementation of the IEmployeeModel interface (covered later). In RDBMS-
Person, the m_id field is made package-friendly, so that others (such as RDBMSEmployee
and RDBMSManager, as well as RDBMSModel itself) can access, manipulate, and
work with this value. This is also the principal predicate for almost every SQL statement
in the class. Everywhere we want to retrieve, modify, or remote a Person from the rela-
tional database, we need to specify which one by the integer primary key.

public String getFirstName()
throws BusinessLayerException
{
return m_firstName;
}
public void setFirstName(String fName)
throws BusinessLayerException
{
m_firstName = fName;
commit();

}

The get /setLastName , get /setMiddleName , and get /setSSN methods all
look similar to the get /setFirstName methods, above. The get case is simple,
but notice that the set version not only traps the changed value into the local class
member of the same name, but calls the commit method:

public IContactinfo[] getContactinfo()
throws BusinessLayerException

{

Vector tempVector = new Vector();

try
{
/I First grab all Email instances
1
Connectio n ¢ = RDBMSModel.getConnection();
Statement stmt = c.createStatement();
ResultSet rs = stmt.executeQuery(
"SELECT ID " +

"FROM email WHERE person_id_f k = " + m_id);
while (rs.next())
{
int email_id = rs.getint("ID");
IEMai | e = new RDBMSEMail(email_id);
tempVector.addElement(e);
}
rs.close();

CHAPTER 14 BUSINESS OBJECT MODELS

/I Next grab all Phone instances
1
rs = stmt.executeQuery(
"SELECT ID " +
"FROM phone WHERE person_id_f k = " + m_id);

while (rs.next())

{
int phone_id = rs.getint("ID");
IPhon e p = new RDBMSPhone(phone_id);
tempVector.addElement(p);

}

rs.close();

/I Next grab all Address instances
1
rs = stmt.executeQuery(

"SELECT ID " +

"FROM address WHERE person_id_f k =" + m_id);
while (rs.next())
{
int addr_id = rs.getint("ID");
IAddres s a = new RDBMSAddress(addr_id);
tempVector.addElement(a);
}
rs.close();

/I Return the whole batch
IContactinfo[] retArray = new IContactinfo[tempVector.size()];
for (int i=0; i<retArray.length; i++)

retArray[i] = (IContactinfo)tempVector.elementAt(i);
return retArray;
}
catch (Exception Xx)
{
x.printStackTrace();
throw new BusinessLayerException(x);
}

}

Contact information becomes more complex with Person in the RDBMSModel,
because the relationship between Person and contact information is more explicitly
captured within the schema. Were this an object database, the contact information
related to this Person would simply be retrieved along with the Person object (regardless
of the efficiency of doing so). In an RDBMS, however, we must manage this ourselves.
In the above case, the contact information isn’t retrieved until it’s asked for by the
user—this is a lazy evaluation scheme, and may result in slower performance at the
time contact information is requested. The alternative, of course, is to retrieve the
information at the time the Person object is constructed, and store the results in a
Vector or similar Collection within the Person class. Again, this is where user feedback

ExAMPLE: RDBMSMODEL 387

388

can influence the implementation without changing dependents’ code—because client
code is written to the IPerson interface, and knows nothing about the actual RDBMS-
Person class, we can freely vary the implementation used without blinking an eye.

public void addEMail(String desc, String email)
throws BusinessLayerException
{
/I Create a new row in the email table
try
{
int emaillD =
RDBMSModel.nextDatabaselD("email");

Statement stmt =
RDBMSModel.getConnection().createStatement();
int result = stmt.executeUpdate(
"INSERT INTO email " +
"(ID, person_id_fk, description, email) " +
"VALUES " +
"(" + emaillD + ", " +
m_id + ", " +
"™ + desc + ", " +
"+ email + ")");
if (result < 1)
throw new BusinessLayerException(
"INSERT into database failed");
}

catch (Exception x)
{

x.printStackTrace();

throw new BusinessLayerException(x);
}

}
public void addAddress(String desc, String street, String city,

String state, String zip, String country)
throws BusinessLayerException

{
/I .. .snip ...

}

public void addPhone(String desc, String prefix,
String number, String suffix)
throws BusinessLayerException

{
/I .. .snip ...
}
Here, each of the add methods update the database immediately with the new
IContactinfo object’s data; alternatively, we might hang on to it until the user

wishes to commit it somehow. Not committing it immediately, however, runs the risk
of near-simultaneous modification of the same Person object, with each object
unaware of the other’s changes.

CHAPTER 14 BUSINESS OBJECT MODELS

public void removeContactinfo(IContactinfo contactinfo)
throws BusinessLayerException

{
try
{
/I Need to determine which Contactinfo instance this is;
/I only way to do that is to cast (or getClass())
String tableName = null;
int infolD = 0;
if (contactinfo instanceof RDBMSPhone)
{
RDBMSPhone phone = (RDBMSPhone)contactinfo;
tableName = "phone";
infolD = phone.m_id;
}
else if (contactinfo instanceof RDBMSEMail)
{
RDBMSEMail email = (RDBMSEMail)contactlnfo;
tableName = "email";
infolD = email.m_id;
}
else if (contactinfo instanceof RDBMSAddress)
{
RDBMSAddress addr = (RDBMSAddress)contactinfo;
tableName = "address";
infolD = addr.m_id;
}
else
{
/I We tried to remove an IContactinfo that doesn't
/I come from the RDBMSModel; throw an exception
throw new BusinessLayerException("Not an RDBMSModel" +
" Contactinfo instance : " + contactinfo.toString());
}
Statement stmt =
RDBMSModel.getConnection().createStatement();
int result = stmt.executeUpdate(
"DELETE FROM " + tableNam e + " " +
"WHERE D = " + infolD);
if (result < 1)
throw new BusinessLayerException(
"DELETE from database failed");
}
catch (Exception Xx)
{
x.printStackTrace();
throw new BusinessLayerException(x);
}
}

ExAMPLE: RDBMSMODEL 389

390

Removing contact information is a bit trickier, since we need to determine precisely
what kind of IContactinfo object (Email, Address, or Phone) we need to remove
from the RDBMS, but from there it’s a simple “DELETE statement in SQL.

/I Internal methods
1
private void commit()
throws BusinessLayerException

{
try
{
Connectio n ¢ = RDBMSModel.getConnection();
Statement stmt = c.createStatement();
int result = stmt.executeUpdate(
"UPDATE person SET f name=" + m_firstName + ", " +
"m_name=""+ m_middleName + ", " +
"_name="" + m_lastName + ", " +
"ssn=""+ m_SSN + ™ " +
"WHERE id = " + m_id);
}
catch (Exception ex)
{
ex.printStackTrace();
throw new BusinessLayerException(ex);
}
}

And commit , of course, takes the current values of the internal members (the locally
cached values retrieved from the database) and stores them to the RDBMS using the
usual SQL UPDATEstatement.

/I Internal members
int m_id;
private String m_firstName;
private String m_middleName;
private String m_lastName;
private String m_SSN;

} /I RDBMSPerson

One last interesting tidbit about the RDBMSPerson class shows up in the add-
Phone() method:

String toDBNumber = RDBMSModel.PhoneToDB(number);

One of the principal concerns regarding any data-storage effort is ensuring that the
data is stored in a consistent format. Consider the standard U.S. phone number; typi-
cally we assume a ten-digit numeric field for number storage (area code, three digits,
prefix, three digits, suffix, four digits). Unfortunately, this doesn’t cover all possible
U.S. phone numbers, as many companies use 1-800 numbers with alphanumeric
symbols instead of purely numeric. Consider also the separator character used to set

CHAPTER 14 BUSINESS OBJECT MODELS

area code apart from the prefix and suffix—some databases use the dash (-) character,
others use a slash (/). Still others use parentheses around the area code and a dash sepa-
rating the prefix and suffix (as in (800) 555-1212). With so many different ways of
representing a phone number, standardizing its database representation is crucial to
allow for any sort of search-by-phone or search-within-area-code functionality.

In this system, we pass any input from the client to several RDBMSModel static
methods to do the necessary formatting; in the addPhone() method of Person, we
call RDBMSModel.PhoneToDB() to translate the String the client has handed us
into the appropriate database representation before storing it. We reverse the process
in the RDBMSPhone code, shown later.

We could, of course, embed this logic directly within the RDBMSPerson class,
and the reverse logic within the RDBMSPhone, instead of within RDBMSModel. This
approach suffers for two reasons.

First, if the database representation of the phone number needs to change (per-
haps we’re adding support for international numbers in a future release), then any
code which retrieves, uses, or stores a phone number also needs to be updated. If the
code that does this massaging is scattered across several places, then we need to ensure
(usually through trial-and-error, testing it each time it’s thought the update is finished)
that each place gets updated appropriately. This is time-consuming and error-prone—
if all of the code resides in a single place, programmers need only go to one place to
find out what needs to be updated.

Secondly, having these sorts of business rules centralized makes it easier to under-
stand all of the rules relating to how the data is stored within the database. This in turn
makes migration to another database or, more likely, performance tuning within the
database schema simpler. If clients are calling a central routine to format input into a
common phone-number storage format, changing the code to use a database stored
procedure instead of doing it in Java code requires no client changes.

This doesn’t mean that this formatting code has to exist inside the RDBMSModel
class; in fact, good arguments can be made that these sorts of rules should exist as a
stand-alone class or interface (possibly RDBMSModelRules). For this example, how-
ever, these rules are simple enough to be wrapped in with the RDBMSModel itself.

RDBMSEmployee, RDBMSManager, RDBMSPosition, RDBMSDepartment, and
the RDBMS contact information classes all follow a similar model; see the source code
available on the publisher's web site for the EmployeeModel for the details.

14.2.4 RDBMSModel: Creating objects

Creating objects in the RDBMSModel is a two-step process—first, the appropriate
row(s) in the appropriate table(s) are created within the database. If that succeeds
(indicating that an object by that name or key doesn’t already exist), then an appro-
priate in-memory Java object is created, assigned the ID used to create the row, and
returned to the client. The following code shows the details involved in creating a
new Position object:

ExAMPLE: RDBMSMODEL 391

392

/**

* Create |Position object

*/

public IPosition createPosition(
String title, String desc, int minSalary, int maxSalary)
throws BusinessLayerException, DuplicateObjectException

try
{

int posID = nextDatabaselD("position");

Statement stmt = getConnection().createStatement();
int result = stmt.executeUpdate(
"INSERT INTO position " +
"VALUES (" +
posiD + ", " +
"+ title + M, M+
""" + desc + ", " +
minSalary + ", " +
maxSalary + ", " +

"))

if (result > 0)
return new RDBMSPosition(posID);
else
throw new BusinessLayerException(
"Invalid database state; can't insert");

}
catch (SQLException ex)

{

throw new BusinessLayerException(ex);

}
}

Because this schema uses an integer-based primary key approach, we need to generate
a sequential counter to produce unique IDs each time a new RDBMSPosition object
wishes to be created. Under some database systems, this can be accomplished directly
within SQL, such as Oracle’s SEQUENCE types or Access’s Autolncrement columns.
However, under other databases, this counter must be managed by hand on the part
of the programmer.

Because of this inherent lack of portability, RDBMSModel provides the next-
DatabaselD() method, which takes the name of the table and returns the next
unique ID to use in creating a new row in the table. Again, this is to localize the
RDBMS-management code within a single place. However, there is another danger
that developers implementing a scheme such as this need to recognize. The basic for-
mat of the nextDatabaselD() method, as implemented within RDBMSModel,
uses a SQL “SELECT statement to retrieve the highest-numbered ID within the given
table, increments it, and hands it back:

CHAPTER 14 BUSINESS OBJECT MODELS

static int nextDatabaselD(String tableName)
throws BusinessLayerException

{
try
{
/I Retrieve the ID
int dblID = O;
Statement stmt = getConnection().createStatement();
ResultSet rs = stmt.executeQuery(
"SELECT MAX(id) FROM " + tableName);
if (rs.next())
dbID = rs.getint("MAX(id)");
else
return 1;
/I Increment it and return it
return ++dblD;
}
catch(SQLException ex)
{
throw new BusinessLayerException(ex);
}
}

There is an inherent danger in this approach. In between the “SELECT and the
“INSERT” (which takes place in the appropriate create method of RDBMSModel), a
new record may be inserted with that same ID before this object’s insert can take
place. This leads to a primary key violation and no small amount of confusion on the
part of the user. In a single-user system, this is a nonissue, since a single user will find
it almost impossible to insert the same type record simultaneously, but for a multiuser
system, simultaneous inserts, updates, or removals are common.

At first, it might seem that the problem solves itself if the creation methods are
marked synchronized, disallowing multiple threads to enter the method until the
thread currently in the method exits. Unfortunately, this only carries through the cur-
rent JVM—ausers on different machines or in different JVMs will be freely able to enter
the creation method at the same time another user is doing the same. Under these cir-
cumstances, one of three options is available:

* Implement a cross-JVM synchronization system, either by making use of a
socket-based synchronization construct or a native-code construct, that disallows
multiple users from entering the “protected” method

* Use database facilities to prevent this sort of simultaneous access, such as table or
row locking

* Create a table in the database to perform this sort of tracking and implement the
locking mechanism by hand in the database

None of these is particularly attractive, but the second is by far the most prefer-
able. Of course, if none of the three works for a given situation, it’s always possible

ExAMPLE: RDBMSMODEL 393

14.2.5

394

to move away completely from the integer primary key approach and move to a data-
column primary key approach. (In this system, Persons would be uniquely identified
by SSN, Departments by name, Positions by name, and so on.) Moving to a data-col-
umn primary key removes the need to generate unique IDs for each row, but makes
foreign keys that much more difficult to use.

RDBMSModel: Finding objects

The power of a relational database lies in its ability to find objects stored therein.
Because SQL specifies only what you’re interested in, not how to find it, RDBMS ven-
dors are free to take whatever steps are necessary to efficiently retrieve a single needle
from the entire million row haystack.

Because the SQL involved in this model is relatively simple, I won’t go over each
and every find... method implemented in the RDBMSModel; all follow the same
basic format:

class RDBMSModel
implements IEmployeeModel

In. ..

/**
* Query for all Managers
*/
public IManager[] findAlIManagers()
throws BusinessLayerException
{
try
{

Statement stmt = getConnection().createStatement();
ResultSet rs = stmt.executeQuery(
"SELECT manager.ID FROM manager");

Vector tempVector = new Vector();

while (rs.next())

{

int mgrID = rs.getint("manager.ID");

IManage r e = new RDBMSManager(mgriD);
tempVector.addElement(e);

}

/I Copy over from the Vector to the array to return
IManager retArray[] = new RDBMSManager[tempVector.size()];
for (int i=0; i<tempVector.size(); i++)

retArray[i] = (IManager)tempVector.elementAt(i);

return retArray;

}
catch (SQLException x)

CHAPTER 14 BUSINESS OBJECT MODELS

x.printStackTrace();
throw new BusinessLayerException(x);

}

This is basic JDBC—issue a SELECT statement, walk through the ResultSet. Where
this approach differs slightly from traditional JDBC code is in the creation of the
RDBMSManager (in this case) instance, which in turn retrieves the appropriate data
from the row given by the primary key integer in mgrID. Each RDBMSManager
instance is added to a temporary Vector object, which is then transformed into an
array of IManager references before being returned.

Implementors concerned about performance (and memory footprint, if these
objects grow to be of hefty size) can optimize this without having to change the above
code one bit. The RDBMSManager (or whatever) class constructor, instead of retrieving
the data immediately, can use lazy evaluation and simply store the ID internally. Then,
when actually asked for its data, it calls out to the database for the data requested
(either all the data at once, or pieces thereof, whichever makes more sense).

14.2.6 RDBMSModel: Removing objects

Removing elements from a relational database is almost as easy as finding them, with
one exception. Because most relational database systems enforce referential integrity
(to some degree), rows must be removed from the table in leaf-first order. That
means, in our system, that removing a Person instance from the system requires first
removal of that Person instance’s contact information rows:

class RDBMSPerson
implements IPerson

n. ..

/**

* Remove a Person from the system
*/

public void removePerson(IPerson person)

throws BusinessLayerException, IntegrityConstraintException,
UnknownObjectException

try
{
/I First remove all contact information associated with
/I this Person; if we don't delete these first,
/I referential integrity will prevent us from removing
/I their corresponding 'person' row
Statement stmt = getConnection().createStatement();
int result = stmt.executeUpdate(
"DELETE FROM email " +
"WHERE email.person_id_f k =" + person.m_ID);

EXAMPLE: RDBMSMODEL 395

396

stmt.close();

stmt = getConnection().createStatement();
result = stmt.executeUpdate(

"DELETE FROM phone " +

"WHERE phone.person_id_f k =" + person.m_ID);
stmt.close();

stmt = getConnection().createStatement();
result = stmt.executeUpdate(
"DELETE FROM address " +
"WHERE address.person_id_f k =" + person.m_ID);

/I Now we can remove the Person row itself
stmt = getConnection().createStatement();
result = stmt.executeUpdate(

"DELETE FROM person " +

"WHERE person.I D = " + person.m_ID);

if (result < 1)
throw new UnknownObjectException();

}
catch (SQLException x)
{
x.printStackTrace();
throw new BusinessLayerException(x);
}

}

Notice that we don’t particularly care how many email, address, or phone rows we
remove. Persons can have 0 to 7 of any of these, so a DELETEstatement that modifies
0 rows is nothing exceptional.

Employees and Managers have the same problem, due to their inheritance rela-
tionship with Person and Employee (respectively):

class RDBMSPerson
implements |Person

n. ..
/**

* Remove an Employee from the system

*

/
public void removeEmployee(IEmployee employee)

throws BusinessLayerException, IntegrityConstraintException,
UnknownObjectException

try
{
Statement stmt = getConnection().createStatement();
int result = stmt.executeUpdate(
"DELETE FROM employee " +
"WHERE employee.l D = " + employee.m_ID);

CHAPTER 14 BUSINESS OBJECT MODELS

if (result < 1)
throw new UnknownObjectException();

removePerson(employee);

}
catch (SQLException x)
{ x.printStackTrace();
throw new BusinessLayerException(x);
}
}
/~k~k

* Remove a Manager from the system
*/
public void removeManager(IManager manager)
throws BusinessLayerException, IntegrityConstraintException,
UnknownObjectException

{
try
{
Statement stmt = getConnection().createStatement();
int result = stmt.executeUpdate(
"DELETE FROM manager " +
"WHERE manager.l D = " + manager.m_ID);
if (result < 1)
throw new UnknownObjectException();
removeEmployee(manager);
}
catch (SQLException x)
{
x.printStackTrace();
throw new BusinessLayerException(x);
}
}

}

Because the leaf, in the case of inheritance/foreign-key relationships, is the derived
class, the derived class (the Employee or the Manager) is deleted first, then the corre-
sponding base-class method (removePerson or removeEmployee) is called to
remove the base-class row.

Other removal operations on RDBMSModel (removeDepartment and remove-
Position) are straightforward enough not to merit special discussion; see the code
for details.

14.2.7 Conclusion

On the whole, the RDBMSModel above is useful precisely as intended—as an exam-
ple of the object-relational mapping layer—and not much more. To begin with,
numerous chances for data corruption abound throughout the code due to the lack of

ExAMPLE: RDBMSMODEL 397

398

transaction support. For example, in the removeManager method, if the DELETE
statement within removeManager succeeds but the removeEmployee call fails,
the Manager row is still gone with no hope for retrieval. Transaction support within
an RDBMS model is critical for robust data storage; fortunately, it is not difficult to
add using JDBC:

class RDBMSPerson
implements |Person

{
n. ..
/**
* Remove a Position from the system, with transaction support
* (not found in sample code)
*/
public void removePosition(IPosition position)
throws BusinessLayerException, IntegrityConstraintException,
UnknownObjectException
{
try
{
getConnection().setAutoCommit(false);
Statement stmt = getConnection().createStatement();
int result = stmt.executeUpdate(
"DELETE FROM position " +
"WHERE position.| D =" + position.m_ID);
if (result < 1)
throw new UnknownObjectException();
getConnection().commit();
}
catch (SQLException x)
{
x.printStackTrace();
getConnection().rollback();
throw new BusinessLayerException(x);
}
}
}

Unfortunately, the JDBC Connection class doesn’t inherently permit the notion of
nested transactions, which would be required to fully support the manager-employee-
person three-step removal process. In that case, transactions must be opened directly
using SQL, or by providing special methods knowing when to call commit on the
Connection object:

class RDBMSPerson
implements [Person

. ..

CHAPTER 14 BUSINESS OBJECT MODELS

/**
* Remove an Employee from the system
*/
public void removeEmployee(IEmployee employee)
throws BusinessLayerException, IntegrityConstraintException,
UnknownObjectException

{

try

{
removeEmployeeNoCommit(employee);
getConnection().commit();

}

catch (BusinessLayerException ex)

{
getConnection().rollback();
throw ex;

}

catch (IntegrityConstraintsException ex2)

{
getConnection().rollback();
throw ex2;

}

catch (UnknownObjectException ex3)

{
getConnection().rollback();
throw ex3;

}

}

private void removeEmployeeNoCommit(IEmployee employee)
throws BusinessLayerException, IntegrityConstraintException,
UnknownObjectException

{
try
{
Statement stmt = getConnection().createStatement();
int result = stmt.executeUpdate(
"DELETE FROM employee " +
"WHERE employee.l D = " + employee.m_ID);
if (result < 1)
throw new UnknownObjectException();
removePersonNoCommit(employee);
}
catch (SQLException x)
{
x.printStackTrace();
throw new BusinessLayerException(x);
}
}

ExAMPLE: RDBMSMODEL 399

14.3

400

In the above sequence, if the user calls removeEmployee , it in turn calls into a
private method, removeEmployeeNoCommit , which executes the actual DELETE
The removeEmployeeNoCommit method then calls into removePersonNo-
Commit, which removes the Person (and all contact info) rows without calling
Connection.commit . If everything returns successfully, removeEmployee calls
commit on the shared Connection object, and the transaction is committed. Simi-
larly, removeManager would call removeEmployeeNoCommit , which in turn
calls removePersonNoCommit , and so on.

The other option would be to handle the commit logic directly within SQL, but
that lies outside the JDBC APT itself. Consult your local SQL guru and database vendor
documentation for more details.

SUMMARY

Notice how the encapsulation of the actual storage mechanism behind the Business
Object layer allows us to mix-and-match the actual implementation without modifying
the client code—if you run the OrgTree example from the last chapter, for example,
you can use either the HashtableModel or the RDBMSModel without changing a line
of code.* This in turn means that underlying systems can be modified without
requiring significant rewrite to existing applications. Should the enterprise decide to
go with an OODBMS to replace the conventional RDBMS, for example, we only need
pass in an OODBMSModel in place of the RDBMSModel currently in use.

This interface-based approach is not unique to business object models, however.
Sun uses it extensively throughout most of the new Enterprise technologies within
Java—]JDBC and JNDI are just two of the more obvious examples. If you look carefully
at the JDBC API, for example, the key classes (ResultSet, Statement, Connection,
ResultSetMetaData) are all interfaces that the driver-developer must implement.
Then, when your code calls DriverManager.getConnection , the driver returns
its own class, which implements the Connection API. When your code calls create-
Statement on that Connection, you get back a Statement-implementing object.
Nothing prevents the driver-developer from handing back the same object in both situ-
ations—it may be a lightweight driver that only allows a single Statement at a time.
Instead, you, as the user of the JDBC driver, only know that the object returned to you
is guaranteed to implement the Connection or Statement or ResultSet APIs. Realisti-
cally, that’s all you really care about.

There are drawbacks, however. Well-encapsulated systems also reduce visibility
within them, leaving developers that use the systems out in the cold regarding their
internal details. This can be viewed as both a positive and a negative force. Having

4 Technically, that’s not true—we need to get the actual IEmployeeModel -implementing instance
from somewhere, and that usually means a special method or something similar to construct it. Beyond
that, however, no other code requires modification.

CHAPTER 14 BUSINESS OBJECT MODELS

well-encapsulated systems means outside developers can’t use knowledge of the sys-
tems’ internals to break future compatibility, but it also means debugging the system
(or, more accurately, the outside developer’s interaction with the system) is much
more difficult. Systems which expose their internals are easier to abuse by outside
developers, but also greatly reduce the future development-with-backward-compati-
bility of the system as a whole.

In a perfect world, where no software has bugs, complete encapsulation would be
an out-and-out winner. Balancing the needs of developers to debug their products (in
the face of potential bugs from vendors’ products) against our needs to insulate devel-
opers from internal details is a fine art. Each organization will need to weigh in very
carefully on where they draw the line.

14.4 ADDITIONAL READING

* Desmond D’Souza and Alan Cameron Wills, Object, Components, and Frameworks
with UML (Addison-Wesley, 1999).

This is a great book for any developer involved at the design or analysis level,
with clear focus on building shared business models, as well as providing a gener-
alized approach to developing software that meets (or exceeds) client needs. It’s
not a lightweight book, by any means, weighing in at just under 700 pages (not
counting appendices, index, or glossary), but it’s possibly one of the best books
any developer or architect will find.

* James O. Coplien, Douglas C. Schmidt, Pastern Languages of Program Design
(Addison-Wesley, 1995).

* John Vlissides, James O. Coplien, Norman L. Kerth, Pattern Languages of Program
Design 2 (Addison-Wesley, 1996).

* Robert Martin, Dirk Riehle, Frank Buschmann, Pastern Languages of Program
Design 3 (Addison-Wesley, 1997).

ADDITIONAL READING 401

15.1

Middleware

15.1 Why distribute? 402

15.2 Distributed object design vs. classic object design 406
15.3 Technologies 410

15.4 Employee middleware models 448

15.5 Additional reading 461

Like most buzzwords, middleware takes on different meanings depending upon the
speaker, the audience, or the medium. Fundamentally, middleware, as I use the term,
is the means by which two objects, functions, or processes communicate with one
another. This includes such technologies as RMI, CORBA, JMS, even the ubiquitous
BSD sockets. Some, like sockets, operate at a low level, providing the very basics of
communication and nothing else; others, such as CORBA, carry significantly higher
overhead but make the development of distributed object systems substantially easier.
As with everything else in software development, making the right middleware choice
means understanding the trade-offs.

WHY DISTRIBUTE?

It’s a given that distributed object systems are somehow better than nondistributed
versions. Ask any software developer about the advantages of a distributed system versus
a nondistributed one; almost every one will say that the distributed version is better,
but the exact reasons why may be a little fuzzy.

Principally, the decision to distribute an object system is made for one (or more)
of four reasons: communication, performance, economics, reliability.

402

15.1.1

Communication

One of the most basic reasons to distribute an object system is that of simple commu-
nication: it’s nearly a requirement of modern enterprise systems that they be able to
communicate across a network with other systems in other rooms, buildings, or even
continents. This means that, at a minimum, systems need to be able to share data,
either in a traditional client/server mode, or in a more modern object-based approach.

Once we get beyond the need to share data, however, what more communication
is really necessary? For about ten years, before the advent of Java and the parallel develop-
ment of CORBA or COM/DCOM, developers quite happily pulled data across a net-
work using database protocols such as ODBC or its ancestors (Oracle’s OCI, for example).
No object-complexity, just issue an SQL statement, bind the result columns to local
variables, and pull the data back. If we needed communication with systems other
than databases, we did what we’ve been doing on the Internet for about twenty years
now—open a socket, send a request, get a response, continue until we’re finished.
Why the need for distributed object communication?

Partly, the reason stems from the gradual shift in system architecture and design,
from procedural designs, to more object-centric ones.! For many years before the devel-
opment of object-centric distributed systems, developers struggled to marry distributed
systems like the OSF’s Distributed Computing Environment (DCE) remote procedure
call (RPC) system to object-centric languages and environments # /z C++. Usually, it
wasn’t a happy marriage, with even the slightest change on one side causing major
heartache and maintenance on the other. It was natural that developers would begin to
look for object-centric solutions in their distribution technologies in order to minimize
the marriage pains between the local object model and the distribution mechanics.

Partly, we want to be able to expose more and more aspects of the hardware sys-
tems across the network to any other system across the network. Consider the intranet/
network most businesses have in place with regard to printing needs. Without a funda-
mental communications layer, being able to share printers would be impossible. To
print a document, one would have to save the document to disk, walk the disk over
to the machine to which the printer was connected, access the document using the
program that created it, and print it. We ignore, for purposes of simplicity, the sticky
situation one runs into in this sneakernet situation if the document in question is larger
than the size of a floppy disk. Distributed object systems make it possible for clients all
across the network to access resources on other systems without having to resort to
physical means of access. If the print server is down the hall, it’s a simple matter to walk
the document to the print server; if it happens to be in Bangladesh, most Americans
are just plain out of luck.

! Object-centric systems use objects as some part of their architecture. The difference is one of C++ versus
Visual Basic.

WHY DISTRIBUTE? 403

15.1.2

404

Partly, however, the need to communicate across systems grows as we begin to
rethink our fundamental distributed designs. Before, when communication was rudi-
mentary and simple, communication needs were similarly simple and unsophisticated.
Before long, however, business needs began to demand that we integrate a variety of
databases together into a single, virtual database system. Sales data comes from the Sales
database, Inventory comes from the Inventory database, but we still want to integrate
the two into a unified whole. This requires more sophisticated communication than
can be accomplished by simple sockets; more sophistication in turn means more chances
to break things, if the complexity isn’t buried inside of a communication/distribution
technology layer.

Performance

Consider a hypothetical business system which requires the CPU to perform calcula-
tion of prime numbers. Where will these calculations be more quickly computed—
on your Pentium-11/233 client workstation, or on a quad-processor 1IGB-RAM 16GB
RAID-array Pentium-II1/450? It should be obvious that the higher computing power
on the second machine would lead to faster computation, but there’s a huge mone-
tary cost to putting Pentium-III high-end servers on each individual’s desk.

Now, consider the classic client/server model applied to the calculation of prime
numbers; if a client wants a particular prime number, instead of calculating it locally,
it instead passes the necessary parameter information over a socket to the server, which
processes the request and returns the result. The advantages of this approach are:

e CPU power
The server is likely to be several times more powerful than the client making the
request, meaning that the result will likely be computed that much faster.

* Caching

Because the server is a single entity, and requests coming to it may be duplicates
from previous clients, the server can spend the necessary resources to keep a
cache of most-recently used prime numbers. (For a prime number server, it may
even precalculate all prime numbers up to some reasonable number, and only
calculate primes for any that fall outside of that range.) For a client that may only
request three or four numbers per run, this sort of cache would be intolerable. For
a server, answering up to hundreds of client requests per hour/minute/second/
whatever, the cache is far more justifiable.

o Centralized scalability
If the demands on the system grow (say each client now needs to calculate a hun-
dred prime numbers per run, instead of the three or four initially required), the
p p y req
centralized server can be upgraded to more powerful hardware, with no loss of
performance to the clients. This is a far simpler task than upgrading every com-
puter system across the client’s userbase.

CHAPTER 15 MIDDLEWARE

15.1.3

On top of this, what begins to happen if we introduce a clustered environment
into the local network? If you’re sitting in the office, stand up for a moment and walk
around; notice how many CPUs are currently sitting idle. If you think that the Sales
department is even making use of 5 percent of the total CPU power during the day,
you're in for a rude shock. The fact is, billions upon billions of CPU clock cycles are
wasted every day, just idling, waiting for user input.

What if we could harness all that idle power? The concept isn’t new, nor is it a
particularly foreign one. Symantec, for example, introduced a distributed make system
in its Symantec C++ product several years ago. More recently, as part of the movement
to break the most recent 128-bit security key, several developers created a Windows
screen saver that, when the screen saver kicked in, would download a snippet of the
key to attempt a brute-force crack. Because screen savers only kick in during the CPU’s
idle moments, the impact of the idle-time processing is minimized to the user, and the
idle CPU cycles aren’t lost.

Consider what an enterprisewide version of that could accomplish. Imagine we
create a distributed job system, using some of the dynamic ClassLoading techniques
described in chapter 2, to farm work out to the various idle CPUs in the company.
Since most business systems also have a common file-sharing area, we could create a
distributed make system, with each CPU building a separate file, or we could automate
the distribution of files to client systems by farming out a copy-file-to-here job to each
machine. In short, if we have 100 machines, each running at 200 MHz, we can create
a 20,000 MHz supercomputer by placing a simple clustering server on each one.

Economics (clustering/fault-tolerance)

Since we’re talking about the notion of clustering a number of systems, let’s examine
the economics of doing so. Presuming we have the 100 machines at 200 MHz in the
previous section, what would be the cost of purchasing a single 20,000 MHz super-
computer, assuming such a machine could even be bought? Easily far more than the
cost of a hundred machines at approximately $1,500 apiece ($150,000).

Furthermore, consider the cost of maintenance and parts for the above machine.
Something that high-powered has to be backed by service agreements and specialized
parts (not to mention the liquid-oxygen-cooled room it has to sit in, lest it sponta-
neously combust from all the heat generated). Finding qualified personnel to admin-
ister it and service it can also be an expensive proposition. Compare this with the
costs of finding a PC-qualified technician and buying off-the-shelf PC parts. In some
cases, if a part goes bad, the corporation can simply throw it away and spend $50
on a new one.

This, of course, assumes that the two approaches (the single-server and the dis-
tributed-cluster) produce equal performance, and that’s not always a safe assumption.
In many cases, a well-designed distributed object system can outperform an equiva-
lently powered single-server system, since it can more effectively “parallelize” portions
of the client’s request. The one area where the single-server system will constantly

WHY DISTRIBUTE? 405

15.14

15.2

15.2.1

406

outperform the distributed version will be in I/O-tight operations, where the overhead
of sending data across the network will outweigh the gains of a distributed approach.

Reliability (clustering/load-balancing)

Going back to our distributed-cluster versus single-server comparison, consider the
necessary downtime in both environments. Assuming that a given system has a 1 per-
cent downtime, which is actually quite reasonable for many systems, it means that
users will experience complete shutdown 1 percent of the time. For a data center
looking to achieve five-nines (99.999%) uptime, this is obviously not an acceptable
situation. Even if the machine has a 0.1 percent downtime, we're still not reaching
99.999 percent uptime.

Assume, in contrast, that a standard PC has a 5 percent downtime. This means
that in a 100-machine cluster, five machines will be down at all times. The difference?
Users won’t experience any complete shutdown—instead of the single server’s all-or-
nothing approach, the distributed-cluster system simply adjusts by moving the load
out to the other machines. If the administrators notice that they’re experiencing unac-
ceptable loads on the 100-machine cluster because five machines are constantly down,
they can add five more machines to pick up the slack without major expense, in either
time or money.

DISTRIBUTED OBJECT DESIGN VS.
CLASSIC OBJECT DESIGN

Adding distribution into an object system is not as simple as making objects able to
communicate with another process or object within another process. Any time com-
munication takes place between two processes, a certain amount of overhead is
required. If this overhead is negligently ignored during the design phase, the resulting
system will fail to scale as more and more users are added.

This danger becomes particularly pronounced with RMI and/or CORBA distrib-
uted object systems; the ease with which RMI and/or CORBA make it possible to call
other objects across the software bus can lead developers down a dark and dangerous
path, where hundreds, if not thousands, of objects are exported for client calls. This
in turn bogs the server down; more and more objects are created, exported, and sit idle
while clients mull over their options in front of their own local displays, and devel-
opers are called to the carpet to explain why the system runs so painfully slow. Unfor-
tunately, developers don’t understand—it ran fine when they tested it....

Stateful vs. stateless

The core problem with distributed object designs is that objects, by nature, tend to be
stateful beasts. For example, look at an instance of the JDBC Connection class. At any
given moment, it has an inherent state that affects whether it can or cannot complete
certain operations. For example, if the Connection is already connected to a given
database, calling close closes the connection; under the condition where it isn’t

CHAPTER 15 MIDDLEWARE

connected, close should do nothing. Attempting to obtain a Statement instance
when the Connection is closed yields an error or a null Statement, whereas attempt-
ing the same thing with an open Connection yields a good Statement handle. In
short, the Connection instance maintains a state that can be affected by client
actions, and can in turn affect its behavior during client requests.

As an opposite example, consider the classic HTTP connection—the client makes
a request, the server fulfills it, sends the response, and the client disconnects. The
server maintains no state on behalf of the client, and the client maintains no state on
behalf of the server.? The principal benefit of this approach is that the HTTP server
is now free to dedicate the socket resource, just recently used on behalf of the old cli-
ent, toward answering the request of a new client.

Think of it this way.? Years ago, when visiting the local bank, each bank teller sta-
tion would have its own line, and as a bank patron, you would have to pick a line to
stand in. If you happened to know the tellers, you might know that the one on the
right was an experienced, efficient teller, as opposed to the one on the left. You might
then choose to stand in the line of the one on the right, even though her line was
longer, because you knew she’d be able to handle more people faster than the one on
the left. If you didn’t know that, you would see the line on the left, with only one per-
son, and take it. You'd then be forced to wait and watch, as the efficient teller on the
right handled the four people who would have been in front of you had you stood
there, along with the three or four that came in after you.

In this particular case, each teller is a stateful entity—the teller can deal with one,
and only one, client at a time. The client has the use of the teller for as long as he/she
wishes, until the bank closes, regardless of what the clients behind them think or want.
If the bank officers were particularly customer-friendly, they might open a new teller line
to relieve some of the pressure behind the client taking so long, but it’s not guaranteed
that the next client might not do the same thing. In fact, the only way to guarantee
timely access to each and every client is to have one teller for each and every client who
walks through the bank door, an obvious waste of human resources. What are all those
bank tellers going to do when there’s only one person in the bank?

From a software perspective, we have a few advantages the bank lacks; for example,
we can create and destroy tellers as the need demands without concern, but we’re still
left with basic inefficiency. In the average client-server transaction, 95 percent of the
server’s time is spent idling, waiting for a client request. Even if the server isn’t actively
tying up a socket connection to the client, the server object is using resources (core
memory, if nothing else) that are yielding no productivity. Put another way, the teller

Web gurus will disagree, citing cookies or JSP/ASP Session variables as examples, but this isn’t a valid
argument. Cookies are always sent as part of each HTTP request, and JSP/ASP Session-tracking support
is usually tied to having cookie support on the client. Most JSP/ASP scripts are inherently stateless in
and of themselves, especially if the ASP code uses MTS COM objects (which are also stateless).

This analogy originally came from Roger Sessions’ COM and DCOM.

DISTRIBUTED OBJECT DESIGN VS. CLASSIC OBJECT DESIGN 407

408

is simply standing there, waiting, while you balance your checkbook to see if you need
to look up any additional checks.

A stateless protocol, on the other hand, requires that the client bundle up each
request and send that to the server. Going back to the HTTP protocol, for example,
the client must send the entire HTTP request to the server, not just part of it. A client
can’t, for example, send a relative (to the page it was just on) URL to the server; it must
send the complete and full URL for the resource it wants. It needs to do this because
the server may have handled a dozen requests since the client last sent a request.

Typically, a stateless protocol will be simpler to implement but more difficult for
clients to use. Because the server is now inherently stateless, it can’t track the various
stateful information that’s necessary to complete a client request. Consider the ubiq-
uitous e-commerce shopping cart. Without tracking the existing things the user has
placed within the cart, the cart as a server is pointless. Unfortunately, a shopping cart
is a poor choice for a stateless protocol; since the server won’t track the cart’s items,
the client has to.

We can simplify the client-side process by providing an opaque handle/object for
the client to pass in on every call; it’s tedious, but it works, and so long as the client
doesn’t see the details:

/I Fictitious RMI Shopping Cart example
IShoppingCartServer svr = (IShoppingCartServer)
Naming.lookup(“rmi://host/ShoppingCart”);

/I Create opaque token
Serializable clientToken = svr.createToken();

/I Add an item to our cart
String itemName = get_item_from_user();
clientToken = svr.addltem(clientToken, itemName);

/I Add another item to the cart
itemName = get_item_from_user();
clientToken = svr.addltem(clientToken, itemName);

/I Conclude the shopping trip
svr.purchase(clientToken);

As you can see, this is a stateless protocol system using RMI, but any other sort of
middleware (CORBA, JMS, even straightforward sockets-and-Serialization) would
work equally well. The key point is that all state information is maintained inside the
opaque clientToken Serializable object that gets returned on each RMI call. The RMI
server maintains all state information for the ShoppingCart inside this Serializable
object—which can be anything the server wants it to be, so encapsulation is pre-
served, and the client’s only responsibility is to hand it back on each and every RMI
request to the server. Because the client doesn’t know the precise type of this object,
encapsulation is preserved.

CHAPTER 15 MIDDLEWARE

This seems directly contrary to the entire notion of distributed objects; if stateless
protocols are so great, why did the world clamor for distributed objects? It’s definitely
more awkward to use this kind of system; there’s no disputing it. The payoff in this
approach comes on the server side—now that the client is maintaining all state infor-
mation, the server is free to provide only one RMI server that can support up to hundreds
of clients simultaneously. The RMI protocol will provide necessary synchronization
inside of the RMI protocol; any further synchronization required within the body of
the RMI server implementation can be provided by the RMI server, and this server
object can answer dozens of simultaneous requests without further concern for per-client
separation. This is almost directly akin to the idea from chapter 4, in talking about
Threads and thread synchronization, where it was suggested that per-Thread informa-
tion be stored within the Runnable or Thread instance itself.

Stateless protocols also suffer from the fact that long-term resource requirements
will need to be opened and closed on each client request. In the ShoppingCart example
assume the server wants to store the information about the cart’s contents inside an
RDBMS. If each client is accessing a different RDBMS, then each time a client makes
an “addltem ” call on the server, it needs to reconnect to the appropriate database. This
act of opening a Connection, performing its operations and closing the Connection
again would seem to be wasteful.

It is wasteful. Because Connection instances aren’t Serializable (and so aren’t
capable of being sent back to the client inside the Serializable token), the server needs
to store the Connection information in the client’s token, and reopen the Connection
each time the client makes a call to the server. At the conclusion of the RMI call, the
server then has to close the Connection it just opened, since it can’t hold an infinite
number of Connections open forever.

Alternatively, JDBC 2.0 specifies Connection-pooling at the JDBC driver level,
which “allows for a single connection cache that spans the different JDBC drivers that
may be in use. Since creating and destroying database connections is expensive, con-
nection pooling is important for achieving good performance, especially for server
alpplications.”4 This in turn means that the server can open and close Connections
with impunity, relying on the JDBC driver underneath to maintain a cache of Connec-
tions to frequently used databases to prevent the actual cost of opening and/or closing
the Connection. If a particular database is used frequently, the Connection to that
database won’t leave the cache, so opening a new Connection to that database doesn’t
cost a thing. Or, if a particular client generates a lot of traffic to a particular database,
that Connection will be opened the usual way the first time the database is hit, but
each successive hit will require no time to open, since the Connection will already be
in the cache. Either way, high-volume Connections get reused, which is functionally
equivalent to maintaining a separate object per client with its own Connection object.

4 Section 3.6 in docs/guide/jdbc/spec2/jdbc2.0.frame3.html, from the JDK 1.2 documentation set.

DISTRIBUTED OBJECT DESIGN VS. CLASSIC OBJECT DESIGN 409

15.3

410

JDBC isn’t the only high connection cost resource a server will need, so we can’t
brush aside all concerns by just waving JDBC Connection Pooling and calling it done.
The server may require access to CORBA object servers, RMI object servers, even stan-
dard socket connections to other servers, none of which (currently) provide any con-
nection pooling. In this case, the server can do as HTTP/WebServer-based application
servers have done for two years now, which is to establish a session ID for each client,
and send that session ID back to the client. The server then stores the session ID as a
key in a HashTable to the Connection itself, and the next time the client calls in, the
server can retrieve the Connection based on the client’s session ID in the token. If the
resource limits the number of Connections, then the server will most likely want to open
one Connection and share that among all clients, something it probably had to do any-
way, since it can’t just provide an individual Connection per client in a stateful system.

Not all distributed object designs will be able to take advantage of the stateless
protocol approach. As the object system gets more complex and more intricate, it will
become increasingly difficult to maintain a stateless system. As the number of distrib-
uted objects grows, so goes the number of dependencies on other distributed objects.
More dependencies on other distributed objects mean greater need for per-client state,
which in turn makes it more difficult (especially when trying to pass distributed object
references from one machine to another) to keep the stateless approach. Still, for all
that, in a standard client/server distributed object approach, a stateless system is usu-
ally a practical and efficient way to keep server object-implementation requirements
to a minimum.

TECHNOLOGIES

Distributed technologies mainly fall into four camps:

* Raw access
Accessing and using the communications protocol directly; this includes native
implementations 4 /2 Microsoft’s Named Pipes, Mailslots, and the standard IP
(TCP/IP and/or UDP/IP) sockets communication stacks. While good for those situ-
ations requiring low-level access, typically the lower the level one goes, the more
work needs to be done in endpoint (client or server) code to maintain and access
the low-level communications’ protocol. In Java, the typical choice at this layer is
the Sockets protocol, since it comes pre-implemented in the java.net package.

* Remote procedure calls
RPCs operate on the concept of making calls to servers (functions in old-style
RPCs, or object methods in new-style RPCs, like RMI) without having to realize
that the call is actually made to a remote process or machine. RPC technology
includes OSF/DCE RPC, Microsoft’s RPC, and Java’s RMI technology; of these,
RMI is by far the preferred method of RPC in Java, since it comes as part of the
standard Java distribution. As a subset of the RPC category, however, messaging

CHAPTER 15 MIDDLEWARE

15.3.1

systems (like JMS) and publish/subscribe systems offer a means by which commu-
nications can be decoupled from both client and server. Some messaging systems,
like IBM’s MQSeries, come with a long history and pedigree, others, such as
Microsoft’s MSMQ, are brand-new to the Message-Oriented Middleware (or
MOM) game. Others are Java-specific such as iBus, from Soft-wired Inc.

* Object request brokers
These are really RPC systems on steroids. Object request brokers, also known as
ORBs, usually are spoken of in the same breath as CORBA, but can include other
systems such as HORB or DCOM. Among Sun Java programmers, the favored
ORB to use is a CORBA-compliant ORB, although a number of Microsoft-centric
developers are achieving good results using Microsoft’s Java implementation
packages and DCOM.

* Objects across the wire

This category stretches from the concept of mobile objects, which live within a
single process but can migrate from process to process across the network, to
shared objects, which are shared across the entire network and connected pro-
cesses. Just as static members can be modified by any instance of that class, a
shared object can be modified by any process subscribed to it. The main advan-
tage of this object-across-the-wire approach is its neat integration with the rest of
the object paradigm; it’s an object, you just use it that way. The main disadvan-
tage of these approaches is the fact that they’re very new, and require some new
thinking in distributed object design and implementation. Mobile object imple-
mentations are available from ObjectSpace (Voyager toolkit) and IBM (Aglets
toolkit); shared object implementations are available from Javasoft (Java Shared
Data Toolkit and/or JavaSpaces, part of Jini) and ObjectSpace (Subspace system
within the Voyager product).

All of these are viable technologies for achieving the same goal of making objects
live across the network instead of on just one node within it. We’ll discuss some of
these in turn.

Raw access: Sockets

We've already examined sockets within Java, so it’s not too difficult to imagine how a
socket-based middleware service would behave. By marking objects Serializable and
sending them over a socket via the ObjectOutputStream and Objectinput-
Stream methods, we already have a primitive, if low-level, form of distributed com-
munication. Look back at the RemoteStorageService, for example. We could easily
store an instance of the HashtableModel there, and have clients check out the Hash-
tableModel, send it over the wire to the client, modify it, and send it back and check
it in. This would provide the necessary object-sharing semantics we’re desiring for an
enterprise system.

TECHNOLOGIES 411

15.3.2

412

What's more, it’s easy to imagine how we could build either a stateful or a stateless
system. In a stateful system, the client simply holds the socket open for as long as it
wishes, sending requests and receiving replies until it chooses to close the socket. For
a stateless system, the client can open the socket, send the request, get the response,
and close the socket, or the server can even close the socket itself after sending the
request, to prevent abuse by the client. In fact, the server could even do some perfor-
mance monitoring, and keep connections alive when it sees that it has the available
resources to do so, and close connections when it doesn’t. This would seem to be a
good foundation for a middleware system.

Unfortunately, it also carries with it a number of drawbacks. For starters, all the
communications have to be handled by hand within developer code. Some of this
impact can be minimized by placing all necessary communications code within a reus-
able library or component, but it doesn’t duck the fact that a developer still must create
that initial library. Second, this form of middleware will be unique to each shop,
department, or corporation that uses it, which minimizes the chance of using off-the-
shelf components or systems with the home-grown middleware. Third, any such pro-
tocol would always be pass-by-value, since Serialization doesn’t support the sending
of references; the entire object is Serialized. Thus, any pass-by-reference functionality
would need to be handled by developers passing Proxy objects to the recipient, and
the Proxy objects in turn sending modifications to the server (which, in turn, brings
up the nasty subject of how to keep the Proxies up-to-date with changes made to the
server by other clients). Last, any features desired beyond just basic communication—
such as RMI’s Activation or CORBA’s Event or Trading Services—have to be coded
by hand. That in turn opens up greater chance of bugs, which in turn requires more
testing time and personnel, and so on.

Still, despite all that, the Sockets-based approach has a number of positive
aspects to it, not the least of which is its simplicity—just open a Socket, and send
the Serializable object down the ObjectOutputStream—and its lack of overhead.
For simple or light-use scenarios, it serves admirably, as we’ve already seen in
chapter 7. What's more, the cross-linguistic nature of sockets opens the possibility
of cross-language communication, so long as the other side understands Java’s Seri-
alization specification (or else the Java side limits itself to text-only representations;
XML is a wonderful alternative in this case). As the distributed object system grows
more complex, however, maintaining a Sockets-based system becomes an additional
drain on developer resources, and extending it or expanding its featureset becomes
more and more convoluted.

Java RPC: remote method invocation

Java RMI is Java’s version of remote procedure calls. As with most RPC-based technol-
ogies, the hard part isn’t contacting the host, or even specifying the method to call.
The hard part is getting the parameters to the call across the wire accurately and cor-
rectly, and getting the return value back again. This process, known as marshaling

CHAPTER 15 MIDDLEWARE

when packing the parameters for transport, and unmarshaling when unpacking them
upon receipt, is typically by far the hardest part of distributed object development.

RMI uses rmic, a tool provided by the Sun JDK, to produce stubs and skeletons
that encapsulate the details of marshaling and unmarshaling the parameters from cli-
ent to server and back again. When used as directed by most RMI books and articles,
rmic can appear to be a mysterious, opaque beast that magically generates Stub and
Skel .class files from your RMI-interface-implementing class. As we’ll see, however,
there’s nothing truly mysterious about RMI.

One advantage of RMI is its Java roots: because RMI grew out of Java, with no
other agenda or considerations, RMI feels very natural to the average Java programmer.
To create an RMI interface, just create a standard Java interface class that extends
java.rmi.Remote. To make an RMI remote call, just obtain a proxy to the server via the
Naming class’s lookup method, and call methods on it as if it were a local object. RMI
objects are garbage-collected just as other Java objects are, so no lifetime management
of the distributed object (or its local proxy) is necessary, as is the case with CORBA.

Unfortunately, RMI isn’t quite as nonintrusive as all that. To start with, all
remote methods must be declared as throwing java.rmi.RemoteException ,
which means that clients have to catch this Exception or pass it up the chain. This
means that clients, in direct contrast with the goals of encapsulation, now have to
worry about the details of the middleware. It may mean that clients do nothing more
than rethrow the RemoteException out of the catch handler, but it’s still code that
has to be written (and executed) each time the remote call is made.

Despite RMT’s insistence on the specification of a remote interface, RMI is not an
interface-based tool. In fact, if you write an RMI interface and attempt to call rmic on
it, rmic will complain that the interface isn’t a remote class and do nothing. RMI,
instead, wants to build stubs and skeletons only for implementation classes. This in
turn yields a problem: RMI can connect only to an implementation, not an interface.

Consider our notion of zero deployment. We want to be able to modify classes
at a whim on the server, without having to make a modification to the client environ-
ment. RMI promises this capability, but I'll let you in on a secret—RMI cheats. It relies
on the client making an HTTP connection to a URL specified in the client’s annotated
codebase to retrieve RMI stubs that the client doesn’t have locally. No HTTP connec-
tion, no annotated codebase, and no zero deployment.

Given, however, that RMI can download the necessary implementation stubs, is
this really an issue? To be honest, it’s probably not something most RMI developers
will worry about. Because RMI can use the HTTP connection to do the stub down-
loading (which most, if not all, Java shops will be able to provide), the fact that RMI
depends on the implementation class is less critical. Contrast this with CORBA, in
which no code downloading can take place; there, the idea of connecting to an inter-
face, as opposed to an actual implementation, is critical, because the client can’t just
download the necessary _Stub class as it needs it.

TECHNOLOGIES 413

414

Additionally, if the _Stub classes are available, via CLASSPATH or Extension, to
the RMI registry when the registry is started, then the HTTP server isn’t even neces-
sary—the RMI registry will send the _Stub down to the client of its own accord. For
the most part, however, this isn’t something to rely on, as most systems will run mul-
tiple RMI servers, but only one RMI registry; thus, each system can’t count on the reg-
istry having access to its _Stub classes. Worse, if the _Stub changes, unless the RMI
registry is recycled (taken down and restarted), the change never gets propagated into
the environment. Remember, as long as the ClassLoader that loaded a Class exists, the
Class is never reloaded.

From a theoretical perspective, however, this is ducking the issue. The fact is that
an RMI client still needs the exact implementation-class’s _Stub in order to properly
function. Currently, RMI makes that _Stub available via two methods, HTTP-serving
(that is, via the annotated codebase property, java.rmi.server.codebase , which
will usually be an HTTP URL reference) and/or downloading it from the RMI registry.
This, to be quite technical and ultraprecise, is not zero deployment although deployment
is still taking place, albeit in an automated (and administrative-dependent®) fashion.

Instead, in order to achieve true zero deployment, we need to make RMI connect
on an interface level instead of an implementation level.® Because RMI can build only
stubs and skeletons around a class (that is, a concrete class type, instead of a Java interface
type), let’s give RMI a class to chew on. Instead of placing the actual implementation
within this class, however, we make the class abstract and do nothing;

/I INameServer.java: Generate random names
public interface INameServer extends java.rmi.Remote

{
public String generateName()
throws java.rmi.RemoteException;
public static String RMI_BINDING_NAME =
"NameServer_1.0.0";
}

This is a standard RMI remote interface. Normally, we would create a concrete class
extending the java.rmi.server class UnicastRemoteObject, and run rmic on that.
What we’ll do instead, in order to be able to vary the implementation of the server
object transparently, is this:

/I NameServer.java:
import java.rmi.server.*,

public abstract class NameServer extends UnicastRemoteObject
implements INameServer

5 Somebody needs to make sure the HTTP server is running, for example, and that port 80 (or whatever
port on which the RMI-HTTP class server is running) on the RMI server machine isn’t currently occupied.

® Thanks to Owen Tallman, of DevelopMentor, for our discussion on this topic and this trick.

CHAPTER 15 MIDDLEWARE

public NameServer()
throws RemoteException
{1}
}

Notice how we have to specify a default constructor that throws RemoteException ;
because UnicastRemoteObject, this class’s direct ancestor, specifies a default constructor
that throws this exception. Thus, we have to match the signature exactly if we want to
override the constructor. Normally, we wouldn’t need to override the default con-
structor if we don’t have any particular default behavior we want; instead, we let the
compiler build one for us behind the scenes. Unfortunately, the compiler can’t syn-
thesize a default constructor for us if the base class version throws an exception, so we
have to do it by hand.
Next we build an implementation of the NameServer:

public class NameServerlmpll extends NameServer

{

public String generateName()
throws java.rmi.RemoteException

{
return "Fred";

}

public NameServerimpll1()
throws java.rmi.RemoteException

{1}

public static void main (String args[])
throws Exception

{
/I Create an instance of NameServerimpll and
/I export it
1
NameServer ns = new NameServerimpll();
Naming.bind(INameServer.RMI_BINDING_NAME, ns);
System.out.printin("NameServerimpll bound as "™ +

INameServer.RMI_BINDING_NAME + "™);
}
}

As you can see, NameServerImpll isn’t really any different from any other RMI class,
except that instead of implementing the remote interface directly, it gets it from its
abstract parent, NameServer.

Connecting to and using this INameServer -implementing class is the same as
any other RMI server:

public class NameClient

{
public static void main (String args[])
throws Exception

TECHNOLOGIES 415

416

/I Lookup host
1
String lookupName = "rmi://" + args[0] + "/" +
INameServer.RMI_BINDING_NAME;
INameServer nameSvr =
(INameServer)Naming.lookup(lookupName);

/I Make remote call

1

String name = nameSvr.generateName();
System.out.printin("Generated name . " + name);

}

NameClient isn’t doing anything fancy; just connect to the server given in the first
command-line arg, and call its generateName method.

Notice something very important when we build this; if you look at the makefile
in the Middleware directory of the source code, notice that rmic is only being run on
NameServer, not NameServerImpll. This is key—RMI needs to know only how to
marshal the parameters and return value for the method call; it doesn’t care specifically
which class it’s for. Once that marshaling/unmarshaling logic is in place, the imple-
mentation of the method is resolved as any other Java method call is—virtually.

The payoff of all this comes in the client-side deployment. To simulate separate
environments (and ClassLoaders), the client.jar file is built in a temp directory under
the Middleware directory. Within this .jar file are only the INameServer, NameServer,
NameServer_Stub, and _Skel class files. Run the .jar file from the java interpreter (it
has the appropriate Main-Class directive in its manifest), and NameClient successfully
connects to and generates a name from the NameServerImpl1 instance.

Next, let’s create a new Server implementation, called NameServerImpl2 (not
listed here for brevity—only the generateName changes substantively, to return
“Barney ” instead of “Fred ”). Shut down the NameServerImpl1 instance and RMI-
Registry, restart the RMIRegistry and bring up a NameServerImpl2 instance. Run the
NameClient, unchanged, from the temp directory. Once again, NameClient has suc-
cessfully managed to obtain the name, from a different RMI server implementation,
without having to use the annotated codebase to obtain the new class code.

One last test—let’s switch the server implementations around without the client
knowing. Look at NameServerImpl3:

public class NameServerlmpl3 extends NameServer

{
public String generateName()
throws java.rmi.RemoteException

{

String returnName = "Wilma",

try
{

CHAPTER 15 MIDDLEWARE

15.3.3

Naming.rebind(INameServer.RMI_BINDING_NAME,
new NameServerimpll());
System.out.printin("NameServerimpll rebound");

}
catch (Exception ex)
{
returnName = ex.toString();
}

return returnName;

}

public NameServerimpl3()
throws java.rmi.RemoteException

{}

public static void main (String argsl])
throws Exception

{

/I Create an instance of NameServerlmpl3 and

/I export it

1

Naming.bind(INameServer.RMI_BINDING_NAME,

new NameServerimpl3());
System.out.printin(*NameServerlmpl3 bound as "™ +
INameServer.RMI_BINDING_NAME + ");

}

}

This should look a little different. After the first call to generateName ,
NameServerImpl3 replaces itself with an instance of NameServerImpll. Run it, then
drop into the temp directory and try NameClient twice in a row—the first connects
to the NameServerImpl3 instance, gets “Wilma ” back, then when it is run again, it
gets the NameServerImpl1 instance and “Fred 7. We’ve effectively changed our server
implementation without having to deploy new stubs or skeletons to the client.

Analysis

It may not be obvious what we’ve just done; by contrast, change NameServerImpl3 to
be a normal RMI server object by extending UnicastRemoteObject and implement-
ing the INameServer interface. Compile it, and try to run the server—the
RMIRegistry will complain that the Stub/Skel classes can’t be found. Run rmic to
generate the Stub/Skel classes, start the server, and try to run the client. The client
will throw a java.rmi.UnmarshalException for the same reason as the RMIRegistry—
the Stub/Skel classes can’t be found. This is because RMI uses the class name of
the implementation object (NameServer in the previous approach, but now
NameServerImpl3) as the name of the appropriate Stub or Skel class to load. RMI
normally gets away with this by having the client contact an HT'TP server for the new
class to load via the annotated codebase property; since we gave it none, it can’t down-
load the new code, so it complains and gives up. When we used NameServer as the

TECHNOLOGIES 417

418

abstract base, instead, and built the Stub/Skel classes from that, we effectively intro-
duced an implementation interface to satisfy RMI’s Stub/Skel requirements while still
giving us the ability to vary the actual implementation class used on the server.

By doing this, we gain flexibility in the actual implementation of the server object.
We can continue to update and/or modify the actual implementation class used to
satisfy client requests without having to worry about making sure the Web server can
see the new code. For example, consider a classic use of RMI, to build a business objects
layer. Business objects, of course, must be sensitive to user roles and security. Instead
of building one large business object class that contains all the necessary logic for each
and every user role, have users pass their credentials to a factory class instance. This
factory object then returns an instance of a class which extends the BusinessObject
abstract base class (which in turn implements the IBusinessObject ~ remote inter-
face). Because the BusinessObject Stub/Skel classes reside on both client and server,
the user won’t know whether it’s an AdministratorBusinessObject, a NormalUser-
BusinessObject, or a ReallyLowPeonBusinessObject. RMI could do all this before but
now you can do it without the use of an HTTP server. This also means that the actual
code is hidden from the clients, a security enhancement.” In addition, you don’t need
to have an HTTP server running where one normally wouldn’t be.

The problem with this basic approach is that it inherently uses the precious
implementation inheritance slot for the abstract base class. Given that Java allows us
to extend only one class, and that there will be times when we need or want to extend
from some other base class, this doesn’t help much. Another approach to achieve this
same effect is to use a Decorator pattern approach, and create a shim class that for-
wards all requests to another object:

public class NameServerDelegator extends NameServer

{

INameServer delegate;

public NameServerDelegator(INameServer delegate)

{

this.delegate = delegate;

}

public String generateName()
throws RemoteException

return delegate.generateName();

7" If the code has to be downloaded to the client, there is a possibility that the client can open, decompile,
and examine the code, and use that knowledge to compromise the system as a whole.

CHAPTER 15 MIDDLEWARE

15.3.4

As you can see, we pass in the instance of the INameServer -implementing object in
the NameServerDelegator constructor, store it within the NameServerDelegator
instance, and make calls on that instance any time a remote call comes in.

The remote call comes in to the NameServerDelegator, which then passes the call
to the delegated instance. The client never sees the actual implementation, which
allows us to preserve encapsulation, and the results from the class are passed back to
the client in normal fashion.

Remember, this is only necessary because RMI binds to implementations of a
Remote interface, instead of to the interface itself. Had rmic chosen to use the inter-
face as its template for building the marshaling/unmarshaling code, instead of the
implementing class, we wouldn’t have to go through this. It’s important to remember
that having rmic build the proxy/stubs off of the implementation of the Remote inter-
face allows us to cast the proxy and/or stub in normal Java fashion, instead of using
a helper method as CORBA does. It’s a trade-off, once again.

RMI/JRMP

One aspect that will surprise a number of Java developers is that RMI itself specifies
nothing about the wire protocol—if you read through the RMI specification, you’ll
not find one line, one section, or one word on how the data is to be passed across the
wire to the other side. This in turn allows RMI implementors to use whatever proto-
col they wish—to a point.

When RMI was first released by Sun, it was released using a wire protocol called
Java Remote Method Protocol (JRMP). This was the only option for doing RMI in
JDK 1.1, and remained that way for a long time. With the release of JDK 1.2, however,
Sun also released an Early Access version of RMI/IIOP (RMI using the CORBA Internet
InterOperability Protocol). This, in theory, allows Java developers to use RMI to com-
municate with CORBA objects.

RMI/JRMP is the default form of RMI, and unless you go the extra distance to
download the RMI/IIOP implementation from Sun, this will be the form you use in your
own RMI development. Most discussions of RMI over the past two years have implicitly
used JRMP as the wire protocol, and the RMI Specification discusses the JRMP protocol
in detail. JRMP offers two advantages: established use and distributed garbage collection.

The first advantage of RMI/JRMP is its historical nature—JRMP was the first wire
protocol specified for RMI, and, up until the recent release of RMI/IIOP, was the only
wire protocol available for RMI. This means that unless your RMI code was written
within the first half of 1999 using the Early Access or beta versions of RMI/IIOP, all the
RMI code written to date uses JRMP. Therefore, for any existing RMI systems, JRMP is
likely (on the order of 99 percent likely) to be the protocol of choice for communications.

The problem with this is that JRMP is itself completely and totally incompatible
with anything else in the world. No other languages can communicate with Java
objects using JRMP, no other communication protocols or middleware systems can
access RMI/JRMP-exported objects, and this, in turn, means that any distributed

TECHNOLOGIES 419

420

objects done using RMI/JRMP are invisible outside of the Java world. This may seem
like a small problem to those Java developers who rarely leave the Java world. Unfor-
tunately, as many Java developers are discovering, this state of affairs is a poor one
at best. Java wasn’t the first system to develop the concept of distributed objects, and
Java developers are increasingly called upon to integrate with existing distributed
object systems.

Secondly, JRMP offers distributed garbage collection (what I call DGC) in order
to continue to offer Java-like concepts to the distributed object model. This means
that, as when working within single-JVM systems, Java developers no longer have to
worry about distributed object lifetimes, instead relying upon Java’s internal garbage
collection to recycle the local proxies to the remote objects. In turn, the local proxy
will notify the remote skeleton of the decrease in the number of client proxy/stub
objects, and the remote VM will recycle (or not) as necessary the actual remote object.

The problem with DGC is simple—bandwidth. Even if no user-specified com-
munication is taking place between an RMI Stub and its exported skeleton, the Stub
and the associated Skeleton are chewing up bandwidth by keeping the distributed ref-
erence count alive. They need to do this, because the server object (as CORBA systems
quickly learned) has no ability to tell client idleness from a client crash. When a client
connects to the remote object, it takes out a short-term lease on the object, which the
server guarantees will remain alive as long as the lease indicates. Thereafter, the client
has to ping the server every so often to keep the lease alive. If the client fails to ping
frequently enough, the server assumes the client has died and removes its lease on the
exported object, thus possibly recycling the exported object.

This has serious implications on scalability, since RMI system designers can’t sim-
ply assume that “if we don’t call the remote objects very often, we won’t have a band-
width problem.” Remember, each and every exported object has to go through this
negotiated lease rigamarole, so as the number of exported objects increases, so does the
total bandwidth consumed across the system. And this is on a per-client basis: if five
clients hold proxies to the same exported object, we’ve still got five sets of negotiations
going on across the wire.

RMI/JRMP offers dynamic code download, a feature missing in CORBA and
COM/DCOM. As we discussed earlier, RMI can automatically download the necessary
_Stub classes for the client’s use, as necessary, assuming the server has an annotated
codebase properly set up.

Despite whatever happens regarding it and its possible successor, RMI/IIOP, RMI/
JRMP will remain a viable and useful choice for distributed object systems in 100 per-
cent pure Java environments. DGC is a natural extension of Java to across-the-wire sys-
tems, and although it doesn’t give us the same scalability as other distributed
implementations offer, for many shops, it will be just good enough, which is some-
times the best we can hope for.

CHAPTER 15 MIDDLEWARE

RMI/IIOP

RMI/TIIOP is a new technology from Sun that uses the IIOP protocol from the
CORBA 2.x standard to implement the same kind of RPC capability as RMI/JRMP
provides. As of this writing, RMI/IIOP stands as a fringe technology that looks to gain
significant steam as Sun makes its transition from JRMP to IIOP as the default wire
protocol for RML.

Using RMI/IIOP is fundamentally similar to RMI/JRMP, except for a few niggling
details. To start with, RMI/IIOP uses JNDI to bind and export RMI/IIOP objects,
which is the direction RMI/JRMP is heading as well. Unfortunately, this means a new
set of APIs to learn and start using. This isn’t as much work as it might at first imply,
for two reasons: one, the basic concepts are still the same so the basic methods and
usage haven’t changed much, and two, JavaSoft has done what it can to keep the two
as close as possible. Further, JNDI is Java’s future for all naming needs; EJB uses it,
some Java-based CORBA ORBs use it, and the new JDBC 2.0 specification uses it. Tak-
ing the time to learn the basics of JNDI has benefits beyond just RMI/IIOP.

We'll start by examining the RMI/IIOP implementation of the name server,
which is found in the file IIOPNameServer.java. The remote interface, IName-
Server , remains identical to the RMI/JRMP version—methods must still throw
java.rmi.RemoteException , must be interfaces, and so on. The [IOPName-
Server class extends the RMI/IIOP base class PortableRemoteObject instead of Uni-
castRemoteObject, and uses JNDI to bind itself to the IIOP Naming Service plug-in
inside of JNDI:
import java.rmi.*;
import javax.naming.*;
import javax.rmi.PortableRemoteObject;

o

* NameServer class ported to use RMI/IIOP instead of RMI/JJRMP
*/
public class IlOPNameServer extends PortableRemoteObject
implements INameServer
{
public IOPNameServer()
throws java.rmi.RemoteException

{1}

public String generateName()
throws java.rmi.RemoteException

{

return "Fred";

}

public static void main (String argsl])
throws Exception

{
/I Set up the InitialContext factory for JNDI
1

TECHNOLOGIES 421

422

}

System.setProperty(“java.naming.factory.initial",
"com.sun.jndi.cosnaming.CNCtxFactory");

/I Set up the JNDI Naming provider URL

1

System.setProperty(“java.naming.provider.url",
"liop://localhost:900");

/I Create an instance of IIOPNameServer and
/I export it

1

Context ctx = new InitialContext();

INameServer ns = new I[IOPNameServer();
ctx.rebind(INameServer.RMI_BINDING_NAME, ns);

System.out.printin("llOPNameServer bound as ™ +
INameServer.RMI_BINDING_NAME + "™);

The constructor and generateName methods are identical to the versions in the
RMI/JRMP implementation. Only the main implementation changes, and this only
so that IIOP is used instead of normal JRMP Since this scaffolding in an RMI server
object only needs be done once, at the server object’s startup, most RMI implementa-
tions will be identical between both IIOP and JRMP, which is precisely what they
should be. Remember, IIOP is simply the wire protocol that RMI uses to communi-
cate between client and server; the server and/or client implementation that uses RMI
shouldn’t change in the slightest.

The client implementation similarly has to use JNDI to obtain the initial server object:

import java.rmi.*;

import java.util.*;

import javax.naming.*;

import javax.rmi.PortableRemoteObject;

public class IIOPNameClient

{

public static void main (String argsl])

{

throws Exception

/I Set InitialContext properties

Hashtable env = new Hashtable();

env.put("java.naming.factory.initial",
"com.sun.jndi.cosnaming.CNCtxFactory");

env.put("java.naming.provider.url",
"liop://localhost:900");

/I Obtain JNDI InitialContext
Context ic = new InitialContext(env);

INameServer nameSvr =
(INameServer)PortableRemoteObject.narrow(

CHAPTER 15

MIDDLEWARE

ic.lookup(INameServer.RMI_BINDING_NAME),
INameServer.class);

/I Make remote call

1

String name = nameSvr.generateName();
System.out.printin("Generated name : " + name);

}

Notice in both the client and the server, the JNDI InitialContext instance is created
either with a Hashtable passed in, or using the System properties to identify two key
elements: java.naming.factory.initial and java.naming.provider.url
These are JNDI properties that need to be set, either in code or on the command line,
to tell the JNDI implementation which Initial Context implementation to use. Here,
we use the CosNaming® JNDI implementation to identify the server object’s name,
and to obtain the remote interface from the server for the client. Once the
INameServer instance has been bound and/or retrieved, however, the RMI/IIOP
overhead is finished, and we call on the INameServer generateName method as
we do in the RMI/JRMP implementation.

Compiling the stubs and skeletons (“_Stub.class” and “_Tie.class”, respectively)
uses rmic:

rmic -iiop INameServer
rmic —iiop IOPNameServer

The first command generates INameServer_Stub.class, the second IIOPName-
Server_Tie.class. Once again, notice how IIOP generates the Stub based on the inter-
face, not the actual implementation. As with the RMI/JRMP example, if we put the
IIOPNameClient.class, INameServer.class, and INameServer Stub.class files into a
JAR file, and drop that into the Temp directory, start the tnameserv® application from
the RMI/IIOP bundle, start the IOPNameServer class and run i, it executes flawlessly.

The main advantage to using RMI/IIOP is its compatibility with CORBA objects,
which gives it the ability to call on CORBA objects, and be called upon in turn. This
offers Java a significant integration and cross-system capability that it lacked before
(without going to full CORBA integration). Java programmers retain the familiar RMI
interface; implementation details aren’t largely different, and Java clients can now

8 The Corba Object Service: Naming service, and is a CORBA-mandated universal service for providing
string representations of objects. It serves essentially the same purpose as the RMI Registry, except for

CORBA systems.
9 The CosNaming implementation that comes with the RMI/ITOP bundle; in theory, any CosNaming
implementation would work as well. By default, tnameserv uses port 900 to receive requests from cli-
ents; under some UNIX-like operating systems, this port is reserved for use only by “root” users. In this
event, start tnameserv with the parameter “-ORBInitialPort 1050 ”, and make sure to modify the

“java.naming.provider.url” appropriately (“iiop://<hostname>:1050").

TECHNOLOGIES 423

424

make use of CORBA objects written three years ago using C++ or Smalltalk—if you
don’t have to rewrite the server, that’s zero development.

This interoperability works both ways—]Java servers can now be called upon by
non-Java, IIOP-compatible ORBs of other languages, such as C++. For example, in the
same directory is a C++ client that calls on the IOPNameServer to obtain a name, just
as the Java IIOPNameClient example does. The trick to making this work, however,
is the generation of the necessary CORBA IDL files that represent the Java RMI inter-
face (in this case, INameServer). This is accomplished by using a new switch on the
rmic compiler, -idl:

rmic —idl INameServer

This in turn generates the INameServer.idl file:

/**

* INameServer.idl

* Generated by rmic -idl. Do not edit

* Wednesday, June 23, 1999 5:52:23 PM PDT
*/

#ifndef __INameServer__
#define __INameServer__

#include "orb.idl"
interface INameServer {

const wstring RMI_BINDING_NAME = "NameServer_1.0.0";
::CORBA::WStringValue generateName();

h
#endif

If it appears to be a mystery, don’t worry; if you're using another language to access
the INameServer server instance written in Java, then you will already recognize most
of the above. If you’re not using anything other than Java to access the INameServer
server, then you probably will never generate the IDL file and never have to worry
about its syntax. The key thing to recognize is that we were able to generate CORBA-
compliant IDL from the standard Java RMI interface INameServer .

The obscurity of the above IDL file raises a drawback to using RMI/IIOP in gen-
eral, however. Because IIOP was birthed from CORBA, it is well-steeped in CORBA
rules, syntax, and context. RMI/IIOP is brand-new to Java developers and the Java soft-
ware world as a whole, and to say that we really don’t have a good idea as to the impli-
cations of using it would be a gross understatement. Is IIOP faster or slower than
JRMP? Will it scale better or worse than JRMP? Will it scale better or worse than using
full-blown CORBA objects? Nobody knows at this point.

Using CORBA in Java isn’t all that much more difficult than the above—once the
IDL files are written, the IDL is passed through an IDL-to-Java compiler, and the Java

CHAPTER 15 MIDDLEWARE

developer now has a set of interfaces that needs to be implemented in a server imple-
mentation object. This is precisely the same sequence of steps that takes place in an
RMI system—define the interface, develop the implementations. Because RMI/IIOP
can generate the IDL from the RMI Remote interface, no handwritten IDL is necessary,
and if basic IIOP communications are all that are required, most Java-friendly ORBs
are already easier to use, in many respects, than standard RMI/JRMP itself. If interop-
erability with CORBA objects is necessary, why not go that tiny extra distance and use
a full-fledged CORBA ORB?

Using both JRMP and IIOP

At this point, the Java-RMI developer is likely to believe that it’s an all-or-nothing
prospect—either you support JRMP or you support IIOP. This is a difficult decision
to make. Forsake historical compatibility for future flexibility, or vice versa? These are
the kinds of decisions that keep technical leads and architects up at night wrestling
with which way to go and knowing they’ll get burned, regardless.

Alternatively, the architect is fully behind the notion of using RMI-IIOP, and
wants to begin the transition from RMI/JRMP to RMI/IIOP, but must still maintain
complete service for all of the clients across the enterprise still using RMI/JRMP.
(We're presuming the clients were originally coded without zero deployment in mind,
and releasing a new client would require the physical install of the software on new
machines.) How can we transition from JRMP to IIOP if we have to choose one pro-
tocol or the other? Maintaining two functionally equivalent, yet developmentally sepa-
rate, systems is certainly not an attractive option, by any means.

Or, the architect of the Java-only project is suddenly required to integrate with a
CORBA system beyond his/her control—he/she can’t arbitrarily require these CORBA cli-
ents to be redeveloped to use RMI/JRMP, and he/she can’t re-code the existing RMI/JRMP
clients to use RMI/IIOP. Again, the architect is faced with an uncomfortable prospect—
developing a shim layer to sit between the CORBA objects and the RMI/JRMP objects.

Fortunately, it’s possible to create an RMI server object (listing 15.1) that uses
both JRMP and IIOP, simultaneously.

Listing 15.1 Code to create an RMI server object

import java.rmi.Naming;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;
import java.util.Properties;

import javax.naming.Context;

import javax.naming.lnitialContext;

import javax.rmi.PortableRemoteObject;

[x*

* Class which exports as both a UnicastRemoteObject
* and a PortableRemoteObject
*/

TECHNOLOGIES 425

public class CombinedNameServer
implements INameServer
{
public CombinedNameServer()
throws RemoteException

{
/I Export as an IIOP object
1
PortableRemoteObject.exportObject(this);
/I Export as a JRMP object
1
UnicastRemoteObject.exportObject(this);
}

public boolean bindIIOP()
throws Exception
{
/I Set up the InitialContext factory for JNDI
1
Properties iiopProps = new Properties();
iiopProps.setProperty(“java.naming.factory.initial",
"com.sun.jndi.cosnaming.CNCtxFactory");

/I Set up the JNDI Naming provider URL

1

iiopProps.setProperty(“java.naming.provider.url",
"iiop://localhost:900");

/I Obtain the Context and bind us into the IIOP
/I COSNaming Provider

1

Context ctx = new InitialContext(iiopProps);
INameServer ns = this;
ctx.rebind(INameServer.RMI_BINDING_NAME, ns);

System.out.printin("CombinedNameServer bound (IIOP) as ™ +
INameServer.RMI_BINDING_NAME + ");

return true;
}
public boolean bindJRMP()
throws Exception
{
/I Our to-be-exported instance
1
INameServer ns = this;

/I Use standard RMI-Registry/Naming code to bind the

/I server object

1

Naming.bind(INameServer.RMI_BINDING_NAME, ns);

System.out.printin("CombinedNameServer bound (JRMP) as " +
INameServer.RMI_BINDING_NAME + ");

426 CHAPTER 15 MIDDLEWARE

/I Could also use JNDI-JRMP using this code:

1

/~k

Properties jrmpProps = new Properties();

jrmpProps.setProperty(“java.naming.factory.initial",
"com.sun.jndi.rmi.registry.RegistryContextFactory");

Context ctx = new InitialContext(jrmpProps);
ctx.rebind(INameServer.RMI_BINDING_NAME, ns);
System.out.printin("CombinedNameServer bound (JRMP) as " +

INameServer.RMI_BINDING_NAME + ™),
*/

return true;

}

public String generateName()
throws RemoteException

{

return "Fred";

}

public static void main (String argsl])
throws Exception

{
CombinedNameServer cns = new CombinedNameServer();
if (cns.bindllOP() && cns.bindJRMP())
{
System.out.printin("Ready for both IIOP and JRMP");
}
}

If you run this class, it can now answer requests from either the IOPNameClient or
the standard JRMP NameClient class. In either case, CombinedNameServer provides
the responses.

The key here is the use of the static exportObject ~ methods of both Unicast-
RemoteObject and PortableRemoteObject. Instead of inheriting from either of these
classes to receive the auto-exporting behavior offered by their constructors, we simply
implement the NameServer interface (which in turn, remember, extends Remote),
and pass this into the parameter for the exportObject method. This trick works
equally well for those classes which are forced, for various reasons, to extend from some
other base class.

Several advantages come out of this approach. To start with, it’s easy to see that
existing RMI/JRMP systems are going to require time to migrate to RMI/IIOP; not so
much because of the recoding necessary to convert an RMI/JRMP system over to using
IIOP, but because the Java 2 platform doesn’t (yet) support IIOP straight out of the

TECHNOLOGIES 427

15.3.5

428

box, and deploying clients (or web browsers) with the necessary classes to support RMI/
IIOP. Until that changes, all existing client applications will need to have the IIOP sup-
port implementation patched in by hand, which represents something of an adminis-
trative nightmare, and can be effectively considered impossible for Internet clients.

It also offers a crude way of allowing CORBA objects to interoperate with RMI
objects, thus getting around RMI/JRMP’s isolation from the rest of the world of dis-
tributed objects. It’s not an entirely transparent situation, since CORBA clients will
need to know the IDL of the RMI/IIOP system before they can be coded to connect
with it,!? and the IDL generated from rmic is not only a bit awkward (from a CORBA
implementor’s point of view), but also conforms to CORBA 2.3 semantics, which, as
of this writing, has only limited commercial support.

Beyond these points, however, there really is no compelling reason to support
both protocols. Ideally, a given enterprise would simply pick one (RMI/JRMP, RMI/
IIOP, or CORBA) as the backbone of the enterprise, and use that across the entire sys-
tem. Once the decision has been made, all systems would be converted or adapted to
use the new backbone, and this hybrid approach wouldn’t be necessary. It doesn’t
always happen ideally, however, and being able to use both protocols concurrently can
go a long way toward easing the transition from one to the other.

Object Request Brokers: CORBA

CORBA is not a single technology, but a group of standards among vendors for inter-
communication between a variety of products. The CORBA core specification, for
example, is simply a listing of those operations (names, parameters, and expected
results) that each vendor must provide in its ORB implementation before the product
can be called CORBA-compliant. The official language of CORBA is IDL, which is not
a programming language, but one which specifically declares interfaces. The Object
Management Group (the vendor council that defines the CORBA standard, among
others) also defines a number of IDL-to-language bindings that specify how a given
IDL file maps into a particular language; as of this writing, IDL bindings exist for C,
C++, Smalltalk, and Java, and numerous others are on the table undergoing review.

Assuming that we get the IIOP implementation working correctly, we should be
able to call it from any IIOP-compliant client, such as Java’s JavaIDL or a C++ ORB
such as Object Oriented Concepts’ (www.ooc.com) ORBacus. To demonstrate
CORBA’s interlanguage interoperability, let’s build a pair of CORBA clients and servers,
one using Java and Java’s JavaIDL ORB, the other using the ORBacus ORB in C++.

We start with some IDL, which provides the basic definition of the exported
objects’ behavior:

19 CORBA also rules out completely the notion of downloading the code to the client—all client-side
stubs have to be in place before the communication takes place, since the CORBA ORB may be a C++
or Ada95 ORB; downloaded Java stubs would be meaningless in such a situation.

CHAPTER 15 MIDDLEWARE

#ifndef __ INameServer__
#define __INameServer__

module SSJ_Chapterl2

{
interface INameServer
{
const string RMI_BINDING_NAME = "NameServer_1.0.0";
string generateName();
h
k
#endif

Notice it’s the same IDL generated by the rmic compiler from a few paragraphs
back, with two major changes. First, the wide-string types (wstring and
::CORBA:WStringValue) have been replaced by standard CORBA 2.2 “string”
types, and secondly, the interface INameServer is now wrapped within the module
name “SSJ_Chapter12”. This is necessary for this demonstration because CORBA 2.3-
compliant ORBs aren’t yet available; once they are, we can simply reuse the clients and
servers from the RMI/IIOP examples above.

Using the JavaIDL ORB is relatively straightforward; as with all CORBA clients,
first we need to compile the IDL file into a form we can use in code. Each ORB uses
its own IDL compiler to transform the IDL into native code. In the case of the JavalDL
ORB, the IDL-to-Java compiler comes as part of the RMI-IIOP download bundle.
Running idlj'! on the INameServer.idl file generated from the RMI-IIOP rmic com-
piler generates the INameServer.java, INameServerHelper,java, INameServer-
Holder.java, INameServerOperations.java and _INameServerStub.java files. These
are just the client-side CORBA implementation assistants. (Generating too many files
is part of the reason that CORBA is cited as more complex than RML.)

The JavaIDL client code, however, doesn’t look too terribly different from what
we do in RMI. The client code first has to obtain (from the ORB) a reference to the
CORBA Naming Service (a direct parallel to the RMI Registry, or JNDI), then use the
NamingService to obtain the exported reference to the INameServer instance. From
there, it’s a simple matter to make the call on the returned INameServer instance:

import org.omg.CosNaming.*; // IDLNameClient will use the naming service.
import org.omg.CORBA.*; /I Al CORBA applications need these classes.

import SSJ_Chapter12.*; /I Created by "idltojava" tool from JavalDL

public class IDLNameClient

{

public static void main(String args[])

11 A batch file under Win95/98/NT, or a script under Solaris. It should have been installed into the RMI-
1IOP bin directory when RMI-IIOP was installed. Alternatively, use the older idltojava utility that comes
as part of the JavalDL download.

TECHNOLOGIES 429

430

throws Exception

/I Create and initialize the ORB
ORB orb = ORB.init(args, null);

/I Get the root naming context

org.omg.CORBA.Object objRef =
orb.resolve_initial_references("NameService");

NamingContext ncRef = NamingContextHelper.narrow(objRef);

/I Resolve the object reference in naming
NameComponent nc =
new NameComponent("INameServer", ™);
NameComponent path[] = {nc};
INameServer ns =
INameServerHelper.narrow(ncRef.resolve(path));

/I Call the RemoteHello server object and print results
String name = ns.generateName();
System.out.printin(name);

}

The client first initializes the Java2 ORB via the init call; other ORB clients will
have slightly different ways of doing the same. Once the ORB is in place, the client
calls the CORBA-standard resolve_initial_references method to obtain
the instance to the CORBA NameService running. Notice that a simple cast from the
CORBA.Object to the NamingContext isn’t used here, as one might expect in Java;
instead, we need to use the CORBA-standard narrow method exposed from the
<Class>Helper class, in this case the NamingContextHelper class.

This offers an opportunity to point out the central benefit of JNDI; notice how we
have to use CORBA-specific naming/lookup APIs to retrieve the exported CORBA
object. Assuming that we have the CosNaming plug in for JNDI available (and the RMI-
IIOP bundle already provides it), we could use JNDI, instead of the CORBA-specific
code, to access the [INameServer-implementing object. The advantage is simple: if we
use JNDI, we only have to learn the JNDI AP, and not the RMI API, the CORBA AP],
the JMS API, and so on.

Once we've obtained the NamingContext instance, we use NamingContext
methods to build the path to the CORBA service we're looking for. In this case, we’re
looking for the INameServer directly off the root of the Naming system, by the
name of INameServer . The resolve method of the NamingContext returns the
instance it finds there, and we use the INameServerHelper narrow method to cast to
an INameServer instance. From there, it’s trivial to call the generateName method.

We'll not demonstrate the Java IDL implementation of the INameServer server imple-
mentation, nor the C++ clients or servers; this isn’t a book on CORBA, per se. Instead,
you'll find them in the source code available for download on the publisher’s web site,
in the CORBA directory under the Middleware directory.

CHAPTER 15 MIDDLEWARE

Is this any simpler than using RMI-IIOP directly? Markedly not. CORBA intro-
duces a level of complexity into the system that RMI doesn’t have. Where RMI seeks
to emulate as much of the Java way within distributed systems, CORBA deliberately
approaches things from a language-neutral standpoint. What’s more, at least for the
immediate term, the RMI-IIOP rmic compiler generates IDL that is CORBA 2.3 com-
pliant. As I said earlier, no freely available ORB (and few, if any, commercially available
ones) are CORBA 2.3-compliant. This in turn means that RMI-IIOP-generated IDL is
inherently unportable, at least until CORBA 2.3 is standardized and vendors begin to
implement it.

The nonlanguage-specific nature of IDL means that a CORBA ORB is inherently
cross-linguistic. For example, under the CORBA/IDL umbrella, once the IDL inter-
faces for a given system are defined, developers can choose just about any language
they wish to implement the client or server sides, so long as a corresponding ORB and
IDL binding are available. For example, object servers that require access to legacy C
API components can be developed in C; the C++ developer who refuses to give up his
favorite language can develop his objects in C++, the CORBA objects that access a
JDBC-driver-accessible relational database can be written in Java, and the entire front
end might be coded in Visual Basic or Python. All of the objects developed, regardless
of the language, are first-class citizens in the world of CORBA.

In addition, CORBA has grown to include not only a base definition of intercon-
nectivity, but to define a rich set of services that a variety of vendors may implement
and sell as plug-in objects. For example, CORBA specifies a Security service, a Persis-
tence service, a Trading service, a Collections service, a Transaction service, and so on.
Any vendor’s CORBA-compliant Security service is guaranteed, by way of the basic
CORBA interoperability, to work with any vendor’s Persistence service. In turn, any
CosSecurity-compliant vendor’s capabilities are completely known and well-defined,
and clients don’t have to scramble to adjust their security-usage code to a new vendor
if vendors need to change. As a result, developers and system architects can now build
a complete best-of-breed system without having to worry about compatibility and/
or interoperability.

This rich set of services isn’t limited to broad-base specifications such as Trans-
actions or Lifecycle, either; CORBA facilities are being developed that are specific to
particular industries—DBioscience, Telecommunications, and so on. Before 1996, this
was one of the weakest areas of CORBA, but CORBA’s growing interest has sparked a
tremendous amount of growth in this area. This, in turn, offers tremendous potential
for standardization and reuse within vertical industries.

The immediate drawback to CORBA is its overwhelming size and scope—it is
huge. With over 800 participating vendors, and that number climbing every day,
CORBA consists of a tremendous number of interfaces, products, vendors, and meetings.
What’s more, because CORBA is, quite literally, a design by committee, it doesn’t
move as fast as technologies developed by single vendors, such as Microsoft DCOM/
MTS or Sun RMI and EJB technologies. Worse, parts of CORBA will be vendor-specific,

TECHNOLOGIES 431

15.3.6

432

and one particular vendor’s ORB may have features that another vendor’s, on a dif-
ferent platform, may not. This in turn makes it difficult for new CORBA developers
to determine precisely which features of the ORB are CORBA, and which aren’t (and
need to be avoided in the name of portability).

Despite these drawbacks, I believe CORBA to be a critical technology to the ulti-
mate success of Java; Java is built upon the concepts of cross-platform compatibility
and binary interoperability, concepts which CORBA has espoused almost since its
inception. In addition, freeware ORBs such as MICO, ORBacus, and omniORB (from
the UK arm of AT&T Research) give Java developers no reason not to, at the very least,
investigate this technology.

Object Request Brokers: Distributed Component Object Model

Microsoft Distributed Component Object Model, as maligned as it is within the Java
community, is another option as an ORB; unlike other ORBs, however, DCOM is not
an ORB that has its roots in CORBA, but in its localized immediate ancestor, COM.

COM originally grew out of Microsoft’s quest to improve interapplication com-
munication and coordination. COM was born on the backs of such technologies as
DDE (dynamic data exchange) and OLE (object linking and embedding), both of
which in turn were carried on the weight of Microsoft Windows” Clipboard. Despite
this rather unglorified beginning, COM quickly became the de facto standard for
object interoperability on a machine. By 1995, Microsoft had publicly stated its inten-
tion to move all of its development and technologies over to a common COM back-
plane, and by 1998, that goal was largely realized; only the basic Windows API calls
(CreateWindow , ShowWindow, CreateProcess , and so forth) are still written
with C/C++-centric interfaces.

Like Java, COM relies heavily on the separation of interface from implementa-
tion. In COM and DCOM, a developer creates an interface class that describes the
behavior an object type promises to provide; for example, all COM objects must
implement the IUnknown interface, which provides just three methods: AddRef,
Release ,and Queryinterface . The first two deal with COM’s reference-counting
architecture, the last provides the basic mechanism by which the other interfaces sup-
ported on this object can be obtained. Some COM object implementations will simply
provide implementation for a variety of interfaces, while others will create custom
interfaces for custom application use. ActiveX controls, for example, are nothing more
than COM components that implement a prescribed set of interfaces that ActiveX
containers call on at various times.

It may be heretical and sacrilegious to say this among Java developers, but COM/
DCOM isn’t that bad an architecture. Granted, it is principally limited to the Win32
platforms (Windows 95/98 and NT), but within the Windows world it truly reigns
supreme. Any sort of interapplication or interobject access to any existing product
almost certainly provides a COM interface, and Microsoft’s Java/COM integration as
part of its JVM implementation, while certainly nonstandard and nonportable across

CHAPTER 15 MIDDLEWARE

15.3.7

platforms, is still by far the best way to access COM components. What's more, COM’s
tight integration with the Windows platform offers COM components a much greater
degree of flexibility and accessibility to the underlying system than Java alone can provide.

I am not advocating the use of COM/DCOM on all projects; far from it. COM
and DCOM are not the be-all and end-all technology any more than EJB or CORBA
are. COM/DCOM are, however, sometimes the most practical solution for working
with code and systems on the Windows platform. Given that the Windows platform
commands an overwhelming presence on the desktop market, Java developers as a
whole simply cannot ignore the presence of this technology as an option.

Message-Oriented Middleware: JMS

One of the problems with traditional call-based synchronous systems such as CORBA,
RMI, or COM/DCOM is that they’re notoriously unforgiving. If the server is down,
the call fails. If the network connection happens to lose a few of the packets in the
call, the call fails. If there is any version or marshaling discrepancy between the caller
and the server, the call fails. A traditional call-synchronous system is so inflexible it’s a
wonder it works at all.

In addition, a traditional call-based system requires a recipient object on the other
side. It becomes more difficult and awkward to implement a clustered system when a
specific target has to be known before the call is made. In many cases, life would be
much simpler if we could simply dump the call into a queue for any available object
to pull, answer, and send a response. In a lot of ways, we’d like to be able to make soft-
ware calls in the same manner in which we send email, instead of the current request-
respond system, which more closely imitates a phone conversation.

This analogy is actually a very accurate one. With a phone call, the exact recipient
must be known, and the recipient must be available in order for the phone conversa-
tion to take place. The call is intrusive, in that the recipient must spend time imme-
diately to be a part of the conversation; sometimes the recipient can do other things
while participating, but this is recipient-specific and not always guaranteed. If the
phone lines are noisy or bad, the conversation may not be able to take place, or worse,
the content of the conversation may be garbled or misunderstood. Sometimes the
recipient is busy and can’t answer the phone, and the caller has to abandon the attempt
at some point and either try the call again or figure out how to cope without the ben-

efit of the call.

In an email conversation, however, many of these requirements are relaxed. The
recipient only has to be known insofar as the email account to which the email is sent
needs to be known; any individual (or group of individuals) can access the account and
read the sent message. Email is inherently nonintrusive, in that the message is simply
(and silently) deposited into the email account, and the recipient, when he/she has the
time, can access the message and take appropriate action whenever it best fits in with the
current schedule. If a more pressing concern is at hand, the recipient can simply ignore

TECHNOLOGIES 433

434

the request until a more convenient time. If the recipient can do multiple things simul-
taneously, he/she can answer multiple messages at once; if not, they are handled in serial
fashion. The recipient is thus permitted greater latitude in optimizing their behavior.

If the network drops a packet or two, the email system can either request the
packet over again, or send a message back to the sender that the message could not be
delivered. The sender can then decide whether or not to retry. At the same time, the
email system may decide to let the recipient make that decision, and inform the recip-
ient of the message and its garbled nature. The recipient can then decide how best to
handle the situation, either by attempting to ungarble the message, or simply request
a retransmission of the request.

Enter MOM.

A message-oriented system, as its name implies, is one that uses discrete messages
between client and server (although these terms aren’t exactly correct in this situation)
to communicate, much as individuals in a corporation use email to communicate and
corroborate. The sender creates a message, and sends it to the recipient’s input sink,
which accepts the message. At this point, the first phase of the conversation is com-
plete, with no expectations left on either side. The recipient can respond, or not,
depending on what it chooses to do.

Although a number of MOM systems exist, including IBM’s MQSeries or
Microsoft’s MSMQ, Java presents Java Message Service (JMS), which presents a com-
mon interface and API for using any messaging system. In effect, JMS provides a
Facade interface over any and all messaging systems. A messaging system that provides
a JMS API is called a JMS provider.

In this manner, JMS allows the maximum amount of vendor flexibility:

“Some systems are capable of broadcasting a message to many destinations.
Others only support sending a message to a single destination. Some systems
provide facilities for asynchronous receipt of messages (messages delivered to
a client as they arrive). Others support only synchronous receipt (a client must
request cach message). Each messaging system typically provides a range of ser-
vice that can be selected on a per message basis. One important attribute is the
lengths to which the system will go to insure delivery. This varies from simple
best effort to guaranteed, only once delivery. Other important attributes are
message time-to-live, priority and whether a response is required.”

Java Message Service Specification 1.01a p. 13

One of the principal advantages this offers is the notion of disconnected clients:
a client can physically disconnect from the server or network, and send requests to a
persistent queue of messages for later transmission and receipt. This means that the
software using the middleware no longer has to worry about the connectedness of the
client; the client simply sends the message.

CHAPTER 15 MIDDLEWARE

15.3.8

The drawback, of course, is that if the request is one requiring an immediate
response, the client needs to be written in such a way as to tie the response to the
request. This means that an inventory system, for example, can be built with JMS, and
the salesman running the client-side application doesn’t have to be connected to the
Internet to process an order. Instead, the JMS system queues up the message, and as
soon as the JMS provider is able to make the send, it passes the message on to the
server, which processes the request and sends a reply (or not). Try this sort of discon-
nected operation with RMI, CORBA, or DCOM, and you’ll have to manage this “am-
I-connected?” differentiation yourself.

Objects across the wire: Mobile objects

As its name implies, a mobile object is free to move from its current process or imple-
mentation space into another one with few, if any, restrictions on its ability to do so.

One key aspect to understand is the difference between mobile objects and mobile
agents. A mobile object is an object, both executable code and its accompanying data,
that can migrate from one process space to another, either on another machine or in
a separate process on the same machine. A mobile agent is a specialized form of mobile
object, one that contains the necessary intelligence to understand and direct its own
course. For example, a mobile agent might be dispatched to an auction or classifieds
site with orders to find Sacramento Kings playoff tickets for under $100; the agent
would also contain the necessary data to complete the transaction once a satisfactory
result is found, perhaps the user’s credit card number or a phone number to call to
allow humans to complete the transaction. This is an “intelligent” agent, and doesn’t
necessarily imply mobility. The same agent, for example, might be able to conduct its
search entirely from a remote client/server approach instead of physically picking itself
up and moving to the server site.

Mobile objects take the concept of the distributed object to one extreme, where
an object is completely location-independent, but location-specific. By that, we mean
that the object lives in one and only one JVM, but that exact JVM can change from
one moment to the next. The mobile object cannot be seen from any other JVM other
than the one in which it currently lives, but may move (either when called or when
told to) to that same JVM as necessary to complete its business.

Mobile objects offer a number of advantages over remote procedure call or object
request broker systems. Because the object is always local to its clients (remember, it
can’t be seen outside of its current living space), no stub or skeleton code is required.
When the object moves, the code to execute the object moves with it. Because the code
always moves with the object, no deployment issues are at stake—no stubs and no
skeletons means no need to make sure that code exists on both client and/or server
environments. Encapsulation can be preserved, because the object can be identified
through a well-known interface and nothing more specific. And, even more important
in high-traffic distributed object systems, network bandwidth can be reduced to the
minimum necessary to transmit the object itself and nothing more.

TECHNOLOGIES 435

436

Consider, for example, a mobile transaction object in a database system. Instead
of opening a transaction space on the server, the client creates a mobile transaction
object on the client. It loads up the transaction object with the requested changes
to the database entities by making the changes to the transaction object itself. Then,
when the client wants to commit the entire transaction, the mobile transaction
object picks itself up, moves to the server, and executes each of the database requests
directly on the server. If one of the requests fails, the transaction object can move
back to the client with the reason for the failure; if it succeeds, the transaction object
returns with the success indicator. If the client needs to cancel the transaction for
any reason, it simply throws away the transaction object before it is sent, and no
server activity was wasted on a transaction that wasn’t ever going to be committed
in the first place.

The mobile object paradigm works well for object-oriented developers because it
is inherently object-based. Both RPC and ORB systems are functionally based—a call
to a remote object involves sending the parameters to the call across the wire to be exe-
cuted over there, and retrieving the return value back over here. The RPC-based or
ORB-based object, despite the appearance it tries to present of being colocated with
the client, consists of two parts: a local Proxy object, and the remote Server object that
does the actual work. A mobile object, on the other hand, has no such dual personality;
it is either local or not there.

The mobile object paradigm also fits in well with the encapsulated thread-object
concept discussed in chapter 4 and other Java Threading discussions. Just as objects
can now be active, with a Thread tied specifically to the object to execute the object’s
code, now the object can use that Thread to move from process to process. Now the
object can not only execute independently of other objects in the process, but it can
operate independently of process boundaries as a whole.

One big disadvantage to the mobile object concept, however, is the increased
overhead of transmitting the object overhead from one process to another as opposed
to making a standard distributed call. This sounds contradictory with the reduced
bandwidth discussion, but it depends on the context of the discussion. For example,
for a one-shot request-response protocol such as HT'TP, moving the object to the server
and back again for that one request is horribly inefficient. Remember, not only does
the object’s data need to be moved, but if the object has never been there before, so
may the object’s code. The payoff comes in two forms: when the object remains on
the server to conduct a number of requests one-after-the-other, and when the object
can conduct filtering or other processing on the server instead of having to bring it all
back to the client.

Consider the mobile-object database system discussed earlier—instead of sending
the ResultSet back to the client for the client to filter, the mobile-object database
request can instead filter it on the server. Then, after the appropriate data has been
found, the mobile object moves back to the client with its reduced data set. (SQL
experts will scoff at this simplified example, since well-written SQL can do precisely

CHAPTER 15 MIDDLEWARE

the same sort of filtering, which accomplishes the same result: filtering the data on the
server. Typically, however, database systems can’t apply a filter across multiple data-
bases, where a mobile-object system could—load a result set from one database, check
it against the results from another database, and bring the reduced result set back to
the client. A better example might be a POP3 mobile object system, where the mobile
object journeys to the server, applies its filter rules to filter out spam messages, then
returns only those messages not filtered out.)

Another particularly sensitive disadvantage is the very notion of a mobile object—
obtaining code from another source to be executed on this machine. This, if used mali-
ciously, is a huge security hole, and one which mobile object vendors have to answer
before they can be taken seriously for anything outside of a well-protected intranet.
Because the mobile object server cannot necessarily discern good code from bad (code
that starts deleting files across the hard drive could either be a mobile-object virus, or
a periodic sweep-the-garbage daemon), extreme care is necessary when working with
mobile objects in anything but the most trusted of environments.

Mobile object systems have tremendous possibilities completely outside of the
mobile agent arena. Mobile objects can be used for transactioning, as described above.
A mobile object can contain the necessary data to apply a variety of requests or
demands on a variety of different servers—for example, a mobile object that contains
a single email template request. The mobile object first moves to a database server, to
execute a set of SQL statements to obtain a list of customers to whom the email template
will be sent. After storing the results set into the mobile object, the object then moves
to the email system, generating a single email whose contents may vary based on the
data retrieved from the result set. Once the emails have been sent, the mobile object
can remain on the server until a response is received from each email recipient, or until
delivery has been guaranteed, and returns to the client with a list of those customers
whose emails failed, or whose responses were received by a certain date.

Mobile object systems also offer some load-balancing opportunities. A collection
of servers is set up, each with a mobile object server running on it, and a single server
is designated as the gateway server. Mobile Request objects are forwarded to the gate-
way mobile object server, which then takes note of the CPU loads on each of the servers
in this primitive cluster, and dispatches the incoming mobile object to the one with the
lowest CPU load. The same approach can be taken to provide a limited form of failover
support—an object, upon receipt, is first dispatched to the primary mobile object
server. If it fails to respond, or the mobile object fails to return after a certain period of
time, the incoming mobile object can be redispatched to a secondary or tertiary server.

This collection of mobile object servers also provides the ability to hide servers
from public access. Incoming mobile objects are dispatched to a single point-of-access
mobile object server, which then examines the actual incoming mobile object’s type
and redirects the object to another server. In this manner, the database server, the mail
server, and other machines with sensitive data (including distributed object servers)
can be hidden from public view.

TECHNOLOGIES 437

438

Lastly, the mobile object concept offers disconnected operations, a capability that
no RPC or ORB system can match. Because the mobile object’s network bandwidth
comes in one whole shot, and requires no further connection back to its sender, should
the network go down between the sender and the recipient, the mobile object isn’t
adversely affected. In fact, it will continue to operate just as it normally would up until
the point it needs to return. Then, rather than being forced to abandon the entire
operation, as might be necessary with an RPC or ORB system, the mobile object can
sleep for a few minutes, hours, or days, periodically trying to move until it succeeds.
In an unreliable or unguaranteed network, this can mean the crucial difference
between 99.9 percent reliability and 50 percent reliability. By doing this, we've
reduced the vulnerability of the system to the network. Instead of being vulnerable to
outages the entire time the client is attempting to communicate with the server, we’re
now only vulnerable during the object’s dispatch. Should the object fail to successtully
transfer, the object (and its inherent state, which is the far more critical concern)
remains alive and well in its original process space. The object can then attempt to
retry right away, with no loss of service except a bit of time.

Java’s suitability for mobile objects

Mobile objects have been around in research circles for years, but not until the wide-
spread acceptance of Java as a real development language did mobile objects begin to
gain credibility as an enterprise production system option. Java’s inherent portability
allows for mobile object systems to transcend machine/operating system boundaries.
Java’s Serialization support allows for easy transference of objects across the wire. And,
to top it all off, Java’s ClassLoading mechanism offers a strong model by which Java
can bring new code into the system and unload it again when necessary or desired.

In fact, if you stop to think about it, by combining Object Serialization over a
Socket with the SocketClassLoader system discussed in chapter 6, you already have the
basic makings of a mobile object system. The object, when it wishes to move from one
JVM to another, opens a connection to the recipient JVM on a given Socket, and sends
its class name and a Serialized representation of itself across the wire. On the recipient
end, the mobile object server tries to instantiate an instance of the class given by the
class name sent using a SocketClassLoader that points back to the sender’s JVM. If the
recipient has the code for the mobile object, the rules of Java 2 say that it will be loaded
before asking the sending JVM; if not, the sending JVM will send the bytecode repre-
sentation. The recipient then deserializes the object representation into the newly cre-
ated object, and the object has suddenly moved from one JVM to the other. The only
tricky part at this point is getting the newly transferred object to restart execution
within the method which caused the object to move; this can be achieved through a
variety of ways, including having the sender include a method name to execute once
the object is transferred, and leaving it to the object to deal with its sudden transfer.

CHAPTER 15 MIDDLEWARE

Mobile object basics

Currently, two mobile object implementations are in wide use: the Voyager system
from ObjectSpace, and the Aglets toolkit from IBM. The Voyager toolkit enjoys bet-
ter name recognition and has better commercial recognizability, owing principally to
its position as the product of the only widely known vendor (perhaps the only ven-
dor, period) of a mobile object system, but the Aglets toolkit also enjoys a wide fol-
lowing, and IBM’s work in (and support of) Java is certainly nothing to ignore.

Implementing a mobile object in the Aglets toolkit looks something like the
following:

public class CreationChild extends com.ibm.aglet.Aglet

{
public CreationChild()
{
/I Print to the console...
}
public void onCreation(Object init)
{
/I Print to the console...
}
public void run()
{
/I Print to the console...
}
}

In the Aglets toolkit, a mobile object must extend the Aglet class; this gives it the
basic functionality to move from one JVM to another. To actually create and move the
Aglet, use something like the following:

public class CreationExample extends Aglet

{
public void run()
{
try
{
getAgletContext().createAglent(
getCodeBase(), “CreationChild”, null);
dispatch(new URL(“atp://some.host.com/context”));
}
catch (Exception e)
{ System.out.printin(e.getMessage()); }
}
}

In this code, the CreationExample needs to extend Aglet in order to obtain the Aglet-
Context (the host for all Aglets running in this process) in order to create the Aglet.

12 Programming and Deploying Java Mobile Agents with Agless, pp. 43, 54

TECHNOLOGIES 439

440

The createAglet ~ method expects an array of Objects in the third parameter,
which it then directly passes on as the parameter to the created Aglet’s onCreation
method. After the Aglets’ onCreation s called, it’s given its own Thread to operate
within, and the Aglet’s run method is called. The dispatch method then does the
actual move of the object to the remote machine, in this case using the Aglets Transport
Protocol (ATP) to move the Aglet from the current host to the remote host.

Implementing a mobile object in Voyager!? is as simple as calling the mobile
object’s moveTo method with the URL of the host-and-port to send the object to, and
optionally the name of the method on the class to call when the object is successfully
transferred. The code below!# creates a StockMarket object on the Voyager server run-
ning on port 8000 on the machine named “dallas”, and moves it to the Voyager server
running on port 9000 on the machine named “tokyo”:

IStockmarket market =
(IStockmarket)Factory.create(“Stockmarket”, “//dallas:8000");

. ..

IMobility mobility = Mobility.of(market);

mobility.moveTo(*//tokyo:9000");

In essence, it’s that simple. The IStockmarket interface is written by the user and
the Stockmarket class is a custom class that implements the IStockmarket — and
Serializable interfaces. Note how Voyager, in comparison to the Agelts toolkit,
requires no other hooks or base classes in your class implementations. None are nec-
essary— Voyager will synthesize the necessary code where required to enable remote
communications, as we discussed in chapter 2.

Clients (or the objects themselves) can also receive notifications on mobility
events by implementing Voyager’s IMobile interface, which in turn provides the
preDeparture , preArrival , postArrival , and postDeparture methods
for Voyager to call as each event takes place. This capability gives the object awareness
of the environment into which it has been moved, which can be useful in giving the
object some self-awareness or self-direction capability (in short, moving the object
closer to becoming a mobile agent instead of just a mobile object).

Mobile object design

One of the issues that immediately confronts the mobile object developer is that
designs must accommodate this shift in thinking. Server objects in a distributed sys-
tem are hung out off the server system for anyone to find them; a mobile object, on
the other hand, lives in one and only one process. Where a client in an RPC or ORB
system creates a connection to the single server object and obtains its own proxy, the
client in a mobile object system fires his own object at the mobile object server on the

13 These examples are using Voyager 2.0; as of this writing, ObjectSpace had released Voyager 3.0
14 ObjectSpace Voyager Core Technology 2.0 User Guide, p. 40

CHAPTER 15 MIDDLEWARE

15.3.9

server machine, and waits for the object to return with the completed request. Or the
client sends some sort of lightweight message to a server object (by using a messaging
call, in Voyager, or perhaps by dispatching a lightweight mobile object) and obtains
his own mobile object server back. Regardless, this is now completely different from
what RPC/ORB developers are accustomed to.

This isn’t to say that it’s any more difficult to work with a mobile-object-based
distributed system; it’s only to say that it’s different, and requires a new approach and
new way of thinking. Instead of thinking in terms of opening connections to the
server, think in terms of sending an object to make a request, and receiving an object
containing the reply in return.

Objects across the wire: shared objects

Shared objects, such as mobile objects, take the object-oriented paradigm to the very
edges of the distributed world, but in the opposite direction. Instead of making
objects move across the network one node at a time, a shared object is visible to every
node across the network, simultaneously and asynchronously. If one process on the
network modifies the shared object, every process sees that modification. If a new
object is placed into the shared space by one process, every node on the network
immediately knows about it and has access to it. In short, where the mobile object
paradigm told developers to ignore the limitations of machine and/or process bound-
aries by granting the object mobility, the shared object paradigm tells developers to
ignore the limitations of machine and/or process boundaries by simply paying no
attention to the middleware in between. It’s an exciting concept, and one that fits in
even more nicely with the general notion of object-oriented development.

Shared object basics

While a number of shared object implementations are available, all basically center
around the same concept: in order to share an object across the wire, space needs to
be created into which these objects can be placed. Clients (peers, actually) then join
that particular space, and request objects from the space to obtain a local copy of the
shared object. Once retrieved, clients can modify the shared copy by setting the
object’s value via its accessor/mutator (get/set) methods, and the underlying shared
object system takes care of the details from there. The next time a client accesses the
shared object, its new values are presented, without having to worry about polling for
its new values or making a call to the remote server object.

Some systems also carry the more primitive/basic notion of information channels,
to which clients can subscribe for messages sent down the channel. As opposed to cre-
ating a shared canvas on which each client is free to make its own modifications, a
channel creates a public chat room to which clients can make comments of any form.
The difference is subtle.

Any time an object can be modified by more than one entity in a single moment,
synchronization issues arise. Until now, synchronization/concurrency issues have all

TECHNOLOGIES 441

442

been within a multithreaded context—multiple threads attempting to access and/or
modify a single instance at the same time. Within Java, this is corrected by using the
synchronized keyword, and by using the Object methods wait and notify or
notifyAll to guard against sensitive areas of code being accessed by more than one
Thread at a time.

Unfortunately, Java monitors are entirely intraprocess; this means that if a par-
ticular Thread has a lock on an instance, that lock is good for that JVM only. Threads
running in separate JVMs have no idea the lock—or even the instance—exists. This
raises a distinct problem when data is being shared across multiple JVMs, as shared
objects are. A shared-object system must provide for some kind of cross-JVM concur-
rency synchronization, or the same thing will happen within the shared-object system
as happens in unsynchronized multithreaded JVM applications—chaos. Typically,
this answer is to provide, explicitly or implicitly, the ability for a client to obtain a lock
on a given shared object, to which no other client will be given until the currently
holding client releases it.

Four implementations of the shared object approach are currently freely available:
IBM’s SDO (Shared Data Objects) from the AlphaWorks IBM site (www.alpha-
works.ibm.com), ObjectSpaces’s Subspace mechanism within its Voyager product
(www.objectspace.com), Sun’s JavaSpaces implementation that comes as part of the
Jini toolkit (www.javasoft.com), and Sun’s independent Java Shared Data Toolkit.
(http://java.sun.com/products/java-media/jsdt/index.htm).

IBM Shared Data Objects

In the IBM SDO toolkit, shared objects must be registered within a SharingContext,
which runs on a particular server. Because an SDO server must be running in order to
permit the SharingContext to be found and connection established, SDO is not a clus-
tered object-sharing approach as much as a client/server object-sharing approach. Because
of that, SDO will not offer clustering-reliability benefits—if the server goes down, all the
shared objects within the SharingContexts held by that server go down with it.

The starting point of the SDO toolkit is the ObjectFactory class, which contains
a number of static methods to retrieve various SDO objects; for example, the Object-
Factory class must be used to create the SharingContext for this particular client. In
fact, the ObjectFactory doesn’t create the SharingContext on the server (unless this is
the first client to attempt a connection with the given SharingContext), but creates a
Proxy to the SharingContext within this client’s JVM. Once the SharingContext is
retrieved, objects implementing the SDO SharableObject interface can be shared
(placed into or copied from) the SharingContext.

To connect to a particular server and retrieve an object “Foo” from the Sharing-
Context “Bar”, for example, the following code would be used:

String userName = “Joe”;
SharingContext ctx = ObjectFactory.createSharingContext();

CHAPTER 15 MIDDLEWARE

ctx.join(“server”, “Bar”, userName, userName, null);
SharableObject obj = ctx.share(“Foo0”);

The join call has several forms; the above call uses “server” as the server to connect
to, “Bar” as the name of the SharingContext to join, “Joe” (inside userName) as the
user’s authentication name and nickname, and null as the user’s credentials (for
security purposes). To create an object to be shared within the SharingContext, the
various forms of the create<objectType> methods may be used to create the
Sharable instance; the instance still has to be registered within the SharableContext,
however, before its state is copied to all clients that will look to register with it:

SharableString stringObj = ctx.createSharableString();
stringObj.setValue(“This is a shared String”);
stringObj.share(ctx, “Foo”);

Each SharingContext has a limited lifetime—it exists only so long as it has clients
connected to it. Once the last client leaves the SharingContext, it is destroyed, and
any shared objects within it are lost. If the shared objects need to remain alive even
while no clients are connected, a PersistentSharingContext can be used instead, by
calling ObjectFactory’s createPersistentSharingContext . The principal dif-
ference between this and the nonpersistent version is that any shared objects within
the SharingContext will never die—instead, clients will be individually responsible
for destroying the shared instances within the SharingContext. Failure to do so will
result in bloated SharingContexts, but no other detrimental effects.

Java Shared Data Toolkit

JSDT’s notion of shared space is a Session object, and peers access (or create) a Session
by using a specialized form of URL to identify a unique Session by host name, port,
connection type, and name. JSDT, unlike the other shared object implementations,
explicitly allows for varied communication wire protocols. JSDT provides four differ-
ent implementations for the communications layer: TCP/IP sockets, using HTTP com-
mands, using an external lightweight reliable multicast package (LRMP), or RMI calls.
Note that a Session using one of these communications layers is not accessible via
another communications implementation; so, for example, a socket Session would not
be accessible to a Client wishing to use the RMI protocol to communicate with it.
JSDT shared objects also have to have a centralized point by which created Ses-
sions can be found by those wishing to connect to the host, just as RPC and/or ORB
systems have. (This means JSDT is similar to IBM’s SDO, in that it is a client-server
object-sharing system.) Correspondingly, JSDT requires that an instance of the appro-
priate communications layer’s Registry be running when attempting to create a Session
on that host. Multiple Registries for different communications layers are permitted,
but multiple Registries for a single communications layer are not. Clients can either
rely on the appropriate Registry instance to be run outside of the current JVM, or can
create an instance of the Registry within the local JVM. Running the Registry outside

TECHNOLOGIES 443

444

the current JVM requires that it be fired up as a separate process, a la the RMI Registry;
running the Registry instance inside the current JVM means that the lifetime of the
Registry is tied to that of the current Java process, and since only one Registry can be
running on a given host at a given time for a given protocol, all shared objects living
in that Registry die when the Registry goes down. For a system on which only a single
JSDT application is running, this is not a problem, since the Registry won’t be neces-
sary once the application quits. Should other JSDT applications join that first one,
however, it becomes less feasible to run the Registry instance within the process, since
other applications may depend on that Registry; when it goes down, they all go down.

Objects which wish to participate in JSDT are required to implement the Client
interface if they wish to create or access shared objects. The Client interface consists
of two methods, getName and authenticate . The first identifies the Client
uniquely within the Session, while the second gives the shared object a chance to con-
trol which Clients are permitted to join the Session (or objects therein).

The following code demonstrates a Client accessing the Session “TestSession”
running on the host “localhost” on the port 4567, using the socket protocol, and
accessing the ByteArray called “Test”:

import com.sun.media.jsdt.*;
import com.sun.media.jsdt.event.*;

public class ClientMain
implements Client
private Session m_session;
private String m_name;

public ClientMain()

{
m_name = "TestClient" + System.currentTimeMillis();
}
public static void main(String[] args)
{

1
ClientMai n m = new ClientMain();

/I Create the JSDT URL
URLString url =
URLString.createSessionURL("localhsot”, 4567, "socket",
"TestSession");

/I Connect to the Session; if the Session isn't there yet,
/I spin in a loop, sleeping every 5 seconds, until it is
boolean created = false;

try
{
/I Connect
while (created==false)
{

CHAPTER 15 MIDDLEWARE

if (SessionFactory.sessionExists(url))

{
m_session =
SessionFactory.createSession(m,
url,
true);
created = true;
}
else
{
try
{
Thread.sleep(5 * 1000);
}
catch (InterruptedException intEx)
{1}
}

}

/I Get the ByteArray object
ByteArray byteArray =
m_session.createByteArray(m, "TestBA", true);

Object obj = byteArray.getValueAsObiject();

}(l;atch (JSDTException jsdtEx)
{ jsdtEx.printStackTrace();
}catch (Exception ex)

{ ex.printStackTrace();

}

}

1
/I Client methods
public Object authenticate(Authenticationinfo info)

{
return null;
}
public String getName()
{
return name;
}

}

In the preceding code, main , after creating the ClientMain object instance we’ll use
to access the shared objects, first creates a JSDT URL that references the host “local-
host”, on port 4567, using sockets, and the Session “TestSession”. URLString is an
assistant class that provides several static convenience methods for building correct
JSDT URLs; the above URL, when written out as a String, appears as:

TECHNOLOGIES 445

446

jsdt://localhost:4567/socket/Session/TestSession

The URLString method createURLString simply builds them with less chance of
a typo introducing a bug.

Next, the main method attempts to connect to the Session given by the above
URLString. It uses the sessionExists ~ method of the class SessionFactory to deter-
mine whether the Session given by that URLString is actually available; if not, it sleeps
for five seconds before trying again. Note that this isn’t required; the method could
simply call createSession without checking to see if it exists already. If the Session
didn’t exist, createSession would go ahead and create it. Remember, this is col-
laborative computing: any Clients in the Session are peers, not simply clients request-
ing actions of a server.

Once the Session exists, ClientMain connects to it by calling createSession
on the SessionFactory class. The createSession call takes the Client that wishes to
join/find/create the Session, the URLString of the Session, and a boolean parameter
indicating whether the Client wishes to immediately join the Session. Clients need not
join it right away; they may have good reason not to just yet.

Once the Client has joined the Session, it can participate in Channels, look up
or create ByteArrays, attempt to obtain Tokens, or listen to events fired by any of these
objects. Creating or joining a Channel is as simple as calling the Session’s create-
Channel method, and listening for data sent down the Channel means implementing
the ChannelConsumer interface and providing an implementation to the data-
Received method. Note that because dataReceived can be called from any
Thread in the system, dataReceived = must be thread-safe and/or marked synchronized.

In the ClientMain sample, after joining the TestSession Session, main attempts
to obtain the ByteArray named “Test”, and store its value to the local Object instance
obj . ByteArrays can store ecither raw arrays of Java byte data, or store Serializable

Object data.

Interested parties can also implement one of the Listener interfaces in JSDT—
SessionListener , Channellistener , ByteArrayListener , TokenListener
or ClientListener , and register themselves with the appropriate object type:

public class MyListener
implements ByteArrayListener

{

[/ mplement the ByteArrayListener methods here

}

ByteArray ba = session.createByteArray(client, “Test”, true);
ba.addListener(new MyListener());

Now, whenever the ByteArray named “Test” is joined by a Client, or is changed, or a
Client leaves, is expelled from, or is invited to join the ByteArray, the MyListener
object will be notified. (Clients wishing to be notified on the construction or destruction
of a ByteArray will need to implement the SessionListener interface and register
themselves with the Session itself.)

CHAPTER 15 MIDDLEWARE

Shared object design

As with the mobile object approach, shared object design requires a bit of forethought
on the part of the system architect in order to create a successful software system. In
some ways, shared objects make the architect’s life easier, by allowing the design to
focus on the object model, and not on the middleware technology underneath. No
more focusing on client or server arrangements, no more time spent building Factory
objects that in turn created the objects in which clients are interested. Simply create the
object to be shared in a shared object space, and let every node on the network see it.

Unfortunately, this carries with it its own set of drawbacks, as well. Consider a
classic three-tier system consisting of the usual database, business object and presen-
tation layer. Simply placing all of the database objects into a shared space has serious
ramifications regarding scalability—if the database grows to hold a million rows (that
is, a million separate entities, each of which will probably translate into an individual
object), a million objects in the shared object space will easily kill most servers. Yet a
traditional RPC/ORB system can deal with such a large-sized database easily, because
it is understood that not all of these objects will be needed at the same time—some
can be safely removed from working space and cached off to disk. If a shared-object
system attempts to do the same sort of caching, then the act of moving the objects to
and from disk is exposed to clients.

Worse yet, because any peer can modify the objects in the shared space, a specific
listener must be established to listen to changes to any of these objects, and mirror those
changes back to permanent storage (database, file, OODBMS, and so forth). If no per-
manent storage system is in place, the system runs a risk of a power outage across all
the machines bringing down the system's data. Interestingly enough, the outage must
affect all of the machines participating in the shared space; if even one remains up, all
of the data will be preserved, since that machine will have localized copies of all the data
stored in the shared space. This has some interesting ramifications for fault-tolerance
and failover, but equally disturbing ramifications about the amount of core memory
that must be available on each system participating in the shared-object session.

Additionally, one of the problems faced by several shared-object implementations
is the assumption that code for the shared object is already present within the peer/
client’s name space. For example, if I try to put a custom object up into a JSDT Session
(using the socket type), and the code for the object isn’t present in another connected
Client’s JVM, that Client, when it attempts to reference the object, will generate a
ClassNotFoundException . One approach to working around this is to create a
specialized ClassLoader Session that in turn is shared across all peers, as well, so that
any object type placed up into a Session can also have the code for that object type
placed up in the corresponding ClassLoader Session, as well. Then, any Client looking
to obtain the object can ask the ClassLoader Session for the code for that object, and
everybody is back on the same page. (Because JavaSpaces is based on Jini, which in
turn uses RMI as its communications layer, JavaSpaces lacks this problem.)

TECHNOLOGIES 447

15.4

448

Just as mobile object systems required some special attention to particular aspects
of the design, so do shared object systems. In the past, using RPC/ORB systems, we
were able to get away with a certain amount of laziness and sloth regarding encapsu-
lation of the data-access layer because the RPC/ORB system hid the actual implemen-
tation from clients by nature. A shared object system, however, doesn’t offer us that
implicit shield, and so the design will need to do so instead, if necessary.

EMPLOYEE MIDDLEWARE MODELS

Going back to our Employee system, we’re still looking for a solution that permits us
to access the IEmployeeModel instance from any JVM, from any machine. We’d like
to take advantage of the opportunities offered by the various middleware technolo-
gies, but which technology we finally use depends in large part on what, precisely, our
goals are in distributing the system. Our options include:

o Sockets

The old Internet standby. We use the Serialization techniques from chapter 7 to cre-
ate objects in a RemoteObjectStorage instance, and simply pass them back and
forth. What this approach offers in simplicity (at first), it lacks in scalability and
really lacks in connectivity—because all the objects are being passed around by value,
it means that any changes made locally will not take effect until they are checked
back into the server, and all clients immediately obtain the new instance. It’s clumsy,
awkward, and highly inefficient, but sometimes, it’s all you have to work with.

* RMI
The old Java Client/Server RPC standby. We can build a standard client/server RMI
(either RMI/JRMP or RMI/IIOB it won’t matter much to the actual implementa-
tion) server that in turn wraps an IEmployeeModel (either Hashtable or RDBMY)
instance for the actual storage. This is the most popular (at least when counting
example implementations in books, magazines and conference papers) approach.

e CORBA
Another version of the Client/Server-RPC system, using CORBA instead of RMI.

* DCOM
Probably not an option in a heterogenous system, but on an all-Microsoft net-
work, given DCOM’s integration into the Windows OS layers, this offers
opportunities that CORBA or RMI can’t. DCOM will really fall down in an
Internet-distributed system, whereas RMI or CORBA will shine.

* CORBA/RMI/DCOM Hybrid
This offers excellent options. Using a commercial COM-CORBA bridge, such as
that offered by Iona (www.iona.com), Jintegra (www.linar.com) or VisualEdge
(www.visualedge.com), we can “glue” COM and CORBA objects together to call
transparently from one to the other. This offers us a best-of-both-worlds approach:

CHAPTER 15 MIDDLEWARE

use RMI or CORBA to reach across heterogenous systems, and COM/DCOM to
integrate more tightly into a Windows environment.
* RmiJdbc 2-tier RDBMSModel

By placing the RDBMSModel on each client, and using the RmiJdbc JDBC
driver to reach across the network to the server, we can gain very quick connec-
tivity without requiring any additional development. Unfortunately, this isn’t a
true n-tier model, but since all the details of the actual model used are hidden
behind the IEmployeeModel interface, clients neither know nor care.

o Shared-object model
Despite the inherent scalability restrictions, it’s certainly possible to build a
JSDTModel or SDOModel that places all the business objects (IPerson, IEmployee,
and so forth) into a shared space for any and all clients (peers, actually) to find and
modify. A designated listener peer can then listen for changes to each of the business
objects and store them back to some permanent storage, such as the RDBMSModel.

o JMS
Using JMS, we can define a message-based system—clients would send updates/
change messages to the JMS Server, which would then apply the changes/updates
to the centralized storage system. Optionally, JMS could then broadcast an event
to registered parties, allowing those clients interested in up-to-the-moment data
to be aware of the change.

* Mobile-object model
A mobile-object system could be used in a couple of ways. First, a client could
fire off to the server a mobile object request for a copy of the object in question,
which would populate it with the data requested and send the object back. It
incurs an additional amount of overhead, since mobile-objects incur higher
bandwidth costs to move around. Worse, this sort of request-reply functionality
is more a client/server approach, and won’t suit mobile objects well. We either
decide that each business object is its own mobile object (What happens when
two clients want the same business object?), or we decide that we can have any
number of mobile objects representing a business object (we have to come up
with some way to keep them all synchronized regarding their contents). For this
type system, the mobile-object model may not be the best choice.

o Client/Server-to-Shared-object/Federated-system model
This approach actually comes dazzlingly close to a clustered server system. Clients
use a traditional client/server approach to make calls on a server, which in turn
is part of a cluster of machines (a Federation, according to Nelson'?) that hosts
a shared-object space containing all of the objects. It offers exciting possibilities
in a number of ways: the actual cluster can be distributed across entire conti-
nents, and the chances of all of the machines going down simultaneously grow

15 Programming Mobile Objects in Java, p. 581.

EMPLOYEE MIDDLEWARE MODELS 449

450

exponentially more remote as each new machine is added to the Federation.
Permanent storage may even be unnecessary, since the only advantage of perma-
nent storage is the retention of data after power is removed from the system;
with a Federation of machines, chances are likely that power will never be
removed from all machines at any time. Because each machine in turn carries a
complete copy of the entire shared space, so long as one machine remains alive,
all machines can connect back and restore the complete collection of objects to
their local memory. In addition, because these machines can be scattered across
a variety of locations, if a communications breakdown occurs, shattering the clus-
ter, the individual members of the cluster can continue to support their local
clients’ requests, and merge the changes back together once the communica-
tions breakdown is restored.

Client/Server-JMS Hybrid model

Under this model, we use standard client/server technology to make our requests
of the server, but then register listeners on event channels published via JMS to
receive notifications of modification to the objects we're currently holding. This
prevents the polling inherently required of a traditional client/server technology,
and allows us to publish objects by value, while still being able to receive the up-
to-the-second modifications on that object. This in turn reduces the load on the
server: each business object no longer has to be exported as a remote object;
instead, we pass it by value to the client, then the client is responsible for regis-
tering an interest in that object’s modifications. This also allows clients to choose
how synchronized they wish to be; for example, a client that simply displays all
of the Persons in the system doesn’t need to register an interest in each one—it
doesn’t care about any changes to any of them. This reduces bandwidth and pro-
cessing necessary on both the client and the server. Further, if we use a UDP/IP
broadcast system such as iBus, the actual cost of sending the updates is precisely
one per object update, instead of the 7, where 7 is the number of clients listening
on a TCP/IP socket. This reduces the total amount of consumed bandwidth on
the network channel, and in turn reduces the necessary overhead of maintaining
these broadcast updates.

Asyou can see we have a variety of options. In this section, we’ll examine two such

approaches. In the first, we’ll do the standard old Java thing: using RMI to make remote
method calls on the server’s RMIModelServer. This is intended mostly as a point of
reference rather than a recommendation. In the second approach, we’ll be using JSDT
to hang the Employee objects off the server for shared communication all around. This
may not be the most scalable approach regarding peer memory and bandwidth
requirements, but it is an intriguing model, nonetheless. While it may not be suitable
for large databases consisting of millions of objects, those systems which need to share
only a few objects (distributed games, for example, typically would like to share the
same GameBoard and GamePieces objects) will find this approach very attractive.

CHAPTER 15 MIDDLEWARE

15.4.1 RMI implementation

The RMI model is, by far, the most popular choice for Java middleware models—it is
natural Java syntax, it is well-supported by the Java community, and its approach is
one that’s relatively well understood by Java developers. For many development
shops, this would be the natural approach to take. For reasons of space, we’ll go over
the basic concepts of building an RMI implementation, and leave it at that.

To start with, the design of our hypothetical RMI model is split into two parts:
RMIModel, which is the client-side proxy to the other side, the RMIModelServer.
RMIModelServer wraps an instance of IEmployeeModel to do the real work; this Deco-
rator pattern approach allows us to use any sort of [IEmployeeModel instance for actual
storage. For now, the only choices are between HashtableModel or RDBMSModel (the
far more likely choice), but an OODBMSModel or FileSystemModel are easily possible
and shouldn’t be excluded from being able to be accessed remotely.

RMIModelServer, in turn, exports a variety of RMI objects for use by the RMI-
Model clients. This means that, unlike the RMI example from chapter 5, the RMI-
ModelServer is not a stateless machine, and instead exports a number of objects for
clients to connect to individually. We do this because the business objects that RMI-
ModelServer wants to export need to be constant and always up-to-date. The best way
to accomplish this, while realizing that this is going to tie up network bandwidth, is to
export the business objects, and have the local proxies to the remote instances call back
to the remote objects on each get/set method. It’s not as scalable as a stateless design
would be, but the bandwidth requirements in a stateless design would be even worse.

Assume, for the moment, that every object changes its internal values (first name,
last name, SSN, etc.) every second; not an unreasonable assumption in a large-scale dis-
tributed system. This means that for all practical purposes, clients must reconnect back
to the server each and every time they request any of the object’s data, which in a state-
less system means just as many calls back to the server. By not using a stateless proto-
col, we avoid having to send the entire object back on each call.

We can get away with the stateless approach in the GJAS RMIServerManager sys-
tem (from chapter 5) for two reasons. First, because Services aren’t stateful objects in
the same manner as are business objects, the ServerManager system fits a stateless pro-
tocol approach more easily. Secondly, because attempting to wrap a stateless server
around a business objects layer is usually an exercise in complete frustration—unlike
the GJAS model, a business objects layer is usually fraught with change as the business
adapts and modifies its product line, its customer base, and so on. That is, after all, the
reason we build a business objects layer, so development speed of the layer, as well as
its maintainability, will in many cases outweigh the need for scalability.

With these points in mind, let’s get back to our hypothetical RMIModelServer.
Since we want to create individually exported RMI objects, it’s relatively easy to
imagine RMIModelServer’s logic. Upon each create request, it issues a similar
request to the wrapped IEmployeeModel instance. If the request fails, the exception
is wrapped inside a RemoteException and thrown back to the client. If the request

EMPLOYEE MIDDLEWARE MODELS 451

15.4.2

452

succeeds, the resulting business object instance is wrapped inside of an RMI equiva-
lent, exported, and handed back to the client for use from there. Upon a find
request, the entire array returned is similarly wrapped and exported. Upon a remove
request, the RMIModelServer first unbinds the object, then makes the similar call
to the wrapped instance.

By itself, this approach would be fine except once exported, an RMI object will
remain exported until the server explicitly unbinds it. This means that once any client
has called for the list of all Persons, Employees, Managers, and so on, all of those
objects remain bound and exported. Because that client could then require some (or
all) of the objects thus returned, we need to export every object returned to that client.
This means that, in a system containing 1,000 Persons, 1,000 RMIPerson objects
would be exported upon the findAllPersons call. This is obviously wasteful, and
needs to be addressed.

Fortunately, RMI provides a useful answer. If a remote object implements the
java.rmi.server.Unreferenced interface, RMI guarantees that it will call the
Unreferenced interface’s unreferenced method when all clients have disconnected
(that is, are garbage-collected on the client-side) from the remote object. This in turn
allows us to register the object with a low-priority Thread, running within the RMI-
ModelServer, to unbind and clean up the remote object, thus removing the resource-
drain that object was creating.

RMI/IIOP implementation

Thanks to the RMI/IIOP implementation from Java, we can make our RMIModel-
Server an IIOP-communicating object, thereby giving us access to the system from
CORBA clients. To do so, as described, we need make the few cosmetic changes to
RMIModelServer, and call it RMIIIOPModelServer.

One drawback, however, to using IIOP is the fact that RMI/IIOP lacks the sort
of Unreferenced capability that RMI/JRMP has; this is because IIOP in turn specifies
that no sort of garbage collection takes place across the wire, as does JRMP. We could
provide a release() or finished() method on the exported Remote interface to
allow clients to explicitly release their reference, but this in turn means that should the
client crash while holding a reference to the server object, that server will always have
a reference count of one more than it should. Even if every other client disconnects
successfully, the crashed client’s reference can never be released, which leads to unnec-
essary server objects on the server machine.

JSDTModel: Shared-object implementation

The JSDTModel offers an entirely different approach to sharing data from the RMI
model. As discussed earlier, shared-object systems typically offer less in the way of scal-
ability since all objects in the system have to reside in the shared-object space, rather
than on disk until called for. As a result, the code presented here is not recommended

CHAPTER 15 MIDDLEWARE

for a production system, at least not without some form of listener to catch modifica-
tions to each object and in turn capture the modifications to disk in some fashion.

With that in mind, let’s look at how we’re going to make this work. In many
respects, what we’re really looking to do is to take the various objects, store them into
the session space, and then let anybody make modifications on them. We don’t need
to worry about persistence, disk storage, or any other concerns—just capture the data.
This is precisely what we did two chapters ago, when we built the HashtableModel,
so we'll use that as our starting point.

JSDTModel is, as always, our IEmployeeModel-implementing class. Like Hash-
tableModel, it defines several Vectors which form the core data storage for the various
business objects stored within the system. Notice, however, that [SDTModel (listing 15.2)
contains several constructors.

Listing 15.2 Code for JSSDTModel

public class JSDTModel
implements IEmployeeModel, java.io.Serializable,
Client, SessionManager, SessionListener

/I Package-friendly data
1
Session m_jsdtSession = null;

/I Internal data

1

private String m_clientName = ";
private URLString m_jsdtURL = null;
private ByteArray m_byteArray = null;

private Hashtable m_persons = new Hashtable();
private Hashtable m_employees = new Hashtable();
private Hashtable m_managers = new Hashtable();
private Hashtable m_addresses = new Hashtable();
private Hashtable m_emails = new Hashtable();
private Hashtable m_phones = new Hashtable();
private Hashtable m_positions = new Hashtable();
private Hashtable m_departments = new Hashtable();

public JSDTModel(String name, String host)
{
this(name, host, 4567, "socket", "JSDTModelSession");
}
public JSDTModel(String name, String host, int port,
String type, String session)

{

m_clientName name;

URLString url
URLString.createSessionURL(host, port, type, session);

boolean created = false;
try

EMPLOYEE MIDDLEWARE MODELS 453

454

/I Create the Registry if it doesn't exist yet; this
/I should probably be in a separate process
if (RegistryFactory.registryExists(type) == false)
{
RegistryFactory.startRegistry(type);
}

/I Create the Session if it doesn't exist yet
m_jsdtSession =
SessionFactory.createSession(this, url, true);

/I Put up or get the HashtableModel
if (m_jsdtSession.byteArrayExists("HashtableModel"))

{
/I Retrieve it
m_byteArray = m_jsdtSession.createByteArray(this,
"HashtableModel", true);
retrieve();
}
else
{
/I Put it up
m_byteArray = m_jsdtSession.createByteArray(this,
"HashtableModel", true);
submit();
}

/I Add a listener to track changes to the shared object
m_byteArray.addByteArrayListener(new ByteArrayAdaptor()

{
public void byteArrayValueChanged(ByteArrayEvent e)
{
System.out.println(e.toString());
retrieve();
}
i
}
catch (JSDTException jsdtEx)
{
jsdtEx.printStackTrace();
}

. ..

|
The first is a shorthand form of the second, using some predefined defaults (using

port 4567, over standard sockets, using the name “JSDTModelSession” as the name
for the Session). Notice that there is no differentiation between client and server;

CHAPTER 15 MIDDLEWARE

remember, in a shared-object scenario, everybody is a peer. As a result, the only differ-
entiation within the second constructor to mark the server from any connecting cli-
ents is the check to determine if the ByteArray holding the Vectors holds any data yet.
If not, then this is the first JSDTModel to connect on this host, so it establishes the
(empty) Vectors into the session space.

There are a couple of JSDT-specific points to notice before we move on into the
core implementation. First, notice that JSDTModel, in addition to implementing
IEmployeeModel , also implements JSDT’s Client , SessionManager , and
SessionListener interfaces. The Client interface is obvious—any object that
wishes to participate in a JSDT Session must have a Client to identify and authenticate
it, and it makes sense to have the JSDTModel be its own Client. JSDTModel also
wants to identify and screen out unauthorized Clients, so JSDTModel implements
SessionManager to force authentication on any Clients joining the JSDTModel
Session. For this model, no real authentication takes place, but having it in place
makes it simple to provide it later, perhaps using PGP or other challenge-response
security measures. It also has to implement Serializable in order to be stored up
into the Session space.

First, notice that our Client implementation is very straightforward:

public class JSDTModel
implements IEmployeeModel, java.io.Serializable,
Client, SessionManager, SessionListener

{
n. ..
1
/I Client methods
public Object authenticate(Authenticationinfo info)
{
return null;
}
public String getName()
{
return m_clientName;
}
n. ..
}

The member m_nameis set within the JSDTModel constructor, and we’ve already
discussed the fact that we use no authentication scheme. It means that any JSDT Cli-
ent is free to connect and access our JSDTModel Session, but the same holds true of
our RMIModel, as well.

This authentication policy is expressed in the sessionRequest method of the
SessionManager interface JSDTModel implements:

EMPLOYEE MIDDLEWARE MODELS 455

456

public class JSDTModel
implements IEmployeeModel, java.io.Serializable,
Client, SessionManager, SessionListener

{
n. ..
1
/I SessionManager methods
public boolean sessionRequest(Session session,
Authenticationinfo info,
Client client)
{
String challenge = "<challenge>";
String expectedResponse = "<response>";
String reply = null;
info.setChallenge(challenge);
reply = (String)client.authenticate(info);
return (reply == null);
/I For the moment, they *all* return null (no security)
}
n. ..
}

In the event we wanted to add a security policy to the JSDTModel, it would be here
that the modifications would take place. A simple authentication model might be to
send a blank challenge String and receive a username and password separated by some
delimiter, which the JSDTModel could check against a user database of some form.

Toward the very end of the second constructor, notice that we build an anony-
mous ByteArrayAdapter to listen for changes on the ByteArray instance containing the
JSDTModel stored in Session space. We have to do this in order to know about any
changes to the shared object, and to retrieve it. We could avoid this if we retrieved the
data from the ByteArray on every call within JSDTModel, but that’s simply too much
work to manage all over the place; instead, by pulling it only when it changes, we mini-
mize the amount of work we have to do. Should it come to pass that the JSDTModel
is spending too much time tracking changes, we can switch to a more demand-driven
pull-type model for retrieving changes. In that event, any time a user makes a get -
style call on any of the objects, the entire JSDTModel needs to be retrieved. The actual
retrieval of the JSDTModel occurs within the package-friendly method retrieve
public class JSDTModel

implements IEmployeeModel, java.io.Serializable,
Client, SessionManager, SessionListener

{
n. ..
void retrieve()
{
try
{

CHAPTER 15 MIDDLEWARE

byte[] bytes = m_byteArray.getValueAsBytes();
ByteArraylnputStream bais =

new ByteArraylnputStream(bytes);
ObjectinputStream ois =

new ObjectinputStream(bais);

m_persons = (Hashtable)ois.readObject();
m_employees = (Hashtable)ois.readObject();
m_managers = (Hashtable)ois.readObject();
m_positions = (Hashtable)ois.readObject();
m_departments = (Hashtable)ois.readObject();
m_contactinfo = (Vector)ois.readObject();

E:atch (ClassNotFoundException cnfEx)
{ cnfEx.printStackTrace();

E:atch (java.io.lOException ioEx)

{ ioEx.printStackTrace();

E:atch (JSDTException jsdtEx)

{ jsdtEx.printStackTrace();

}

n. ..
}

As you can see, it’s a simple exercise in Serialization, reading each collection from the
ObjectInputStream.

The reverse is true for any modification of the data within this JVM; if a user adds
an EMail instance, creates a Person, or removes a Department, the other peers in the
system need to know about it. As a result, within each of the various business object
implementation classes (JSDTPerson, for example), after the modification has taken
place, we call the package-friendly method submit on JSDTModel:

public class JSDTModel
implements IEmployeeModel, java.io.Serializable,
Client, SessionManager, SessionListener

. ..

void submit()
{
try
{
ByteArrayOutputStream baos =
new ByteArrayOutputStream();
ObjectOutputStream oos =
new ObjectOutputStream(baos);

EMPLOYEE MIDDLEWARE MODELS 457

458

0o0s.writeObject(m_persons);
oos.writeObject(m_employees);
oos.writeObject(m_managers);
0o0s.writeObject(m_positions);
oos.writeObject(m_departments);
oos.writeObject(m_contactinfo);

byte[] bytes = baos.toByteArray();

m_byteArray.setValue(this, bytes);

iatch (java.io.IOException i0EXx)
{ ioEx.printStackTrace();
iatch (JSDTException jsdtEx)
{ jsdtEx.printStackTrace();

}

n. ..
}

Again, this is nothing more than a simple exercise in Serialization to transform the
various collections into a single array of bytes, then set those bytes into the ByteArray
instance. Because each JSDTModel is listening to ByteArray changes, all JVMs con-
nected to the JSDTModel Session on this host will receive the change and update
themselves accordingly.

We set up the “hook” between a JSDT-business object and the JSDTModel in the
appropriate create method, by setting a package-friendly JSDTModel reference to
point to this ; for example, here’s the implementation for createPerson

public class JSDTModel
implements IEmployeeModel, java.io.Serializable,
Client, SessionManager, SessionListener

. ..

public IPerson createPerson(
String firstName, String middleName, String lastName,
String ssn)
throws BusinessLayerException, DuplicateObjectException

if (m_persons.get(ssn) == null)

{

JSDTPerson person =
new JSDTPerson(firstName, middleName,
lastName, ssn);

/I Hook the JSDTPerson to the JSDTModel
person.m_model = this;

CHAPTER 15 MIDDLEWARE

m_persons.put(ssn, person);

submit();
return person;
}
else
{
throw new DuplicateObjectException();
}

n. ..
}

The code is precisely the same as what occurs within HashtableModel, except for the
statement setting the JSDTPerson member m_model to this . This reference is in
turn used to tell the JSDTModel to update itself each time the JSDTPerson instance is
modified by a user:

class JSDTPerson
implements IPerson, java.io.Serializable

/I Internal members

1

private String m_firstName;

private String m_middleName;

private String m_lastName;

private String m_ssn;

private Vector m_contactinfo = new Vector();

JSDTModel m_model;

public void setFirstName(String fName)
throws BusinessLayerException

m_firstName = fName;
m_model.submit();

n. ..
}

This approach has some bad implications if the JSDTModel is used in a system where
frequent modification of objects takes place. Because we're asking the JSDTModel to
serialize itself on each and every modification of any business object, that means that
a sequence of calls such as

JSDTModel model = new JSDTModel(...);
IPerso n p = model.createPerson(...);
p.setFirstName(“Joe”);
p.setMiddleName(“Bob”);
p.setLastName(“Smith”);

EMPLOYEE MIDDLEWARE MODELS 459

15.4.3

460

will in turn generate one deserialization and four serialization efforts. Given that
Serialization is not the fastest process, this is a large burden to bear just to modify
the Person’s name.

Analysis

We've built two middleware systems for providing access to and distribution of our
fictitious Employee system: an RMI-based model and a JSDT-based model. Each one
offers its own unique strengths and weaknesses, but reality usually dictates that actual
production software will not be this simple or straightforward.

For example, several times during the development of these models, I turned a blind
eye to issues that might complicate the example code. One such issue is that of security—
we usually don’t want just anybody in the company or outsiders, for that matter, to have
access to the company’s personnel records. Providing a security layer is usually a man-
datory item for an enterprise system, but the implementation thereof is another matter.

One approach is to create a generic security doorway through which any client
must pass before even allowing access to any resources. This doorway can be a small
URLClassLoader-loaded dialog that obtains username and password, and in turn vali-
dates that the client can access the application, or something so sophisticated as to pro-
vide access roles and privileges, tying into Java’s SecurityManager.

Another issue has been that of performance and scalability. The JSDTModel, for
example, is an inherently nonscalable approach. However, if it turns out that, using the
RMIModel, enough clients are using the system such that every business object is being
exported anyway, it may be a resource savings to use the JSDTModel approach. That
way, instead of making calls across the network each time an attribute is requested, the
calls go across the network only when the attributes change. Note that we could build
an RMI-based system that performs the same sequence of steps—create a local Proxy
that uses RMI to obtain the object’s initial state, then registers itself in a callback chain
when the server receives a change to that object. Of course, we've also demonstrated
that we could also build an RPC-style system like RMI using just plain sockets and Seri-
alization; in fact, we could drop out of Java completely and build the entire system
using 80x86 assembly language, too. There comes a trade-off point, however, where
complexity of the resulting application source code far outweighs the benefits of doing
it all from scratch. That’s where the art of our particular industry comes into play.

This, however, demonstrates the power (and necessity) of encapsulation: because
both the RMI approach and the JSDT approach implement IEmployeeModel , we
don’t have to change our client code to use the new approach. It’s been said before,
but it deserves repeating: by burying the details of how the IEmployeeModel imple-
mentation handles the details underneath the IEmployeeModel interface, we pro-
vide flexibility and allow for the evolution of the system. Allowing for that evolution,
in turn, reduces the necessary development cost when moving from one middleware
approach to another, or (more likely) integrating one or more together to solve band-
width or resource bottlenecks.

CHAPTER 15 MIDDLEWARE

15.5 ADDITIONAL READING

* “Java Object Serialization” specification, Sun Microsystems. Available from http://
www.javasoft.com.

This is the definitive work on Java’s Serialization mechanism; because Serializa-
tion is so key to RMI/JRMP, developers working with RMI/JRMP need to have a
good feel for what gets serialized and when.

* “Java RMI” specification, Sun Microsystems. Available from http://www.java-
soft.com.

The RMI Specification covers JRMP (chapter 10), the RMI Distributed Garbage
Collection scheme (chapter 9), and RMTI'’s use of dynamic class loading (chapter 3),
among other points. Any developer wishing to move beyond basic “Hello,
world!” RMI applications needs to have this next to the workstation.

* “Java RMI-IIOP Programmer’s Guide,” Sun Microsystems. Available from http://
www.javasoft.com.
At the moment, this is the sole source of documentation on RMI/IIOP, aside
from the OMG documents on the IIOP protocol itself. It assumes you are already
familiar with RMI programming.

* “JavalDL,” Sun Microsystems. Available from http://www.javasoft.com.

* Michi Henning and Steve Vinoski, Advanced CORBA Programming with C++
(Addison-Wesley, 1999).

CORBA isn’t just about Java, and it helps to get a good, hard look at what
CORBA implementations look like in other languages. This book is by far the
best C++/CORBA book on the market. Remember, one of CORBA’s advantages is
its cross-linguistic capabilities, so if your distributed object system has no reason
to communicate with other languages, CORBA may not be the best approach for
your system; if it does, C++ is likely to be one of those languages, and this book is
invaluable in that realm.

* Dirk Slama, Jason Garbis and Perry Russell, Enzerprise CORBA (Prentice Hall, 1999).
Messaging, security, fault-tolerance, load-balancing, failover, all using CORBA; for
CORBA lovers, it doesn’t get much better than this.

* Don Box, Essential COM (Addison-Wesley, 1998).

If you use Java on Microsoft operating systems, in either client or server fashion,
you will almost inevitably run into COM in some fashion. In that event, you will
want this book to teach you precisely what COM is—and isn’t.

* Don Box, Keith Brown, Timothy Ewald, and Chris Sells, Effeczive COM (Addison-
Wesley, 1998).

As with Essential COM, this book is a must-have for anybody looking to use
COM/DCOM, regardless of source language—although much of the example

ADDITIONAL READING 461

462

code is given using C++, the basic concepts hold for Java/DCOM implementa-
tions as well.

Mark Hapner, Rich Burridge, and Rahul Sharma, “Java Message Service”
specification 1.01a Sun Microsystems. Available from http://www.javasoft.com.
This is the basic bible on JMS, and until more discussion and experience is had
with JMS as a middleware system, it is likely to be the best source of information
on JMS for a long time.

Jeft Nelson, Programming Mobile Objects with Java (Wiley Computer Publishing,
1999).

An excellent book that was one of the first to make clear the key difference
between mobile agenss and mobile objects, Nelson’s book also contains 13 soft-
ware design patterns specifically adapted or mined for mobile objects.

Danny B. Lange and Mitsuru Oshima, Programming and Deploying Java Mobile
Agents with Aglets (Addison-Wesley, 1998).

One of the first books out on mobile objects (mobile agents, they were called
then), Lange now works at General Magic Inc, one of the other commercial
mobile object/agent vendors. As with Nelson’s book, Lange/Oshima presents the
basic sketches of ten more mobile object/agent patterns, two of which (Master-
Slave and Itinerary) they explore in detail. If the Aglets toolkit is your preferred
platform for mobile object development, this book is indispensable.

CHAPTER 15 MIDDLEWARE

CHAWPTTEHR 1 6

Java Native Interface

16.1 Java Native Interface (JNI) 464 16.5 Other JNI uses 506
16.2 JNI essentials 472 16.6 Summary 508

16.3 Other methods of Java-to-native 16.7 Additional reading 508

interaction 494

16.4 Integrating the server: GJAS goes
native 495

From its conception, Java gave programmers the ability to interact with code written
specifically for the operating system or hardware underneath the executing JVM. Even
since the days of the Java 1.0, Java has specified the word native as a Java keyword, not
to be used anywhere else within a Java source file. And although it received little fan-
fare (and still does), this ability of Java’s to interact with natively compiled code (such
as that written in C or C++) is quite possibly the most powerful of all of Java’s features.

Without this capacity to go native, Java becomes a closed system, much as other
languages are. Most of the RAD tools and systems on the market contain the ability
to interact with an RDBMS; in fact, most are optimized for that particular task. Con-
sider, however, that you are a programmer working for a large corporation whose data
already resides within a system (mainframe, RDBMS, OODBMS) that cannot be
accessed except through a closed API set. None of these RAD systems work for you.
They can’t, because they are closed systems, lacking the ability to call any of these APIs.
Java, without this ability to interact with native code, would be just as closed and just
as useless for real work.

463

16.1

464

JAVA NATIVE INTERFACE

Java’s official mechanism for native code interaction is the Java Native Interface. JNI
is, in fact, Java’s only mechanism for interacting with the platform underneath the
JVM. Any method in the Java packages which requires access to native resources or
behavior (such as filesystem access, sockets, or the ability to launch and monitor other
processes) in turn goes through JNI code to accomplish it. The JVM itself contains no
knowledge of how to do any of these things. It relies on the native methods developed
for the particular platform on which it is running to carry out these requests.

By exposing the method by which Java interacts with native libraries to the pub-
lic, Sun allows anyone to do the same. This means that you can use Java, and still con-
tinue to use that legacy system that permits access only through its C-language API set.
This ability offers a tremendous amount of power to the Java programmer willing to
endure the complexity it presents.

However, using JNI comes with its share of costs:

* Administrative
Utilizing a native library in your Java code means that the native library must be
installed, in whatever form is necessary for that particular platform (DLLs
Win32 platforms, shared libraries for UNIX platforms, and so forth). This means
that wherever that code is to be run, its corresponding native library must be
written, compiled, tested, and installed on that machine. We move away from
zero deployment and zero development when we do this.

o Security
Native libraries have the freedom to do anything they choose. It’s native code, so
it exists outside of the Java Security model. This is the reason applets aren’t
allowed to load native code when downloaded to the client’s Web browser.

* Robustness
Remember all the bad things that happen with pointers when they’re deleted
twice, or accessed after they’re released? The Java language made pointers safe
and handled all the issues regarding ownership. In C++, you’re back to handling
these things on your own, if you're not delegating them to a third-party garbage-
collecting library.

* Development

Developers working with native libraries now have two environments to which
they must acclimate themselves, Java and C/C++. This implies two compilers,
two debuggers, two sets of naming conventions, and two languages. Of all of
those, the worst adjustment is the complete lack of a C++-and-Java debugger—
debugging the JNI code means using a native C++ debugging environment to
trap the JNI calls, and flipping back and forth between the two as calls cross the
barrier between the two. Quite frankly, it’s usually easier to use the old printf or
System.out.println debugging trick when faced with this prospect.

CHAPTER 16 JAVA NATIVE INTERFACE

* Portability
Native code isn’t portable. A DLL compiled for Win32 won’t run under Solaris.
In some cases, the C/C++ code won’t even compile when ported to other plat-
forms. “Write Once, Run Anywhere” becomes impossible the moment a Java
developer adds the native keyword to any part of his/her code, and Sun 100 per-
cent Pure Java certification becomes a distant, unattainable, goal.

Why bother with native code if the costs are so high? Java’s portability, for example,
has been one of the paramount reasons for its existence. Writing native code reduces
that portability. Why would any logical, sane, Java-loving developer deliberately break
one of Java’s greatest strengths?

16.1.1 Native code on the server

Let’s stop to consider precisely where we are. The code in question is code that will
be executing on a server. By strict definition of the term, this means that the machine
on which this code will be executing will be well-known and unlikely to change.
This in turn means that Java’s portability is of lesser concern to us. In fact, Java’s
portability is of little to no use in server-side development, except in those situations
where the server environment is heterogenous. Even then, the systems involved are
well-known to the developers, and those situations where the same code needs to
execute on multiple machines can have the necessary native methods developed spe-
cifically for those machines.

More importantly, there is a performance gain from using native code. That Java
has made significant performance improvements is not being debated—Just-In-Time
compilers inside the JVM, optimizing bytecode compilers, and faster JVMs make exe-
cution of Java code that much faster. However, for all the improvements Java makes
to its ability to interpret bytecodes, it cannot get beyond the basic fact that it is an
interpreter. It will always be at least marginally (and in some cases substantially)
slower than natively compiled executable code. Using native code for highly used
routines within your Java code can result in a substantive improvement in execution
speed, in much the same way that using assembly code in C++ systems can do the
same. However, before you start coding common Java routines in C or C++, remem-
ber the painful lessons learned by C++ programmers who did the same thing, and
found that well-written, well-designed C++ code could often outperform poorly writ-
ten or poorly designed C++/assembly code.

This chapter presumes that the reader is at least passingly familiar with JNI; if not,
at least glance over the Sun JNI specification document or a JNT tutorial before moving
on. This chapter also presumes that the reader understands C/C++ at an intermediate
(one year or so of experience) level.

As a crude benchmark, consider this code, which generates prime numbers in
both Java and C++:

JAVA NATIVE INTERFACE 465

466

/I JPrimes.java: Java front-end to calculating prime numbers
1
import java.awt.*;

public class JPrimes extends Frame
implements java.awt.event.ActionListener

{
public static void main(String[] args)
{
/I Build the GUI frame
1
JPrime s f = new JPrimes();
f.show();
}

/I GUl-related public interface
1

JPrimes()
{
/*
* Local initialization
*
/

super("Java vs. C++ Primes calculation sample");

/I Turn off layout manager--we'll do it ourselves
setLayout(null);
reshape(100, 100, 310, 200);

/I Set height & width

/*

* Insert controls

*

/I Close button

m_btnClose = new Button("Close");
m_btnClose.reshape(5, 25, 100, 25);
m_btnClose.setActionCommand(“Close");
m_btnClose.addActionListener(this);
this.add(m_btnClose);

/I "Java" button

m_btnJava = new Button("Java");
m_btnJava.reshape(105, 25, 100, 25);
m_btnJava.setActionCommand("Java");
m_btnJava.addActionListener(this);
this.add(m_btnJava);

/I "Native" button

m_btnNative = new Button("Native");
m_btnNative.reshape(205, 25, 100, 25);
m_btnNative.setActionCommand("Native");
m_btnNative.addActionListener(this);
this.add(m_btnNative);

CHAPTER 16

JAVA NATIVE INTERFACE

/I Labels for calculation times

Label | = new Label("Time started:");
l.reshape(5, 55, 100, 20);
this.add(l);

| = new Label("Time ended:");
l.reshape(5, 75, 100, 20);
this.add(l);

/I Calculation time labels

m_lbITimeStarted.reshape(105, 55, 100, 20);
this.add(m_lIbITimeStarted);

m_lbITimeStopped = new Label(");
m_IbITimeStopped.reshape(105, 75, 100, 20);
this.add(m_lbITimeStopped);

m_IblPrimes = new Label(");
m_lblPrimes.reshape(5, 100, 300, 20);
this.add(m_lbIPrimes);

}

The code, up until this point, is a straightforward exercise in Swing—we create a
Frame with a couple of buttons (“Close,” “Native” and “Java”) and a couple of Labels.
/I ActionListener

1
public void actionPerformed(java.awt.event.ActionEvent e)

{
if (e.getActionCommand() == "Close")
{
dispose();
System.exit(0);
}
The actionPerformed method is, of course, called when any of the buttons are
clicked. (We implement ActionListener , and register this ~ with all three buttons,

above. Normally, I'd use an anonymous class to be the Listener, since it will tend to
clutter this class if the Ul is nontrivial, but this is a simple example, and not necessary
here.) If “Close” is clicked, exit the application. Plain and simple.

else if (e.getActionCommand() == "Java")

{

m_IblPrimes.setText("");

/I Note starting time
java.util.Date start = new java.util.Date();

String result = calculatePrimes(50000);

/I Note ending time
java.util.Date end = new java.util.Date();

m_IblTimeStarted.setText(start.getHours() + ™" +
start.getMinutes() + ":" + start.getSeconds());

JAVA NATIVE INTERFACE 467

m_IblTimeStopped.setText(end.getHours() + ":" +
end.getMinutes() + ":" + end.getSeconds());
m_IblPrimes.setText(result);

}
else if (e.getActionCommand() == "Native")
{
m_IblPrimes.setText("");
/I Note starting time
java.util.Date start = new java.util.Date();
String result = nativeCalculatePrimes(50000);
/I Note ending time
java.util.Date end = new java.util.Date();
m_IbITimeStarted.setText(start.getHours() + ":" +
start.getMinutes() + ":" + start.getSeconds());
m_IbITimeStopped.setText(end.getHours() + ":" +
end.getMinutes() + ™" + end.getSeconds());
m_IblPrimes.setText(result);
}

}

Otherwise, if the “Java” or “Native” buttons were clicked, note the current date/time
(by constructing a new Date object), calculate the Primes up to 50,000 using either
the calculatePrimes or nativeCalculatePrimes methods, note the current
date/time after the call, and display the difference.

/I Internal implementation

1
public String calculatePrimes(int stop)
{
String primes = new String();
/I Algorithm cribbed from Sedgewick's "Algorithms in C++"
int i;
int j;
int a[] = new int[stop + 1];
for (a[1]=0, i=2; i<= stop; i++)
ali] = 1;
for (i=2; i<stop/2; i++)
for (j=2; j<=stopli; j++)
ali*j] = 0O;
for (i=1; i<=stop; i++)
if (afi] '= 0)
primes + =i + " "
return primes;
}

The calculatePrimes method is

468 CHAPTER 16 JAVA NATIVE INTERFACE

public native String nativeCalculatePrimes(int stop);

static
{
System.loadLibrary("JPrimes");
}
The nativeCalculatePrimes method isn’t defined here—the native implemen-
tation of nativeCalculatePrimes lives in the file JPrimes.cpp. As we'll see, this

file implements two methods, only one of which is directly related to JNI. The
DIIEntryPoint function is required by Win32 DLLs and can be ignored for the
moment. (Non-Win32 platforms won’t need this function.) The other function,

JNIEXPORT jstring JNICALL Java_JPrimes_nativeCalculatePrimes
(INIEnv* env, jobject, jint stop)

is the actual routine the JVM will call when Java code indicates a call to the JPrimes
nativeCalculatePrimes method. We'll go over the first two parameters later,
but the stop parameter is the upper end of the number range for which we’re calcu-

lating prime numbers. (For a description of the algorithm used, see Algorithms in
C++, by Robert Sedgewick.)

/I Internal data

1

private Button m_btnClose;
private Button m_btnJava;
private Button m_btnNative;
private Label m_lblTimeStarted;
private Label m_IblTimeStopped,;
private Label m_IblPrimes;

}
That’s the .java side of the JNI approach. Next, we’ll look at the C++ side.
#include "JPrimes.h"

#include <windows.h>
#include <stdlib.h>
#include <sstream>
using namespace std;

/I Basic scaffolding that must be in place for every Win32 DLL
1
DWORD WINAPI DIIEntryPoint(HINSTANCE, DWORD, LPVOID)

{
return TRUE;

}

Again, DIIEntryPoint is a Win32-specific function dealing solely with the load-
ing of the DLL into a process’s address space; it, in itself, has nothing to do with JNI
except provide a useful place for doing per-DLL initialization.

JAVA NATIVE INTERFACE 469

470

/I Prototypes/stubs taken from javah-generated JPrimes.h
1

/~k
* Class: JPrimes
* Method: nativeCalculatePrimes
* Signature: (I)Ljava/lang/String;
*
/

JNIEXPORT jstring JNICALL Java_JPrimes_nativeCalculatePrimes
(JNIEnv* env, jobject, jint stop)
{

char* tmpbuffer = new char[stop];

::memset(tmpbuffer, 0, stop);

/I Algorithm cribbed from Sedgewick's "Algorithms in C++"
int i, j;
int* a = new inf[stop + 1];
for (a[1]=0, i=2; i<= stop; i++)
ali] = 1;
for (i=2; i<stop/2; i++)
for (j=2; j<=stopli; j++)
afi] = 0;
for (i=1; i<=stop; i++)
if (afi])
{
char stringifiedI[10];
itoa(i, stringifiedl, 10);
strcat(tmpbuffer, stringifiedl);
strcat(tmpbuffer, " ");
}

delete [] a;

/I Convert to Java java.lang.String object
jstring primes = env->NewStringUTF(tmpbuffer);
return primes;

}

This code must be compiled with a Win32 C++ compiler into a DLL named
JPRIMES.DLL. (In this case, the code was written assuming Microsoft Visual C++ 5.0.)

Lastly, notice that the JPrimes.java file contains a static initializer block with just
one statement:

static

{
System.loadLibrary("JPrimes");

}

This loads the native library “JPRIMES” into the JVM, performing all run-time link-
ing. (Because it needs to do this linking at run time, the native library must be a shared
library appropriate to that platform—DLLs for Win32, shared libs for Unix, and so
on.) The actual filename the JVM looks for will vary according to the platform. Under

CHAPTER 16 JAVA NATIVE INTERFACE

the Sun Win32 JDK, it will look for “JPRIMES.DLL”, while the Sun Solaris JDK looks
for “lib]JPRIMES.so”. Other platforms may look for other names—check the docu-
mentation of the JVM you are using. Where the JVM expects to find this shared library
is, again, platform-specific. Under Win32, for example, the Sun JVM expects to find
the native libraries in the same manner the Win32 engine expects to find any DLL—in
the current directory, along the PATH, or in the “Windows”! or “System32” directory.
Again, check the JVM documentation to find out the details for your particular JVM
implementation. Placing the DLL in the same directory as the JPrimes.class file allows
the JVM to find it when required.

This is a crude and unscientific benchmark. It is unoptimized Java code, and
attempts to take no code shortcuts to speed things up. For example, the string con-
catenation within calculatePrimes uses Java’s += syntax, as opposed to the faster
method of calling StringBuffer’s append method directly, whereas the C/C++ version
uses the much-quicker stdio function strcat . Still, in spite of all that, it does offer
some insight into the relative speedup offered by natively compiled code: on one par-
ticular run, the “Java” option took five seconds, while the “Native” option took only
one. (This run took place on a Pentium-11/266 laptop, under the JDK 1.2 environ-
ment with JIT active.)

This is not a fair comparison. The calculation of prime numbers is highly CPU-
intensive, and will be biased, by its very nature, in favor of the native code for that reason.
Benchmarks of a more realistic nature, such as tests involving file or socket I/O, will
even out somewhat, and the Java code can be written in a more optimized fashion. This
is not intended to start a debate or discussion about the relative merits of using Java
as opposed to C++ or C for fast execution. This example intends solely to prove the
point that JNI code offers a speed increase over (mostly) equivalent Java code. Does
this imply that all of your Java code should immediately be converted to C++, on the
grounds that it will be faster? Absolutely not. Execution speed, as we’ve stated before,
is not the sole benchmark in an enterprise application—there is also speed of develop-
ment, which can be particularly crucial in fast-moving enterprise systems.

By far, the most important virtue of JNI comes in the fact that it allows Java code
to interact with your legacy code. By legacy code, I mean that body of code written
in C (or C++) which must continue to be used for reasons outside our control. It could
be a library, framework, or set of in-house routines used in applications throughout
the enterprise for any reason—security, data-access, or even I/O. Under certain cases,
this legacy code will actually be facilities of the operating system itself to which Java
has no default access, such as native GUI controls or special device drivers. Having the
ability to lean on this already-written body of native code means less work for us as
Java developers, and that’s a direct move towards zero development.

! This name can vary, which is why I use quotes; under a standard N'T installation, the path will be
CAWINNT and C:\WINNT\SYSTEM32, whereas on a standard Win95/98 system will be C:\WINDOWS
and C:\WINDOWS\SYSTEM32

JAVA NATIVE INTERFACE 471

16.2

16.2.1

472

As we'll see, Java’s ability to call C routines allows for tremendous code reuse
opportunities within the Java environment. At the same time, JNIs ability to allow
native C/C++ applications to in turn create a JVM within the native process space
offers some powerful integration opportunities.

JNI ESSENTIALS

JNI is substantially more than can be explained in one chapter. As a result, this will not
be an exhaustive discussion of JNI, but enough to get you past the basics and able to
recognize what's going on within the code. For detailed discussion of JNI, refer to one
of the books mentioned in the “Additional reading” section at the end of this chapter.

JNI breaks down into three categories, arranged in order from least complex to most:

* Java calling native code
This is the easiest to work with—the Java code calls into the native code imple-
mentation, which executes and returns when it is finished. If you are profiling
your Java code, looking for places to drop native code in order to gain a perfor-
mance improvement, this will likely be the only form of JNI you write.

* Native calling Java code
Not all native code interactions will be one-way. Circumstances will often dictate
that the native code be able to call into Java routines or the JVM itself in order to
obtain more data or manipulate objects. This area of JNI is conceptually easy to
understand, but occupies the most amount of space in any JNI discussion.

* Native applications creating and using a JVM

This is probably the trickiest, and most powerful, option within the JNI API set.
Using the Invocation API, as it’s called, a native C/C++ application can create a
JVM within its process space, load Java classes, execute them, and so forth, just as
if the Java code had been launched from the command line. This feature makes
Java unique among every other programming language—while others have some
facility for calling out to native code, no other language allows native code to
create its execution environment within a different process space. This feature is
a powerful one, allowing us to use Java in ways other languages can’t touch.

Let’s go over these three options to give you an idea of what JNI can do for us
on the server.

Java calling native

The JPrimes sample examined earlier demonstrates this sort of usage. In this case, the
interaction of Java to native code goes entirely one-way; the Java code calls a native
method, the native method executes, perhaps calling other native methods in turn,
then returns. Because the native code never calls back into the JVM, this is probably
the simplest of the JNI styles, and the easiest introduction into JNI/native-method
development. Most of the complexity involved here is not in the programming, but
in understanding what tools to use, when to use them, what Java expects of the native

CHAPTER 16 JAVA NATIVE INTERFACE

code, and what the native code in turn can expect from Java. Typically, this style will
be used to access a native API or optimize/hand tune a frequently called Java routine.

Be very conservative when optimizing or hand tuning a frequently called Java rou-
tine, and make certain you undertake it as a last resort; rewriting or restructuring the
flow of the Java code quite often provides enough of a speedup to avoid native coding.
Still, for CPU-intensive operations called often, this can provide a substantial boost.

In both cases, the interaction between the JVM and the native code is from-Java-
to-native-and-back-again.

Usually, the native calls will be wrapped privately within an API wrapper class,
thereby hiding from clients the fact that the method call is, in fact, native:

public SomeObject

{

n. ..

public void doSomething()

{ nativeDoSomething();

}

private native void nativeDoSomething();
}

By encapsulating the actual implementation of the call, implementors have the ability
to provide next-best-thing behavior on those platforms that lack the native call. For
example, it will be faster for Java applications running in a JVM on the same Win32
machine to use memory-mapped files to share memory, instead of using a more por-
table Jini/JavaSpaces or Java Shared Data Toolkit approach. However, this implemen-
tation will only work on a Win32 platform:

public class Foo

{
public void writeData(int offset, byte[] data)
{
if (s_useNative)
nativeWriteData(offset, data);
else
portableWriteData(offset, data);
}
public byte[] readData(int offset, int length)
{
if (s_useNative)
nativeWriteData(offset, data);
else
portableWriteData(offset, data);
}

private native void nativeWriteData(int offset, byte[] data);
private native byte[] nativeReadData(int offset, int length);
private void portableWriteData(int offset, byte[] data)

{

/I details omitted

JNI ESSENTIALS 473

}
private byte[] portableReadData(int offset, int length)

{
/I details omitted
}
static
{
try
{
System.loadLibrary(“foo”);
s_useNative = true;
}
catch (Exception ex)
{
s_useNative = false;
}
}

static boolean s_useNative;
}
The magic of the above occurs during the static inidalizer block. If the System.load-
Library() call succeeds, it means the JVM found a shared library implementing the
native methods expected, and the static member s_useNative is set to true . If the
call fails, the JVM couldn’t link the library, and the code should use the portable (but
slower or less feature-rich) code.

Practitioners of design patterns will recognize an opportunity for the use of a
Bridge pattern here, instead of the above approach. In the following code, the JPrimes
example from above is rewritten to make use of a native library if one is available, or
the portable Java implementation if not. Again, because the actual implementation is
shielded from the client, the client need not make any decisions or require any knowl-
edge of the switch:

interface PrimeCalculator

{

public String calculatePrimes(int stop);

}

class NativePrimeCalculator
implements PrimeCalculator

NativePrimeCalculator()
throws Throwable

{

System.loadLibrary("JPrimes");
}
public String calculatePrimes(int stop)
{

return nativeCalculatePrimes(stop);
}

474 CHAPTER 16 JAVA NATIVE INTERFACE

}
class

{

}

private native String nativeCalculatePrimes(int stop);

PortablePrimeCalculator

public String calculatePrimes(int stop)

{

/I Details omitted

}

public class JPrimes extends Frame implements java.awt.event.ActionListener

{

JNI ESSENTIALS

/I GUl-related public interface

1
JPrimes()
{
/I Details omitted (initialize the GUI)
/I Which calculator should we use?
try
{
m_calculator = new NativePrimeCalculator();
}
catch (Throwable t)
{ m_calculator = new PortablePrimeCalculator();
}
}

public void actionPerformed(java.awt.event.ActionEvent e)

{

if (e.getActionCommand() == "Calculate")

{

m_lblPrimes.setText("");

/I Note starting time
java.util.Date start = new java.util.Date();

String result = m_calculator.calculatePrimes(50000);

/I Note ending time
java.util.Date end = new java.util.Date();

m_IblTimeStarted.setText(start.getHours() + ™" +
start.getMinutes() + ":" + start.getSeconds());
m_IbITimeStopped.setText(end.getHours() + ":" + end.getMinutes() +
"" + end.getSeconds());
m_lblPrimes.setText(result);

}

/I Internal data
1
private PrimeCalculator m_calculator;

...

475

Notice how, by moving the logic into separate stand-alone classes, JPrimes now has no
knowledge (and, therefore, no dependency) on whether the implementation is done
in a native or portable fashion. This is in keeping with the Bridge pattern’s Intent:
“Decouple an abstraction from its implementation so that the two can vary indepen-
dently.”? This discussion applies equally well to the Strategy pattern: “Define a family
of algorithms, encapsulate each one, and make them interchangeable. Strategy lets
the algorithm vary independently from clients that use it.”> As with most things pat-
tern-related, the intent of the code (the “forces”) defines which is more applicable.
To be true to the Bridge and Strategy patterns, as defined by Design Patterns, the
actual implementation (NativePrimeCalculator or PortablePrimeCalculator) should
be encapsulated. In the previous example, our client, JPrimes, has to make the decision
regarding which implementation to use, which breaks the very encapsulation sought. True
encapsulation requires either a wrapper class that contains the knowledge, or a Factory
object that performs the construction step and hands back an instance of PrimeCalculator:

public class PrimeCalculatorFactory

{
public static PrimeCalculator manufacture()
{
try
{
return new NativePrimeCalculator();
}
catch (Throwable t)
{
return new PortablePrimeCalculator();
}
}
}

Another approach would be to have PrimeCalculator be an abstract class with a
static method by which instances can be obtained, a variation of the above Factory-
based approach:

public abstract class PrimeCalculator

{

/**

* Derived classes must implement this

*/

public abstract String calculatePrimes(int stop);
/**

* Same as PrimeCalculatorFactory.manufacture(), above,
* but now the code’s all in one place.
*/

2 Design Patterns, p. 151
3 Design Patterns, p. 315

476 CHAPTER 16 JAVA NATIVE INTERFACE

public static PrimeCalculator manufacture()

{
try
{
return new NativePrimeCalculator();
}
catch (Throwable t)
{
return new PortablePrimeCalculator();
}
}

}

The expense of this approach, of course, is that PrimeCalculator is now a class, which
must be extended, instead of an interface. This implies that implementing RMI,
CORBA, or other PrimeCalculator classes that must extend some other base class will
be more difficult.

A large number of native API calls can be wrapped using this approach, offering
Java the ability to interact with the operating system directly, or even other, native,
applications. Some examples include:

* Accessing Win32 Inter-Process Communication mechanisms
A number of applications on the NT/Win9x platform use Win32 IPC mecha-
nisms (mailslots, named pipes, memory-mapped files, and so forth) to commu-
nicate. By wrapping Java classes around these API calls, Java applications
executing on the Win32 platform can also participate in this communication.

* Accessing UNIX signals
A significant percentage of C/C++ code written for UNIX-based systems use sig-
nals for fast forms of simple IPC communication. By wrapping the UNIX system
call into a Java class with JNI implementations, Java applications can now send
those same signals to native UNIX processes.

* Access the Registry

Under the Win32 platform, a well-behaved Win32 application stores all configu-
ration and/or user-preferences information in a central hierarchical database
called the Registry. While it’s not recommended that a pure Java application do
this, a Java application that interacts with native Win32 applications may want
or need to access the Registry to extract necessary configuration information
(such as user name, ODBC names, or settings for accessing ODBC databases
using the JDBC/ODBC bridge, and so on). This holds especially true if a Java
application needs to know which application is associated with a particular file
extension on the user’s system.

4 Remember, in Java extension (implementation inheritance, as opposed to “implements,” or interface inher-
itance) is a precious resource—you can only extend one-and-only-one class, whereas you can implement
any number of interfaces. This means that where there’s a choice, choose to implement instead of extend.

JNI ESSENTIALS 477

16.2.2

478

* Use Microsoft RPC
Microsoft remote procedure calls, a derivative of DCE RPC, are used at the C
level to allow two processes, executing either locally on the same machine, or
across the network, to execute methods remotely within the other. The same can
be said of ONC RPC (Sun’s standard RPC mechanism) on Solaris platforms. Java
code wrappers the calls to the RPC server, and thereby extends the life of RPC-
based servers without having to convert to RMI or CORBA.

Readers will, no doubt, come up with other ideas. The nature of making these
API calls makes this approach to JNI extremely easy to implement.

Native calling Java

Most of the JNI specification’s API listings deal with allowing native code to call back
into the JVM for any purpose. Just about anything that can be done within the JVM
can also be done via the JVM’s NI calls—load classes, instantiate objects, throw
exceptions, catch exceptions, enter synchronization blocks, and so on. This leads to
some very interesting possibilities for native code to control the JVM.

When talking about Java calling native code, the situation and context was easy
to understand. The JVM would only call into the native code when the native code
was there, and when a native-marked Java method was called. Under the native calling
Java situation, the context isn’t quite so simple. This is particularly true when dealing
with many asynchronous native mechanisms, such as signal handlers (under either
UNIX or Win32).

For those unfamiliar with signal handlers, the C/C++ standard allows user code
to establish a series of callback routines to be called when particular signals (early forms
of exceptions) are raised, either by the OS or another process. For example, pressing
CTRL-C in the console window of the following C application spits out a message
instead of immediately quitting:

/I if using MSVC++ 5, use “cl signal.cpp”;
1
#include <signal.h>

#include <iostream>
using namespace std;

extern "C" void sig_handler(int sig);

void sig_handler(int sig)

{ cout << "Signal " << sig << " received" << endl;
llexit(-1);

}

int main(int argc, char* argvl])

{
if (argc <= 1)
{

/I Register sig_handler

CHAPTER 16 JAVA NATIVE INTERFACE

cout << "Registering signal handler" << endl;
for (int i=0; i<63; i++)
signal(i, sig_handler);
/I loop forever, waiting for signal
cout << "Looping forever" << endl;
while(1)

}

Signal handlers can be established for a variety of conditions, not the least of which are
segmentation faults, or access violation exceptions, as they are called under Win32.
(Experienced Win32 developers will immediately recognize the similarities between
signal handlers and structured exception handling.) This offers us as Java developers
some interesting possibilities. Consider the following Java/C++ class:

.

* Signal.java
*/
import java.io.*;

public class Signal

{
public static void main(String[] args)
throws Exception
{
Signal s = new Signal();
System.out.printin("Setup complete");
while (true)
Thread.yield();
}
public Signal()
{
setSignalHandler();
}
private static void signalSent()
{
System.out.printin("Signal handler called");
}
private native void setSignalHandler();
static
{
System.loadLibrary("signal");
}
}
/I Signal.cpp (Win32/MSVC++ 5.0)
1

#include "Signal.h"

#include <iostream>
using namespace std;

JNI ESSENTIALS 479

480

#include <signal.h>

/I Internal signal handler
void signalHandler(int sig)

{
cout << "signalHandler called with value " << sig << endl;
/I We have to attach this thread to the JVM
JavavVM** vmBuff = new JavaVM*[1];
jsize bufLen = 1;
jsize numVMs;
jint i = J NI_GetCreatedJavaVMs(vmBuff, bufLen, &numVMs);
if (numVMs > 0)
{
JNIEnv* envPtr;
vmBuff[0]->AttachCurrentThread((void**)&envPtr, 0);
jclass cls = envPtr->FindClass("Signal");
jmethodID methodID =
envPtr->GetStaticMethodID(cls, "signalSent”, "()V");
envPtr->CallStaticVoidMethod(cls, methodID);
}
else
cout << "No JavaVMs created?!?" << endl;
cout << "ready to return " << endl;
}
/*
* Class: Signal
* Method: setSignalHandler
* Signature: ()V
*/

JNIEXPORT void JNICALL Java_Signal_setSignalHandler
(INIEnv* env, jobject thisPtr)

{ /I Set signal handler for all signals O through 63

for (int i=0; i<63; i++)

signal(i, signalHandler);

}
In this code, we call a native method to set up the signal handler, then enter an infinite
spin/yield loop inside of Signal.main() . If you press CTRL-C at the console, the
signalHandler() function in the C/C++ code is called with the signal value 2
(SIGINT, as defined by Visual C++’s signal.h file), then calls the static method Sig-
nal.signalSent() . Notice the rigamarole we have to go through before we can call
the Java method, however. Because Win32/VisualC++ uses multiple threads to handle
signal callbacks, we have to attach the thread to the JVM established by java.exe. This
also has the desired side-effect of giving us a local JNIEnv pointer to call through; with-
out that, we’d have to store it off in the Java_Signal_setSignalHandler imple-
mentation. Notice also that I'm completely ignoring synchronization issues in the
above code. Any method that the signal handler calls back into must be completely

CHAPTER 16 JAVA NATIVE INTERFACE

re-entrant (as it is in the above example) or guarded with synchronization mecha-
nisms to prevent concurrent-access problems.

All details aside, this short snippet of code offers some powerful capabilities; if
you’re not shivering at the thought of all the potential lying under the surface, you
should be. Here are two possibilities:

* Diagnostic controls
Remember all those diagnostic messages GJAS sends to the console as it’s execut-
ing? I’s too much information for anyone other than a developer trying to trace a
problem. Use signal handlers (and the UNIX kil command, which sends signals
to a process) to raise and lower the diagnostic output accordingly.

* Crash protection
Because signal handlers can catch a variety of different signals, you can establish
a signal handler to catch segmentation faults at the start of your Java application.
In the event that the JVM has a bug in it which causes a crash, or (more likely) a
native library routine called has a bug in it which causes a crash, the signal han-
dler gets an opportunity to handle the exception. This in turn gives it the chance
to either correct for it or exit in a more graceful manner.

The ideas aren’t limited to only signal-handlers; they just provide a UNIX/
Win32-portable way of providing such behavior. This kind of power, especially on a
server application, goes a long way toward making your Java code more robust.

When calling back into the JVM from native code, the native-code programmer
has to take extra steps to make certain Java’s semantics are preserved. Specifically,
Java’s support for exception handling and synchronization needs to be coded by hand,
since Java implements both of these within the JVM, rather than using native (and
nonportable) mechanisms. Moreover, the reverse is true—the native code must also
guarantee that none of its mechanisms escape back into the JVM.

Native methods are not constrained by Java exceptions the way Java methods are.
Normally, in standard Java code, calling a method with a throws clause means the
calling method must either catch the exception type(s), or pass them back to its caller:
public class Example

{
private void doSomething()
throws Exception
{
n. ..
}
private void callingMethod()
{
doSomething();
/I will not compile; callingMethod() must either catch Exception
/I or declare a “throws Exception” clause of its own
}
}

JINI ESSENTIALS 481

482

Native methods, however, are under no such restriction. This offers a serious loop-
hole in the Java exception-checking semantics:

public class Example

{
private void doSomething()
throws Exception
{
throw new Exception();
}
private native void doSomethingNative();
/I Assume that the native implementation simply calls doSomething()
private void callingMethod()
{
doSomethingNative();
/I will compile; because doSomethingNative() doesn’t declare
/I a “throws” clause, this method is not in violation of the
/I exception rules
}
}

Practically speaking, this implies that any native methods that raise exceptions in JNI
code should be declared with a throws clause. These are solely for the Java compiler’s
benefit, however—the JNI stub generated by javah does nothing with the clause
whatsoever. This raises a dangerous possibility—the native code could throw a Java
exception within it that isn’t declared in its throws declaration on the Java side:

public class Example

{
n. ..
private native void doSomething();
/I Notice--no way of knowing on the Java side that
/I this method throws Exception
}
/*
* Class: Example

* Method: doSomething

* Signature: ()V

*/

JNIEXPORT void JNICALL Java_Example_doSomething
(INIEnv* env, jobject thisPtr)

{
/I Throw an Exception
env->ThrowNew(env->FindClass(“java.lang.Exception”),
“This is an exception from doSomething()”);
return;
}

CHAPTER 16 JAVA NATIVE INTERFACE

Because Java programmers are so dependent on javadoc-generated documentation or
the source code itself, there is absolutely no way for the Java programmer calling this
native method to know that he/she needs to catch this exception type.

The other half of the exception-handling problem comes when implementing
native code using C++. Sure enough, C++ exceptions and Java exceptions mean abso-
lutely nothing to one another. This means that if a C++ exception propagates out of a
native method called from within the JVM, the C++ exception will immediately bypass
the rest of the JVM and terminate the application (unless the JVM is wrappered within
a C++try block; see the next section). This in turn means that if native code has even
the smallest possibility of seeing a C++ exception, the entire native block must be
wrapped within a C++ try /catch block that disallows any exception to filter out of it:

/*
* Class: Example
* Method: doSomething

* Signature: ()V

*/

JNIEXPORT void JNICALL Java_Example_doSomething
(INIEnv* env, jobject thisPtr)

{

/I Wrap all C/C++ code in a try/catch block

try

{
/I Do something

}

catch (MyExceptionType& ex1)

{
/I Throw corresponding Java exception type

}

catch (YourExceptionType& ex2)

{
/I Throw corresponding Java exception type

}

catch (...) /I catch all exception types

{
/I Signal to the JVM that a C++ exception was thrown
env->ThrowNew(env->FindClass(“java.lang.Throwable”),

“Unknown C++ exception thrown”);

return;

}

}

Make it a standard habit to do this with any of your native code implementations.
Because C++’s exception-checking mechanism is a fair bit looser than Java’s, it’s rela-
tively simple for a C++ exception (especially those dealing with RTTI-casting or heap-
allocation) to be thrown and not caught within the code you call. That means if your
native code implementation doesn’t catch it, nobody will. What’s more, even those
native-code programmers who believe they have nothing to worry about—are not

JNI ESSENTIALS 483

16.2.3

484

writing C++ code, after all, just straight C—and still have to worry about this. Many
C++ compilers use the same run-time library implementation for both C and C++
code, and may have C++ semantics turned on by default. Check your compiler docu-
mentation to be certain.

The same sorts of considerations go for Java synchronization monitors—if you
need to hold one from within native code, make sure you release it through every pos-
sible control path. Otherwise, deadlock results, and it will be fiendishly difficult to
track down. For the most part, if you need to hold onto a Java monitor, create a Java
method (or class) to do the synchronized call, and have the native method call into
that. This way, all of Java’s standard synchronization mechanics are satisfied.

The reverse is true, as well, if you create any native-code synchronization mecha-
nisms within your native code (under Win32, this includes events, semaphores,
mutexes and/or critical sections). Make sure that they aren’t held when the native code
returns the JVM, or subsequent native calls (using that synchronization object in its
implementation) will fail. These are standard rules in concurrent programming, but
need to be reiterated here; remember, you’re not in Java-land anymore, and you defi-
nitely need to obey the local customs.

JNI invocation

The last form of JNI, called JNI invocation, by far outstrips the rest of JNI in poten-
tial, in my opinion. The ability for native code to create, call into, and control a JVM
offers so much in the way of flexibility and integration that it’s surprising more hasn’t
been written on the subject. This holds doubly true on the server, where we have inti-
mate knowledge (and concrete needs to access the nonportable features) of the under-
lying operating system.

For example, Java would make a wonderful tool-building language, if only it weren’t
so clumsy to use from the command line. By this, I mean that Java’s string-handling
mechanism and high-level syntax make it nearly trivial to create tools for system
administrators and environment-maintenance developers to ease their tasks. Scripts
and batch files only go so far; for example, it would be nice to have a command-line
utility that converted DOS line-terminator (newline-linefeed) pairs into UNIX (line-
feed) line-terminators. Java is perfect for this, except that the JVM-interpreter is the
executable to be launched, and we’d much rather be able to refer to the tool as if it
were an executable.

The code in listing 16.1 does precisely as the Sun “java” tool does—creates a JVM,
loads a class given on the command line, and calls itsmain() method. While not par-
ticularly interesting by itself, once we have this code created, we can actually create a
tool-building tool—code that in turn creates code.

CHAPTER 16 JAVA NATIVE INTERFACE

Listing 16.1 Code for JNItest.cpp

#include <jni.h>

/I StdC++ headers
#include <iostream>
#include <fstream>
#include <string>
#include <vector>

/I Namespaces in use
using namespace std;

int main(int argc, char* argvl])
{
vector<string> jvm_argv;
string classname;
string classpath;
bool verbose = false;

/I We must have reached the classfile
classname = argv[1];

/I The remainder of the arguments are assumed to be command-line
/I parameters to the Java class
int j;
for (j=2jj<argc;j++)
jvm_argv.push_back(argv[j]);

JavaVMInitArgs vm_args;
JavaVMOption options[4]; int n=0;

options[n++].optionString
/* disable JIT */
options[n++].optionString = "-Djava.class.path=.";
/* user classes */
/loptions[n++].optionString = "-Djava.library.path=c:\mylibs";
/* set native library path */
/loptions[n++].optionString = "-verbose:jni";
[* print INI-related messages */

"-Djava.compiler=NONE";

vm_args.version = JNI_VERSION_1_2;
vm_args.options = options;
vm_args.nOptions = n;
vm_args.ignoreUnrecognized = true;

/* Note that in JDK 1.2, there is no longer any need to call
* JNI_GetDefaultJavaVMInitArgs.

*/

JavaVM* vm;

JNIEnv* env;

jint res = JNI_CreateJavaVM(&vm, (void **)&env, &vm_args);

/I argv[l] is the Java class to load
jclass cls = env->FindClass(argv[1]);
if (Icls)

JNI ESSENTIALS 485

486

cout << argv[l] << ".class not found" << endl;
return -1;
}
jmethodID cls_main =
env->GetStaticMethodID(cls, "main”, "([Ljava/lang/String;)V");
if (Icls_main)
{
cout << "main(String[]) not found" << endl;
return -1;

}

/I Build args to main()
jvalue call_args[1];

jclass cls_java_lang_String = env->FindClass("java/lang/String");
jobjectArray args =
env->NewObjectArray(argc-1, cls_java_lang_String, defaultValue);

/I Populate "args"

int i=0;

for (vector<string>::iterator iter = jvm_argv.begin();
iter != jvm_argv.end();

iter++)

{
jstring str = env->NewStringUTF((*iter).c_str());
env->SetObjectArrayElement(args, i++, str);

}

call_args[0].I = args;

1

/I Call "main"

1

env->CallStaticVoidMethodA(cls, cls_main, call_args);

1

/I Report any uncaught Java exceptions thrown from within the JVM
1

jthrowable ex;

if ((ex = env->ExceptionOccurred()) '= NULL)

{
env->ExceptionDescribe();
}
1
/I Clean up
1

vm->DestroyJavaVM();

return O;

CHAPTER 16 JAVA NATIVE INTERFACE

As stated earlier, [NITest.cpp isn’t particularly interesting by itself. Simply duplicating
the behavior of the JDK java interpreter isn’t exactly exciting. However, if we were to
replace the argv[1l] argument with a hard-coded class name, we would have a
native executable whose implementation was actually Java code.

Using Invocation to create the JVM within C/C++ code will seem like gross over-
kill to many. Why not just build a script or batch file to launch java.exe and the class
name? As awkward and unwieldly (compared to just writing a simple batch or script
file), JNT Invocation offers some very credible reasons for using it:

* The Invocation-related C++ code needn’t be treated as a black box.
C++ developers can use it as a basic starting point, adding other features (new
options to the Java compiler, perhaps establishing the signal handlers discussed
in the previous section, and so forth) to the C++ code.

* Precedent.
This is precisely what the JDK itself does—javac.exe builds a JVM and calls
sun.tools.javac.Main() , rmic.exe builds a JVM and calls sun.rmi.rmic.
Main , and so on. The JDK does it because forcing developers to type “java sun.
tools.javac.Main MyCode.java” is, let’s face it, awkward.

* Encapsulation of implementation.
There will be times we, as developers, don’t want clients or customers to know
that the code is written in Java. By wrapping the invocation of the JVM in a
native executable in a native-code shell, we keep the Java portion of it hidden
from casual prying.

Not all enterprise systems will want or need to make use of this. For those that
do, though, there’s real potential for superscripting here; I've used JNIGen to create
shells around a number of Java applications that comprise tools in my development
environment to automate makefile-generation and maintenance, configuration manage-
ment, and so forth.

Drawbacks and caveats

Unfortunately, Invocation isn’t as simple as this. As always, there are complications.

To begin with, some of the featureset given in the Java executable isn’t automati-
cally supported by the JVM created by Invocation. For example, the ability to execute
a JAR file (as described in chapter 3) is a function of the native C/C++ code in java.exe,
not part of Invocation itself. Passing “~jar <jar-file-name>" in as one of the JVM options
(through the use of the JavaVMOptions array) will have no effect. If your JVM created
by Invocation is to support this ability, you need to code it in yourself.

Secondly, Sun changed (in the Win32 JDK, at least) how the native-side support
for Java was loaded and executed by the OS. Under JDK 1.1, you made these JNI calls
(with slightly different syntax for the options to the VM), included the JNI headers,
and linked in the JNI libs. The native process would create the JVM, find classes, call

JNI ESSENTIALS 487

methods, and so on. So long as the necessary DLLs were someplace the OS could find
them when it was asked to load them, everything ran precisely as expected.

With the advent of JDK 1.2, however, Sun threw something of a monkey wrench
into the works. With 1.1, all that was necessary to run the JVM from native code was
to be sure that the JDK or JRE bin directory was somewhere along the system PATH,
for both Windows and Solaris. In Java 2 (JDK 1.2), this changed; now, the JDK saves
a path to the installed JRE in the Windows Registry, and uses that, and not paths rela-
tive to the bin directory in which the appropriate DLL was found, to locate where the
installed Java execution engine resides.

To complicate matters further, it’s not sufficient to just put the JDK or JRE bin
directory on the path. In an effort to support drop-in JIT support (for its Hotspot JIT
compiler), Sun uses Win32 C/C++ run-time linking to dynamically determine if the
Hotspot compiler is present, and if so, to load it instead of the classic JVM engine. The
idea is quite cool—we don’t need to add any more support or code to install Hotspot—
just drop the native-side files into a hotspot directory under the bin directory of the
JDK/JRE, and Hotspot comes along for free.

What this means, however, is that not all of the files necessary to execute the JVM
reside in the bin directory anymore. Some reside in bin, and others will reside in either
classic or hotspot, depending on whether the normal or the JIT execution engine is to
be used. What this means to us, as Java developers, is that using JNI Invocation is no
longer simple. Where before we could simply call INI_CreateVM and expect every-
thing to work flawlessly, now we have to worry about obtaining the path to the
installed JDK out of the Registry, run time loading the appropriate DLLs, and so on.

Fortunately, Sun helps out immeasurably with this; in the src.jar file that ships
with the Win32 or Solaris JDK download bundle are four files, under src/launcher.
This is the native code that Sun uses in its own native-code development, such as the
java.exe (and other) execution engines; specifically, this is the code for java.exe. By pro-
viding this code under the standard download license (as opposed to Sun’s more
restrictive Source Community License), you are able to either cut and paste the code
into your own native development, or compile and link in the relevant routines.

The four files, java.c, java.h, java_md.c, and java_md.h, contain the following C
API° functions:

e main (java.c):
This is the standard entry point in C/C++, and performs the same function here.
The main function will create a JVM (either Hotspot or classic, as defined by a
command-line argument), find the class passed on the command line, and
invoke it with the command-line arguments following the class. Unfortunately,
main will also be unusable in its current form, since a C/C++ application can

5 The code is presented in C, so as to be accessible from either C or C++ (or any other language that
understands the Win32 C API, such as Delphi, VB or even PowerBuilder).

488 CHAPTER 16 JAVA NATIVE INTERFACE

only have one main, and that (usually) will be the main defined in your own
native code. Still, looking at the main implementation gives a good idea of how
to load the JVM and start it, and nothing prevents us from changing the name
from main to java_main , to allow it to be loaded and linked as a library from
other native apps.

* LoadJavaVM (java_md.c): This is a general-purpose routine that, while not
quite as detailed or feature-ridden as the main implementation in java.c , does
go through all the necessary rigamarole required to load and run the JVM either
as the classic or the JIT/Hotspot JVM. In fact, it will check for a JRE first in the
same directory as the native application (looking for a bin directory underneath
the current application directory). If not found there, it then checks to see if the
application shipped a private JRE (in a jre subdirectory underneath the applica-
tion’s home directory). Note that the launcher assumes that the application is
being launched from a bin directory underneath the application’s actual home
directory; for example, it assumes a directory layout similar to that of the JDK
download itself. The home directory may be C:\JDK1.2 , but the directory in
which the executable resides is C:\JDK1.2\bin . If no jre subdirectory is found
(in C:\JDK1.2\re , for example), it checks the Win32 Registry to attempt to
find (what it calls) a public JRE installation. If you look carefully at the JDK 1.2
installation, this precise hierarchy is established—when java.exe is created, it will
find that it has a jre subdirectory under its home directory, and will use the JVM
support files found there.

This three-step approach to finding the JRE to use as the JVM for Invocation pro-
vides a tremendous amount of flexibilitcy—now we can ship native C/C++ applications
that use a colocated or private JRE implementation to provide Java capabilities. This
is a tremendous step toward zero administration. Instead of making system adminis-
trators responsible for installing the appropriate version of the JRE onto a user’s
machine, with all the versioning problems thus incurred, we can drop a JRE installa-
tion in the same directory as our native application. The C/C++ launcher code will
pick it up automatically, and, more importantly, it won’t interfere with a standard Java
installation on the user’s machine.

In fact, this offers an interesting solution to an oft-cited complaint of Java. System
administrators, particularly, have often complained about Sun’s release of a new ver-
sion of the JDK every two to four months. As we’ve discussed before, every time a new
release of software is made that is in use by a corporation, the system administrators
are the ones who have to go around to all the users’ machines and install it. This is
not a good way to make friends with the system administrators, especially if your user
base is scattered across multiple buildings, cities, states, or even countries.

We've already discussed ways to create a zero deployment environment for our
Java code, but the JVM/JRE itself is another matter. It would be awkward to have exe-
cuting Java code try to download a new version of the JRE and install it, since the files

JNI ESSENTIALS 489

490

being replaced are currently being executed. Not only does this present a potential
sharing violation, but now the Java code has to somehow shut itself down and restart
the application, so as to take advantage of the new code.

JNI offers an interesting solution to this issue. Instead of asking Java code to do this
sort of upgrade-the-JDK-on-the-fly, run a custom java.exe launcher that, upon first invo-
cation, uses native C/C++ code to contact a central deployment server for the latest ver-
sion of the JRE in use. The JNI code can even go so far as to construct the JVM, make
a System.getProperties(“java.version”) call to obtain the version of the
JVM in use and compare it against the version on the remote server. If the version on the
remote server is greater, download the new JRE (most likely in .zip or .tar.gz format),
explode it on top of the user’s current working directory, and then start the JVM.

Your system administrators are happy because they don’t have to walk around to
every user’s machine, they don’t have to ask the users to do the install themselves, and
they’re still able to support your development efforts and not seem as a stumbling
block to continued progress. You, meanwhile, bask in the glory of their praise for your
system even as you upgrade the JDK to the latest and greatest, as needed.

One final problem with using Invocation is that because we're so deeply into
native code, we need to pay very close attention to the context when calling into the
JVM. Any exceptions thrown need to be handled, any synchronization monitors need
to be carefully tracked, and global and local references (to prevent garbage-collection
of Java objects) need to be held where necessary. When working within multiple
native-thread code, special care must be taken in order to prevent a crash from the JVM
native code—each thread that wishes to access or call on the JVM must attach itself
to the JVM before making a single call on it.

Still, JNT Invocation is by far the most underrated API of the Java API sets. One
idea offering interesting possibilities is to embed a JVM within your user front-end
application, and use Java as your application’s user macro language; this is precisely
what Java Server Pages do.

Debugging tip
Interestingly, reading the launcher code also yields a very practical benefit:
/*

* Entry point.

*/

int
main(int argc, char **argv)
{
A
if (getenv("_JAVA_LAUNCHER_DEBUG") != 0) {
debug = JNI_TRUE;
printf("----_JAVA_LAUNCHER_DEBUG----\n");
}
A
}

CHAPTER 16 JAVA NATIVE INTERFACE

For non-C/C++ developers, the foregoing code checks for the presence of an environment
variable _JAVA_LAUNCHER_DEBU@nd if found, turns on a debug flag that causes all
sorts of interesting information to be displayed when the executable is running;

C:\Projects\Books\SSJ\cd\Src\Chapl3>java Hello
Hello, world!

C:\Projects\Books\SSJ\cd\Src\Chap13>set JAVA_LAUNCHER_DEBUG=1

C:\Projects\Books\SSJ\cd\Src\Chap13>java Hello
----_JAVA_LAUNCHER_DEBUG----
Path to JVM is C:\PRG\DK1.2\jre\bin\classic\jvm.dll
JavaVM args:
version 0x00010002, ignoreUnrecognized is JNI_FALSE, nOptions is 1
option[0] = -
Djava.class.path=.;C:\JRE\1.2\lib\rt.jar;C:\PRG\JDK1.2\lib\to
ols.jar;C:\PRG\JDK1.2\lib\dt.jar'
678724 micro seconds to InitializeJVM
Main-Class is 'Hello'
Apps' argc is 0
224188 micro seconds to load main class
----_JAVA_LAUNCHER_DEBUG----
Hello, world!

C:\Projects\Books\SSJ\cd\Src\Chap13>

As you can see, we get quite a collection of information that comes back—the path to
the JVM, the arguments to the JVM (including the value of the CLASSPATH environ-
ment variable), the Main-Class loaded, which will be either the class specified on the
command line, or the Main-Class directive in the JAR’s Manifest file, and some pro-
filing information.

Just for curiosity’s sake, this is what we get when we run “javac” with the
_JAVA_LAUNCHER_DEBU@rned on:

C:\Projects\Books\SSJ\cd\Src\Chapl3>set CLASSPATH=

C:\Projects\Books\SSJ\cd\Src\Chapl3>javac Hello.java
----_JAVA_LAUNCHER_DEBUG----
Path to JVM is C:\PRG\JDKZ1.2\jre\bin\classic\jvm.dll
JavaVM args:
version 0x00010002, ignoreUnrecognized is JNI_FALSE, nOptions is 3
option[0] = '-Dapplication.home=C:\PRG\JDK1.2'
option[1] = *-
Djava.class.path=C:\PRG\JDK1.2\lib\tools.jar;C:\PRG\JDK1.2\cl
asses'
option[2] = '-Xms8m'
625375 micro seconds to InitializeJVM
Main-Class is 'sun.tools.javac.Main'
Apps' argc is 1
argv[O] = 'Hello.java'
450462 micro seconds to load main class
---_JAVA_LAUNCHER_DEBUG----

C:\Projects\Books\SSJ\cd\Src\Chap13>

JNI ESSENTIALS 491

16.2.4

492

Interesting. In this snippet, we first set the CLASSPATH to be empty, to demonstrate
what the launcher code does with the CLASSPATH if none is found. As you can see, it
builds its own classpath, consisting of the application home path with lib\tools.jar
and classes appended. (This is the CLASSPATH used for the execution of the
sun.tools.javac.Main class, not the CLASSPATH used by the compiler to find classes
defined in your own code.)

This is useful information to have when debugging Java, and it’s all there for us
to see just by turning on this undocumented feature of the launcher code. In fac, this
is a handy trick for development in general; one of the keys to zero administration is
the ability to turn on debugging information without having to redeploy or recompile
the application. In this case, simply define an environment variable and rerun the
application, and debug information begins to pour across the screen. It may not be as
interactive as using a Java debugger, but it’s a quick-trick that the system administra-
tors can do themselves. Then, if the problem persists, the output can be captured to
file and given to the developers for examination.

JNI changes in JDK 1.2

With the release of JDK 1.2 came some changes in the nature of native libraries.
Unfortunately, no corresponding JNI 1.2 specification has come with those changes.
As of this writing, the JNI 1.2 specification consists of reading the JNI 1.1 specifica-
tion and the JNI 1.2 enhancements document that comes as part of the JDK 1.2
download. While the changes made to JNI for 1.2 aren’t profound or significant, a
few new features added offer additional flexibility you may welcome:

* Native library startup/shutdown routines
When the JVM loads the native library via the loadLibrary method, it will
attempt to look for a function in the library with the signature

jint JNI_OnLoad(JavaVM* vm, void* reserved);

The IJNI_OnLoad function must return the JVM version it requires to run; this
means that if any native-code implementations use JNI 1.2 features, this function
must return JNI_VERSION_1_2. Conversely, when the native library is
unloaded from the JVM, it will call

void JNI_OnUnload(JavaVM* vm, void* reserved);

This behavior was introduced to allow native libraries the opportunity to per-
form on-load or on-unload initialization (for example, to establish/close connec-
tions to a database, or perform initialize/uninitialize calls to a third-party library,
and so forth). Under the Win32 platform, DLLs have the ability to use a DLL entry-
point function (DIIMain under Visual C++, DIlEntryPoint under BorlandC++) to
do the same thing. Other platforms may do so, as well. Because Java now pro-
vides a mechanism to do this, however, any new native-library code written
should use the JNI_OnLoad /JNI_OnUnload functions.

CHAPTER 16 JAVA NATIVE INTERFACE

* Reflection support
One discrepancy in JNI 1.1 was the fact that JNI jmethodIDs and jfieldIDs
had no relationship to Reflection, other than twice looking up the same field or
method by name (once in Reflection and once in JNI). This meant that within a
native library, if the native-code implementation needed to find the jmethodID
of a java.lang.reflect. Method instance, it had to get the Class instance from the
Method, turn the Class into a jclass, get the name from the Method, call Get-
MethodID on the jclass using the Method’s name, and finally call through the
jmethodID , all of which took an extraordinary amount of time. In JNI 1.2, it
boils down to a single call:

/I Convert “methodObj” (a jobject) into a jmethodID

jmethodID methodJNI_ID = envPtr->FromReflectedMethod(methodObj);
/I Note that methodObj must be a jobject referencing a
/I java.lang.reflect.Constructor or java.lang.reflect.Method
/I object instance, or Bad Things will occur

This gives JNI code the ability to conveniently use Java’s Reflection mechanism.
This can also go both ways—the JNI methods ToReflectedMethod /ToRe-
flectedField convert a JNI jmethodID or jfieldID to a java.lang.reflect.
Method/java.lang. reflect. Constructor or java.lang.reflect.Field instance.

o Changes in the Invocation mechanism
Because of the way the JNI 1.1 JDK1_1InitArgs structure was written, introduc-
ing features to the JVM via Invocation was impossible. In JNI 1.2, a new struc-
ture was introduced, JavaVMInitArgs, which in turn contains an array of 0 to 7
JavaVMOption structures; the JNITest.cpp file demonstrated this:

JavaVMiInitArgs vm_args;
JavaVMOption options[4];

options[0].optionString = "-Djava.compiler=NONE";
/* disable JIT */

options[1].optionString = "-Djava.class.path=c:\myclasses";
[* user classes */
options[2].optionString = "-Djava.library.path=c:\mylibs";
/* set native library path */
options[3].optionString = "-verbose:jni";

/* print INI-related messages */

vm_args.version = JNI_VERSION_1_2;
vm_args.options = options;
vm_args.nOptions = 4;
vm_args.ignoreUnrecognized = TRUE;

/* Note that in JDK 1.2, there is no longer any need to call
* JNI_GetDefaultJavaVMInitArgs. */
res = JNI_CreateJavaVM(&vm, (void **)&env, &vm_args);

A few other items came in as well; see the JDK documentation for further details.

JNI ESSENTIALS 493

16.3

16.3.1

16.3.2

494

OTHER METHODS OF JAVA-TO-NATIVE INTERACTION

JNI isn’t the only way by which Java can communicate with native code.

Sockets

One of the easiest ways to get Java code to communicate with non-Java code is to use
TCP/IP sockets to facilitate the communication. Because of their ubiquitous nature
and the popularity of the Internet, just about every language commonly available has
the capacity to open and communicate over a socket. In fact, this sort of communica-
tion occurs almost constantly, as web browsers written in C or C++ use sockets to
communicate with web (and other) servers that may or may not be written in Java,
C/C++, Python, or Visual Basic. Because the HTTP protocol is a completely text-
based protocol, no big-endian/little-endian concerns apply; the same is true of any
text-based protocol, which explains its popularity among Internet standards.

This in turn implies that if you require your Java application to communicate
with a C++ server, simply specify a text-based socket protocol for both sides, write the
necessary code to read and write from those sockets, then ensure that clear TCP/IP
communication exists between the two processes. Sockets also possess a measure of
location transparency. They can be used for either a local IPC mechanism, in which
two processes on the same machine communicate, or as remote IPC across multiple
machines. Either way, the sockets neither know nor care.

There are, however, drawbacks to the sockets alternative. Sockets are slow and carry
a fairly hefty amount of overhead in establishing connections. In a high-performance
application, this could easily become a sizable bottleneck. Additionally, binary repre-
sentations of objects cannot be shared, but must instead be sent entirely across the
socket. If your non-Java environment understands the Java Object Serialization speci-
fication, the entire object tree can be Serialized and sent over, but without this, some
other form of representation must be used. XML is a good candidate for this, but
requires an XML parser for both sides.

Consequently, unless the separation between the two systems is clean and well-
defined, sockets as an interface mechanism between Java and non-Java code can
quickly become more trouble than they are worth. This can especially be true if the
desire to move to non-Java code is one of performance. In those cases where a textual-
based system and/or well-known binary data exchange is possible (the classic case
being a web server), sockets provide an easily understood mechanism for the exchange
of data between Java and external code.

CORBA

CORBA also, because of its multilinguistic nature, also allows Java code to access non-
Java code. This is entirely by intent. CORBA has been, from its very beginning, tar-
geted as a cross-language, cross-platform solution that brings together all languages
into a unified whole. The cost of this software bus, as the OMG calls it, is a measure
of complexity not found in pure Java code, coupled with the overhead of the CORBA

CHAPTER 16 JAVA NATIVE INTERFACE

ORB and related code on each side. The overhead of IIOP will certainly defeat most
attempts to use CORBA as a native-code performance-tuning mechanism.

In some ways, using CORBA to access code written in C/C++ (or any of the other
languages for which CORBA has bindings, including Ada and COM/DCOM Automa-
tion) doesn’t quite qualify as native interaction, since the Java code isn’t accessing the
native code directly (as it is with JNI). Instead, the Java code calls into the CORBA
ORB, which in turn passes the request on to the recipient CORBA object in its own,
native, form. Still, regardless of the technical discrepancies, CORBA allows our Java
code to communicate directly with C/C++ code, which is precisely the goal.

16.4 INTEGRATING THE SERVER: GJAS GOES NATIVE

Despite Java’s incredible flexibility as a server-side tool, sometimes it’s simply easier to
use and administer an application if it is a native executable, rather than an inter-
preted bytecode (or script) file. For example, Java would make a strong scripting lan-
guage, to replace complex UNIX shell scripts, except that a Java application must be
fired off as the Java interpreter, with the class name to execute as part of the command
line. This requirement makes using Java as an integral part of the operating system
suite of tools an awkward and clumsy process. We might be able to work around it by
using batch or script files to hide the Java interpreter, but that’s still clumsy, and won’t
work in many cases.

16.4.1 Making GJAS an NT service

One such area where Java’s interpreted nature can trip itself up is in the arena of dae-
mon processes. Daemons, for those unfamiliar with the UNIX terminology, is an
application that runs irrespective of user presence. For example, most HTTP and FTP
server processes are run as daemons, so that even if no user is currently logged into
the system, the process will still run and execute as soon as the system comes up.
Under NT, daemons are called Services, and are started as soon as the NT machine
boots, just like daemons.

Unfortunately, where a daemon process can be any Unix executable with any
command-line (daemons are specified in plain text files specific to each Unix operating
system, so firing off a Java app is as simple as specifying “java MyClass paraml
param2”), NT has a very specific mechanism. Services in NT must follow a very strict
form, and cannot be simply any executable—it must be an executable that takes very
specific steps, registering itself with the NT Service Control Manager, and receiving
callbacks from the SCM as the load process proceeds.

Because of this, a Java application cannot, by itself, be a Service. Some may won-
der why this is even an issue—after all, we just log in, start the Java application, and
leave it running, correct? Those familiar with NT know this is not the case—NT
refuses to log out so long as a user-created process (like a Java process) remains run-
ning. This means that the only way, other than to create a Service, to have a process
running on NT is to leave it logged in. This is, as any NT administrator will tell you,

INTEGRATING THE SERVER: GJAS GOES NATIVE 495

16.4.2

496

a huge security hole, as it means that anyone with physical access to the server can now
(deliberately or accidentally) alter or shut down the Java process.

Instead, we need to create a native NT Service to create a JVM, load a class specified
in the Service’s command-line parameters, and execute it. Unlike a normal Java appli-
cation, however, we’re not going to try and filter everything through main ; instead,
we're going to make use of JNI’s ability to call any method on the class and create a
pseudo-protocol for allowing any arbitrary Java class to behave as an NT service.

This isn’t a book on NT Services, so I'm not going to go through the necessary
steps to build an NT Service.® The key point to draw away from this is that because
of NI, we can create a custom-OS-specific application that in turn wrappers our JVM.
This lets us poke Java into just about any place on the platform that we want.

Using NT IPC mechanisms: Named pipe

The Win32 API also has a rich set of interprocess communication mechanisms: named
and anonymous pipes, atoms, the Windows clipboard, DDE, system hooks, memory-
mapped files, mailslots, standard sockets, even the WM_COPYDATA message in the
windowing layer. As a result, native Win32 applications can communicate in a wide
variety of ways. Because of this, we may want our Java code to be able to communicate
with these native Win32 applications using their mode of communication. Again,
this is precisely what JNI is for—to allow us to call down to the underlying platform.

We'll use the basic design that Java uses for Sockets. The NamedPipe class
(listing 16.2) will parallel the Socket class, a basic encapsulation of the details of con-
necting to a given NamedPipe. From that NamedPipe instance, we’ll obtain an Output-
Stream and InputStream for writing to and reading from the named pipe, respectively.
These will be the NamedPipeOutputStream and NamedPipelnputStream classes,
although they shouldn’t be visible to users of the NamedPipe, just as the Socket’s spe-
cific OutputStream and InputStream classes aren’t visible.

Listing 16.2 Code for NamedPipe.java

/~k~k

* This class serves the same purpose as the Java Socket class;
* a simple abstraction of connecting to and using a named pipe.
*/

public class NamedPipe

{

static

{
System.loadLibrary("NamedPipe");

}

/I Constants
1

® FEsential JNI, mentioned in the “Additional reading” section, does precisely this.

CHAPTER 16 JAVA NATIVE INTERFACE

public static final int DUPLEX = 3;
public static final int WRITE = 2;
public static final int READ = 1,

/I Internal members

1

[*package-friendly*/ int m_hPipe;
private int m_openMode;

public NamedPipe()
{1

public NamedPipe(String pipeName, int openMode, int timeout)
throws IOException

{
m_openMode = openMode;
open(pipeName, openMode, timeout);
}
public void finalize()
{
close();
}

public void open(String pipeName, int openMode, int timeout)
throws IOException

{
m_hPipe = nativeOpen(pipeName, openMode, timeout);
if (m_hPipe == OxFFFFFFFF)
{
throw new IOException("NT NamedPipe error");
}
}
public void close()
{
nativeClose(m_hPipe);
}

public OutputStream getOutputStream()
throws 1OException

{
if ((m_openMode == DUPLEX) ||
(m_openMode == WRITE))
{
return new NamedPipeOutputStream(this);
}
else
throw new |OException("Named-Pipe is inbound only");
}

public InputStream getinputStream()
throws 1OException
{
if ((m_openMode == DUPLEX) ||
(m_openMode == READ))
{

INTEGRATING THE SERVER: GJAS GOES NATIVE 497

498

return new NamedPipelnputStream(this);

}

else
throw new IOException("Named-Pipe is outbound only");

}

/I Native methods
1
static private native
int nativeOpen(String name, int mode, int timeOut);
static private native
boolean nativeClose(int pipeHandle);

The NamedPipe class, like the Socket class, offers two constructors: a default that simply
creates the instance and performs no initialization, and one that takes the Win32 UNC
name of the named pipe to connect to. This name will be one of a variety of forms:

* “\.\pipe\pipename”: Tells the Win32 API to connect to the pipe named “pipe-
name” on the local machine; using “.” is the named pipe equivalent of “localhost”
as the host name to a Socket.

* “\"\pipe\pipename”: Tells the Win32 API to connect to the pipe named “pipe-
name” anywhere on the network; this means that only one “pipename” will exist
across the entire NT domain or workgroup.

* “\\machinename\pipe\pipename”: Tells the Win32 API to connect to the pipe
“pipename” on the machine “machinename”. Only one “pipename” can exist on
“machinename”, but “pipename” could exist on other machines without a problem.

* “\\domain\pipe\pipename”: Tells the Win32 API to connect to the pipe “pipe-
name” on the domain “domain”; only one “pipename” will exist for the domain,
but will not conflict with “pipename” on individual machines.

The NamedPipe class itself does no validation or sanity-checking of the UNC
name; it just passes it directly on to the JNI methods to give to the Win32 call.

NamedPipe has three native methods, which are implemented in a separate tree
on the CD (in the “Src/native/win32” subdirectory), and look like this:

#include "com_javageeks_net_NamedPipe.h"
#include <windows.h>

#include <iostream>
using namespace std;

/*
* Class: com_javageeks_net_NamedPipe
* Method: nativeOpen
* Signature: (Ljava/lang/String;ll)I
*
/

JNIEXPORT jint JNICALL Java_com_javageeks_net_NamedPipe_nativeOpen

CHAPTER 16 JAVA NATIVE INTERFACE

(INIEnv* env, jclass, jstring pipeName, jint mode, jint timeOut)

int debug = (getenv("_JAVAGEEKS_DEBUG") != 0);

/I Convert from Java to UTF-8; we're in trouble if we ever use
/I Unicode as a pipeName, but | don't want to deal with
/I Unicode-to-ASCII conversions right now
const char* c_pipeName = env->GetStringUTFChars(pipeName, NULL);
if (debug)
{
cout << "Java_com_javageeks_net NamedPipe_nativeConstruct: "
<< "c_pipeNam e = " << c_pipeName << end];

}

DWORD fileMode;
if (mode==com_javageeks_net_NamedPipe_DUPLEX)

{
fileMode = GENERIC_READ | GENERIC_WRITE;
}
else if (mode==com_javageeks_net_NamedPipe_READ)
{
fileMode = GENERIC_READ;
}
else if (mode==com_javageeks_net_NamedPipe_WRITE)
{
fileMode = GENERIC_WRITE;
}
else
{
/I Uh-oh; we didn't expect this
if (debug)
{
cout << "What is mode " << mode << "???" << endl;
}
}

/I Make the call
HANDLE hPipe = ::CreateFile(c_pipeName, fileMode,
0, NULL, OPEN_EXISTING, 0, NULL);
/I Check for busy
if (hPipe == INVALID_HANDLE_VALUE)

{
if (::GetLastError() == ERROR_PIPE_BUSY)
{
/I Wait up to the timeout parameter; after that, it's
/I a failed connect and return
if (::WaitNamedPipe(c_pipeName, timeOut))
{
hPipe = :CreateFile(c_pipeName, fileMode, 0, NULL,
OPEN_EXISTING, 0, NULL);
}
}
}

INTEGRATING THE SERVER: GJAS GOES NATIVE 499

500

if (hPipe == INVALID_HANDLE_VALUE)

{
DWORD error = :GetlLastError();
if (debug)
{
cout << "hndl == INVALID_HANDLE_VALUE; "
<< "ErrNo: " << :GetLastError() << endl;
}
hPipe = (void*)-1;
}
/I Release

env->ReleaseStringUTFChars(pipeName, c¢_pipeName);

return (jint)hPipe;

}
/*
* Class: com_javageeks_net_NamedPipe
* Method: nativeClose
* Signature: (1)Z
*/

JNIEXPORT jboolean JNICALL Java_com_javageeks_net_NamedPipe_nativeClose
(INIEnv* env, jclass cls, jint namedPipe)

{
int debug = (getenv("_JAVAGEEKS_DEBUG") != 0);
HANDLE hPipe = (HANDLE)namedPipe;
if (::CloseHandle(hPipe))
{
return JNI_TRUE;
}
else
{
if (debug)
{
cout << "ConnectNamedPipe failed; error "
<< :GetlastError() << endl;
}
return JNI_FALSE;
}
}

For those who aren’t C++ gurus, this is a fairly basic exercise in both JNI and Win32
APT calls. The nativeOpen call decodes the jstring argument into a native C/C++
char* string, and passes that into the CreateFile call. Note that because this is a
client (and not a server), if the named pipe doesn’t exist, an error will result. Another
danger: remember that in Java, all Strings are Unicode, but most C/C++ code still
works with the ASCII character set. When decoding Strings from Java, if the String is
entirely ASCII, it can be safely used as an ASCII string when retrieved/converted as a

CHAPTER 16 JAVA NATIVE INTERFACE

UTE-8 String; should somebody pass in a Unicode name as the choice of the named
pipe, however, the JNI code mentioned is going to blow up—big time. I'm not
including any code to convert Unicode to ASCII for the simple reason that it clutters
the example; if this code is intended for an international market, such conversion
would probably be necessary before deployment to production.

Note how we make use of the “_JAVA_LAUNCHER_DEBUG@nvironment-variable
trick in the JNI code; if the environment variable “_JAVAGEEKS_DEBUGs defined,
we spit out some interesting debugging information along the way. We could even
make this more sophisticated by setting the environment variable to various levels (1 and
up), corresponding to more and more output, but this works, for now.

Notice that the getOutputStream and getlnputStream methods of
NamedPipe return new instances of NamedPipeOutputStream and NamedPipelnput-
Stream, respectively:

-

* Receive input from an NT named pipe (presumably with INBOUND
* mode set on it). Can only be obtained from a NamedPipe instance;
* cannot be instantiated on its own.
*/
public class NamedPipelnputStream extends InputStream
{

/I Internal members

1

private NamedPipe m_pipe;

/**

* Package-friendly constructor. Used solely by NamedPipe.
*/
[*package-friendly*/ NamedPipelnputStream(NamedPipe pipe)

{
m_pipe = pipe;
}
public int available()
{
return O;
}
public void close()
{
/I Do nothing--the named pipe may still be open in outbound
/I mode, so we don't want to close it
}
public boolean markSupported()
{
return false;
}
public int read(byte[] b)
{
return nativeRead(m_pipe.m_hPipe, b);
}

INTEGRATING THE SERVER: GJAS GOES NATIVE 501

public int read()
{

return nativeRead(m_pipe.m_hPipe);

}

/I Native methods

1

private static native void nativeAvailable(int hPipe);
private static native int nativeRead(int hPipe, byte[] b);
private static native int nativeRead(int hPipe);

}

The JNI implementation looks like:

#include "com_javageeks_net_NamedPipelnputStream.h"
#include <windows.h>

#include <iostream>
using namespace std;

/~k

* Class: com_javageeks_net_NamedPipelnputStream
* Method: nativeAvailable

* Signature: (I)V

*/

JNIEXPORT void JNICALL
Java_com_javageeks_net_NamedPipelnputStream_nativeAvailable
(INIEnv* env, jclass, jint namedPipe)

{ int debug = (getenv("_JAVAGEEKS_DEBUG") != 0);
HANDLE hPipe = (HANDLE)namedPipe;
/I Not sure what to do here....

}

Jx

* Java_com_javageeks_net_NamedPipelnputStream_nativeRead__| not
* shown here for brevity

*/

/*

* Class: com_javageeks_net_NamedPipelnputStream
* Method: nativeRead

* Signature: (I[B)I

*/

JNIEXPORT jint JNICALL
Java_com_javageeks_net_NamedPipelnputStream_nativeRead__|_3B
(INIEnv* env, jclass, jint namedPipe, jbyteArray bytes)

{
int debug = (getenv("_JAVAGEEKS_DEBUG") != 0);

HANDLE hPipe = (HANDLE)namedPipe;

/I Read bytes.length characters
DWORD arrayLength = env->GetArrayLength(bytes);
DWORD nRead;

502 CHAPTER 16 JAVA NATIVE INTERFACE

CHAR* recvArray = new CHAR[arrayLength];

if (::ReadFile(hPipe, recvArray, arrayLength, &nRead, NULL))

{
if (debug)
{
cout << "ERROR: Unable to read from named pipe" << endl;
}
}

/I recvArray now holds the named pipe data; transfer it to
/I the 'bytes' array
env->SetByteArrayRegion(bytes, 0, nRead, (jbyte*)recvArray);

return nRead,;

}

Note that InputStream provides available , a method for determining how many
bytes can be read before blocking, but that the JNI code does nothing with this. In
fact, the Java code in NamedPipelnputStream simply returns 0. This is the normal
response to use when working with a stream that offers no buffering. We could add
buffering of the named pipe to the input stream without much difficulty, but, again,
would make the JNI code much more complex.”

NamedPipeOutputStream.java and its corresponding JNI code look very similar:

package com.javageeks.net;
import java.io.*;

public class NamedPipeOutputStream extends OutputStream

{

/I Internal members
1
private NamedPipe m_pipe;

[*package-friendly*/ NamedPipeOutputStream(NamedPipe pipe)

{
m_pipe = pipe;
}
public void close()
{
/I Do nothing--the named pipe may still be open in incoming
/I mode, so we don't want to close it
}
public void flush()
{
nativeFlush(m_pipe.m_hPipe);
}

7 In addition, attempting to support this functionality in its purest form (lookahead support) under
Win32 could be somewhat problematic or inefficient, since it would require making a separate API call
to determine how many characters are left to read on the named pipe.

INTEGRATING THE SERVER: GJAS GOES NATIVE 503

public void write(byte[] b)

{

nativeWrite(m_pipe.m_hPipe, b);
}
public void write(int ch)
{

nativeWrite(m_pipe.m_hPipe, ch);
}

/I Native methods

1

private static native void nativeFlush(int hPipe);

private static native void nativeWrite(int hPipe, byte[] bytes);
private static native void nativeWrite(int hPipe, int ch);

}

Notice that we provide an implementation for flush , even though the current JNI
implementation always sends the data down the named pipe in the write call; this is
(again) to support buffering later, if we choose to do so.

The JNI implementation is as follows:

#include "com_javageeks_net NamedPipeOutputStream.h"
#include <windows.h>

#include <iostream>
using namespace std;

/~k

* Class: com_javageeks_net_NamedPipeOutputStream
* Method: nativeFlush

* Signature: (I)V

*/

JNIEXPORT void JNICALL
Java_com_javageeks_net_NamedPipeOutputStream_nativeFlush
(INIEnv* env, jclass, jint pipe)

{
int debug = (getenv("_JAVAGEEKS_DEBUG") != 0);
HANDLE hPipe = (HANDLE)pipe;
}
/*
* Java_com_javageeks_net_NamedPipeQutputStream_nativeWrite__ Il not
* shown here for brevity
*/
/*
* Class: com_javageeks_net_NamedPipeOutputStream
* Method: nativeWrite
* Signature: (I[B)V
*
/

JNIEXPORT void JNICALL
Java_com_javageeks_net_NamedPipeOutputStream_nativeWrite__|_ 3B
(INIEnv* env, jclass, jint pipe, jbyteArray bytes)

504 CHAPTER 16 JAVA NATIVE INTERFACE

int debug = (getenv("_JAVAGEEKS_DEBUG") != 0);
if (debug)
{

cout << "Entering NamedPipeOutputStream_nativeWrite__|_3B" << endl;

}
HANDLE hPipe = (HANDLE)pipe;

/I Convert jbyteArray to char*

DWORD arrayLength = env->GetArrayLength(bytes);

CHAR* sendArray = new CHARJarrayLength];
env->GetByteArrayRegion(bytes, 0, arrayLength, (jbyte*)sendArray);

if (debug)
{

cout << "Sending: ™ << sendArray << "" << endl;
}

DWORD cbWritten;

/I Do the Write
BOOL success = :WriteFile(hPipe, sendArray, arrayLength + 1,
&cbWritten, NULL);

if (Isuccess)

{
if (debug)
{
cout << "ERROR: WriteFile failed: " << ::GetLastError()
<< endl;
}
}
}
We do nothing inside of nativeFlush , since we’re sending the messages down the
named pipe as soon as the write call is made. Note also that the write(int ch)

method, under a nonbuffered implementation, is going to be an expensive call, send-
ing a single character down the named pipe on each call. This is why the NamedPipe-
OutputStream class provides an implementation of the write(byte[] b) method,
instead of using the default: simply looping across the array and calling write(int
ch) would be horribly inefficient.®

A couple of other notes about the NamedPipe implementation:

o “Close” support
Neither the NamedPipelnputStream nor the NamedPipeOutputStream call
CloseHandle on the named pipe handle, instead leaving it to the NamedPipe

8 This is also why the sample code in NamedPipe’s main uses the write method to send the data down
the pipe, instead of the more Java-familiar wrap-a-PrintWriter-around-the-OutputStream-and-use-
printin . Because PrintWriter writes each character using the write(int) method of OutputStream,
to send a collection of bytes it’s more efficient to use write directly, even if it is more awkward.

INTEGRATING THE SERVER: GJAS GOES NATIVE 505

16.5

16.5.1

506

to do this during its garbage-collection step (or when its close method is called
directly). This is because a given InputStream and OutputStream could both be
attached to the same handle, and having one close it would deny it to the other.
Instead of trying to build a complex reference-counting scheme, we let Java do
the work for us. When NamedPipe gets recycled (which it never will, until any
NamedPipelnputStream or NamedPipeOutputStream instances are also recycled),
it closes the named pipe itself.

* No named-pipe “byte” versus “message” differentiation.

Under Win32, named pipes can be in one of two modes, either “byte” or “mes-
sage” mode. In “byte” mode, bytes are simply written and sent, with no inherent
break between one send and the next. Contrary to this, in “message” mode,
when one message is sent down the named pipe, the entire message is retrieved at
once, making transaction-based communications easier. Adding support to the
NamedPipe class would be a simple exercise in additional JNI/Win32 C/C++
calls. Unfortunately, it would complicate the NamedPipelnputStream/Named-
PipeOutputStream classes, because they would need to know in which mode the
named pipe was operating, and make translations as necessary.

As a test, the Microsoft Visual C++ compiler comes with a number of samples,
f which i Itithreaded named-pi ? Compile and start it, th
one of which is a multithreaded named-pipe server.” Compile and start it, then use
the main method of NamedPipe (not shown in the previous listing) to connect to the
Microsoft named pipe server, and exchange data between clients.

OTHER JNI USES

There is more to JNI than being able to call down the OS or create an opaque JVM to
use. JNI also offers the opportunity for API control of the JVM itself.

Debugging support

I have lamented the loss of Java’s placement of environment variables into the System
“properties” Properties instance. Given that we have the source available for the Java
interpreter for both the Win32 and Solaris platforms, it would be relatively trivial to
use native C/C++ code to walk through the environment variables and place them
into the System’s properties. This would, in turn, give us the debugging support
from environment variables that Java itself uses, but would require the use of this
specialized interpreter.

This, by itself, may not be all bad—it means that production code can use the
standard Java interpreter, and use our customized debugging interpreter only when

9 Use the documentation that comes with MSVC, or an MSDN subscription, to look up “Pipes” under
the “PlatformSDK” heading, and use the “Multithreaded Named Pipe Server” example. Note that be-
cause the Java implementation uses byte-oriented named pipes, the MSVC sample will need to be
modified to use byte-oriented (instead of message-oriented) named pipes.

CHAPTER 16 JAVA NATIVE INTERFACE

16.5.2

the debugging or problem-tracking needs to take place. It probably wouldn’t qualify
as 100 percent pure Java, however, and other Java-based products that control the
JVM, such as EJB Application Servers or Servlet-compliant HTTP servers, wouldn’t
have this support. Still, for developers, this may be a useful trick to have for debugging
or administration support.

JVMDI

The Java Virtual Machine Debugger Interface (JVMDI) is a native-code API that
allows native libraries to have special control with the JVM. JVMDI was introduced
with the release of JDK 1.2, and while Sun claims it to be part of the standard Java
platform, it is (so far) only implemented within the Sun JDK 1.2 release.

Some would believe that knowing this API would only interest those creating a
debugger for Java; in fact, JVMDI (and its partner, JVMPI) offers interesting capa-
bilities, especially in the area of JVM events. For example, we can implement a code-
unintrusive, line-by-line method trace by using JVMDI to attach to the JVM, set up
frame-entry and frame-exit event handlers. Within the event-handler callback, use JNI
to extract the class and method name, and the parameters to the call, if necessary, as
well as the thread on which the call was made, and display all of this to the screen (or
file, or wherever the trace information is destined). While it reduces the JVM’s execu-
tion speed to a crawl (especially since JVMDI, at least in its current form, requires any
JIT compiler to be turned off), only running the code in a debugger would produce
a more detailed report of what happened within the JVM.

Additionally, because this technique occurs within the JVM itself, it applies
equally well to any Java code, whether it was developed in-house, by a third-party, or
even parts of the JDK run-time library itself. This reduces the need for trace code to
be written within the Java code and offers the ability to trace any code we could pos-
sibly execute. Having the ability to act as a debugger gives server applications an extra
measure of robustness—we can use the JVMDI API to not only report on any unex-
pected conditions, but to handle the problem in a manner that would be unavailable
to us within standard Java code.

For example, we can use JVMDI to trap events relating to class loading, in order
to preempt the standard class-loading mechanism, by obtaining the bytecode the
JVM wants to load from some other source. Recall the discussion regarding on-the-
fly compilation of Java code; instead of routing the compilation through a Java class,
we can use native code to execute a native-code Java compiler (such as IBM’s Jikes
compiler) in a separate process. Or, in order to determine the smallest number of Java
classes that need to be distributed when an application is shipped, we can use the
JVMDI API call GetClasses to list all the classes loaded in the JVM at the time the
JVM shuts down.

A JVMDI shared library must be loaded with some special, nonstandard flags to
the Sun JDK interpreter:

java -Xdebug -Xnoagent -Djava.compiler=NONE -Xrunjvmdi YourClass

OTHER JNI USES 507

16.5.3

16.6

16.7

508

The “-X...” options are nonstandard JDK options that may or may not be the same
for non-Sun Java distributions. More details on each are in the JVMDI documenta-
tion. Again, because JVMDI is so new, it is likely that non-Sun implementations of
Java 2 will not have JVMDI.

JVMPI

The Java Virtual Machine Profiler Interface (JVMPI) is another JNI API, not yet stan-
dardized, specifically geared for creating Java code profilers. Because of its profiling
empbhasis, the JVMPI API set contains far more in the way of event-notifications (for
example, notifications when garbage-collection begins and ends), but less in the way
of ability to control the JVM itself (such as the ability to set breakpoints within the
loaded code). In any event, until the JVMPI API is standardized by Sun, any usage
within your own code must be classified as experimental and completely nonportable
to other JVMs.

SUMMARY

Getting Java code to talk to non-Java code presents some best of both worlds oppor-
tunities on the server. Thanks to JNI, we can combine the speed and capability of C/
C++ code with the high-level constructs and developmental ease of Java. This comes
with a cost, however. Coupling with native code, in any form, forces some restrictions
on Java code that may or may not be acceptable to you.

Native code offers too many advantages to ignore, however. The ability to call
down to the underlying platform, the ability to provide hooks for the underlying plat-
form to call into the JVM, and the ability to integrate with the native platform’s capa-
bilities are simply too tempting to ignore or pass by. What's more, Java’s portability
loses some of its necessity when dealing with server-side applications, since the target
system will already be known when the application is deployed, making it simpler to
use JNI and native code.

ADDITIONAL READING

* Rob Gordon, /NI By Example (Addison-Wesley, 1998).

The only book of its kind available, /NI By Example focuses specifically and
exclusively on JNI. If you are a beginner to the JNI, or plan to do extensive work
with it, this is a good place to go for an exhaustive discussion of JNI. This book
also discusses another approach to making Java/NT-Service combinations.

* “Java Native Interface” specification, Sun Microsystems Inc. Available in the JDK 1.2
documentation set at jdk1.2\docs\guide\jni\spec\jniTOC.doc.html.
Written for the JNI 1.1 release, this specification details the nuts and bolts of
working with JNI. While terse in some places, and vague in others, this is the
best reference work for JNI.

CHAPTER 16 JAVA NATIVE INTERFACE

* “INI Enhancements in JDK 1.2,” Sun Microsystems Inc. Available in the
JDK 1.2 documentation set at jdk1.2\docs\guide\jni\jni-12.html.

This is the official Sun document detailing the enhancements made to JNI for
the JDK 1.2 release, at least until the JNI Specification document is updated to
reflect these changes.

ADDITIONAL READING 509

17.1

Monztoring

17.1 Importance grows 510
17.2 Summary 533

Processes fail. Exceptions are thrown. Threads die. Applications crash. It’s a fact of a
developer’s life that bugs creep into a project, regardless of the amount of effort spent
to find them. Unfortunately, this translates into a fact of life for the system adminis-
trator as well. Therein lies the cause for a significant amount of tension between
developers and support staff that needs to be addressed.

Developers typically don’t see the work necessary in managing, configuring, and
monitoring an application. Developers are also usually under a tremendous amount
of pressure to deliver the application. Because many (if not most) software develop-
ment projects run longer than expected and cost more than predicted, the usual rem-
edy is to cut features not seen as critical to the application’s functionality.

Unfortunately, this arrangement usually comes back to haunt developers and
administrators, because system administrators are responsible for ensuring the appli-
cation is running at all times. System administrators constantly have to check the
application’s up status, either by physically looking on the monitor of the machine on
which it is running, or by using the NT TaskManager (or by using “ps” under UNIX)
to check the process’s status.

IMPORTANCE GROWS

As the application’s size and featureset grows, so does its importance to the enterprise.
Usually by the time issues of configuration, control, and monitoring begin to arise in
corporate meetings, it’s too late to introduce them without requiring major recoding

510

or redesign. This in turn makes the developers balk at doing it, which makes adminis-
trators frustrated, which can in turn create further havoc later. All of this can be avoided
if developers acknowledge that administrators need to be able to monitor the applica-
tion, and code accordingly. If we can develop a generic system by which this monitor-
ing can take place, so much the better: zero development along with zero
administration.

Applications need monitoring at several levels. To start, administrators need to
know when an application fails. Remember, unlike most consumer or user-interactive
software, most server applications run in the background with no immediate pop-up
access; in some cases, they run on machines without a monitor. Server applications
simply cannot fail silently without notification. Silent failure means hours of head-
aches trying to trace back to the location of the failure, not to mention the reason for
the failure and how it can be prevented in the future.

17.11 Liveness

One of the first basic questions any system administrator needs to be able to answer
at any time is, “Are the servers still up and running?” An inability to answer this most
basic query indicates the system administrators have no real control over the system.
In a well-run server environment, administrators should be able to call up an applica-
tion or tool and see some visible evidence the application is still running; unfortu-
nately, few custom-developed applications give administrators that ability.

To developers, this may seem unnecessary. After all, if we check the process list,
and the process is still there, it’s still running, right? As reasonable as it may seem to a
developer, this is usually not acceptable to the system administration group, for a simple
reason: to check the system, the administrator must regularly poll the system to see if
the process is still running. Just as polling in distributed objects is inefficient and a
waste of network bandwidth, so too is polling to query the system every hour a waste
of the system administrators’ time and energy.

The HeartbeatService is a simple publish/subscribe service in much the same way
as AWT/Swing components accept EventListeners and make callbacks. The Heart-
beatService listens on a given socket port, accepting connections and storing them into
a Vector. When the service is started, it creates its own PeriodicThread to send a String
down each Socket connection when fired.

Note that this is only one implementation of this type service. The Heartbeat-
Service (listing 17.1) could be written to use RMI, CORBA, COM/DCOM, or any
other technology allowing for objects across processes to communicate with one
another. An RMI or CORBA (or COM/DCOM) HeartbeatService could accept remote
objects that implement an IHeartbeatServiceListener interface, and make
periodic callbacks onto the Listener to reassure the object on the other side that all is
well. A JMS-based HeartbeatService could periodically send a message to a waiting
Queue for consumption by anybody subscribed to the Queue. Or, a mobile object

IMPORTANCE GROWS 511

HeartbeatService could send a mobile object out with instructions to reach forth and
touch any servers/mobile object clients to offer the same reassurance.

Listing 17.1 Coding for HeartbeatService

package com.javageeks.gjas.services;

import java.io.lOException;

import java.io.OutputStreamWriter;

import java.io.PrintWriter;

import java.net.Socket;

import java.util. Enumeration;

import java.util.Vector;

import com.javageeks.thread.PeriodicThread;
import com.javageeks.gjas.ConfigProperties;
import com.javageeks.gjas.ConfigProperty;
import com.javageeks.gjas.ServerManager;

/**
* HeartbeatService sends a message to any listening clients every
* n milliseconds. Put basically, this is the same publish-

subscribe behavior found in a variety of other places, such as
* AWT/Swing's Event-EventListener system.

*

* This concept isn't necessarily limited solely to socket-based
* communication--this could easily be adapted to other forms of
* communicative technology, like RMI, CORBA, JMS, Mobile Objects,
* and so on.
*/
public class HeartbeatService
extends SocketServer
{
/I Internal members
private Vector m_listeners = new Vector();
private PeriodicThread m_pingThread;
private ConfigProperty proplinterval =
new ConfigProperty(“interval', new Integer(5 * 1000),
"Milliseconds between heartbeats");
private ConfigProperty propMessage =
new ConfigProperty("message"”, new String("PING"),
"Message to send on heartbeat");

private ConfigProperties configinfo =
new ConfigProperties(super.getConfiginfo(),
new ConfigProperty[]

{
proplinterval,
propMessage
B
/**

* Inner class to store the Socket and associated streams
*/

512 CHAPTER 17 MONITORING

class Listener

: public Listener(Socket socket)
throws 10Exception
{
m_socket = socket;
toSocket = new PrintWriter(
new OutputStreamWriter(m_socket.getOutputStream()));
}
public Socket m_socket;
public PrintWriter toSocket;
}
/**

* Inner class to do the actual work of sending out the
* "ping" messages
*/
class Heartbeat
implements Runnable

public void run()
{
/I Synchronize on m_listeners to prevent anyone
/I from modifying the Vector while we're iterating
/I through it sending ping messages; it probably
/I wouldn't cause a major problem if it *did* happen,
/I since Vector protects against corruption within
/I itself, but
synchronized (m_listeners)

{

=

for (Enumeration enum = m_listeners.elements();
enum.hasMoreElements();)

{
/I Get next element
Listene r | = (Listener)enum.nextElement();

/Il Send the ping message
l.toSocket.printin(

(String)propMessage.getValue());
l.toSocket.flush();

*/
public HeartbeatService(int port, int interval, String pingMsg)

{
super(port);

IMPORTANCE GROWS 513

514

propinterval.setValue(new Integer(interval));

propMessage.setValue(new String(pingMsg == null ? "PING" : pingMsg));

/**
*
*/
public HeartbeatService()

{}

/**
*
*/
public void start()
throws Exception
{
/I Call up to our base to allow SocketServer to do all its
/I work on our behalf
super.start();

/I Start our ping thread
m_pingThread =
new PeriodicThread(new Heartbeat(),
((Integer)proplinterval.getValue()).intValue());
m_pingThread.start();

/**

*/

public void stop()
throws Exception

{
m_pingThread.interrupt();
super.stop();
}
/**
*
public ConfigProperties getConfiginfo()
{
return configinfo;
}
/**
*
*/
public void setConfiginfo(ConfigProperties props)
{

configinfo.set(props);

/I Check and reset interval value if different

if (m_pingThread != null &&
m_pingThread.getinterval() !=
((Integer)proplinterval.getValue()).intValue())

CHAPTER 17

MONITORING

m_pingThread.setInterval(((
Integer)propinterval.getValue()).intValue());

}

[x*

* Derived services must override this method. Once a client has
* connected to us, this method is called to "do the work" of
* handling the connection.
*/
public void serve(Socket socket)
throws Exception

{
/I Add this Socket to the list of Sockets we must broadcast
/I the "ping" message down
m_listeners.addElement(new Listener(socket));

}

Notice how using several of the components developed earlier makes the develop-
ment of this service almost trivial. To start, HeartbeatService extends SocketServer,
which provides the basic GJAS socket capabilities. HeartbeatService uses a Periodic-
Thread to do the every-z-milliseconds broadcast of the ping message, and extends the
SocketServer’s start and stop methods to manage the thread’s lifetime. The Heart-
beatService also establishes two new properties to the Service, “interval” , to know
how often (in milliseconds) to send the message, and "message” , to know what text
to send down the socket.

In its current implementation, HeartbeatService assumes that any client connect-
ing up to its associated port will be interested in one and only one heartbeat signal; each
HeartbeatService will send one and only one signal at a time, given by the "message”
property (defaulting to "PING"). However, it wouldn’t be too difficult to make this
a multicast service. This would imply that multiple heartbeats (messages) would be
managed by this service. One option would be to simply broadcast multiple messages
to all clients, in true multicast fashion; clients would then have to examine the text of
the message received to determine if it was the heartbeat in which it was interested. This
has the advantage of being easier to code, but requires more work on the part of the
heartbeat client. A second approach would be to have the client, upon connection, send
some kind of identifying message to the HeartbeatService, telling the server in which
heartbeat(s) the client was interested, and have the server track listeners separately for
each heartbeat signal. More work for the server, less for the client.

HeartbeatService stores its connections to clients in an inner class, Listener, which
contains both the Socket instance it received from the HeartbeatService’s serve()
method, and the PrintWriter instance it constructs using the Socket’s output stream.
These Listener instances are stored inside the Vector m_listeners. A second inner class,

IMPORTANCE GROWS 515

516

Heartbeat, implements the Runnable interface needed by the PeriodicThread, and
does the actual work of broadcasting the message down the sockets. The run method
in Heartbeat is the only place where explicit synchronization is used throughout the
HeartbeatService. Remember, Vector provides its own synchronization, which guards
against data corruption should multiple threads attempt to access the Vector at the
same time. This in turn protects HeartbeatService against being corrupted should
multiple threads connect to the port simultaneously. The only reason Heartbeat
explicitly locks out others from modifying the m_listeners Vector during broadcast is
to prevent some potentially awkward situations; for example, it’s entirely possible a cli-
ent connecting to the HeartbeatService could receive a ping message before it even fin-
ishes the connection steps on its end, if it happens to connect (and be added to the
m_listeners Vector) just as the broadcast is going out. It’s an unlikely scenario, and
performance-minded implementors could remove the synchronization block without
introducing corruption.

HeartbeatService can be used in one of two fashions—as a JVM-wide monitor
and as a Service-specific monitor. In the first case, the ServerManager, when started,
loads an instance of HeartbeatService and starts broadcasting. So long as the Server-
Manager JVM remains alive, the HeartbeatService continues to beat. In the second
case, a Service can create an instance of the HeartbeatService, and add it to the Server-
Manager. Assuming that the Service provides the HeartbeatService with the Thread
to use, which we presume in turn comes from the Service’s own ThreadGroup, the
HeartbeatService will give a relatively good idea of when the Service itself dies or is
hung. Granted, it’s not a perfect monitor, since one Thread in a JVM can be com-
pletely blocked without blocking others, so the HeartbeatService could keep beating
while the application blocked indefinitely. However, if more accurate monitoring
were desired, the Service could subclass HeartbeatService to check against some vital
statistic within the parent Service to ensure it was still running; if that statistic hasn’t
changed, then it doesn’t send out the signal, thus generating some concern on the
recipients’ end.

To prove the mechanism, start up an instance of the ServerManager with a Heart-
beatService instance running within it on port 8090 with an interval of five seconds.
Once the ServerManager finishes initialization, fire up a console window and run the
standard Client, connecting to port 8090. From that point, no further typing is nec-
essary—every five seconds, a ping message shows up on the console. Create additional
Clients on the same port, disconnect some, and the message still goes out to anyone
listening, every five seconds.

Heartbeat listening

Broadcasting the Heartbeat is only half the solution, however. In order for the heart-
beat to have any meaning, there has to be something at the other end, listening for it
and detecting when it fails. The key problem here is the fact that a single missed
heartbeat ping can’t be immediately assumed to be a failure on the part of the server;

CHAPTER 17 MONITORING

networks can commonly lose network packets and require a resend. The following
code demonstrates how to listen on a Socket for up to five seconds for a “ping” message,
and to give up listening after three missed ping messages:

public class HeartbeatClient

{
public static void main(String[] args)
throws Exception
{
if (args.length < 1)
{
System.out.printin("Usage: java Client <hostname:port>");
return;
}
/I Parse out hostname and port
String host;
Integer port;
host = args[0].substring(0, args[0].indexOf(":"));
port = new Integer(args[0].substring(args[0].indexOf(":")+1,
args[0].length()));
System.out.printin("Connecting t o " + host + ™" + port);
Socket socket = new Socket(host, port.intValue());
BufferedReader fromSocket =
new BufferedReader(new InputStreamReader(socket.getinputStream()));
/I We want to block for only 5 seconds waiting for input
/I (this would be programmatically controlled in other
/I more flexible systems)
socket.setSoTimeout(5000);
/I Wait for up to three missed pings before giving up
int giveUpCount = 0;
while (giveUpCount < 3)
{
try
{
String line = fromSocket.readLine();
if (line == null)
giveUpCount++;
else if (line.equals("PING"))
giveUpCount = 0;
}
catch (java.io.InterruptedlOException ex)
{
giveUpCount++;
}
}
System.out.printin("Giving up--the heartbeat's not there anymore");
}
}

IMPORTANCE GROWS 517

518

The key to the client comes in two parts. The first is the Socket’s setSoTimeout
method, which dictates how long the InputStream attached to the Socket will block
waiting for input. Without this, the InputStream (and any Readers or InputStreams
wrapped around it) will block forever waiting for input from the server. While it
would be possible (through use of Threads and timeouts and the like) to achieve the
same behavior without using Socket timeouts, it’s far simpler to set the timeout and
let Java throw an exception (java.io.InterruptedlOException) if a timeout
occurs. Note that we also have to test the returned line for a null value before testing
its contents. This is because if the server process (GJAS) terminates, the fromSocket’s
readLine call will generate an infinte number of null results.

The second part is the giveUpCount variable. For a variety of reasons, a single
ping might be lost without cause for alarm—normal network packet loss, for example.
Because we don’t want to abandon hope right away, we wait up to three missed pings
before assuming the HeartbeatService died or is no longer in contact with the recipi-
ent. If we could be guaranteed that delivery of messages across the network (intranet
or Internet), then this would be unnecessary. The other alternative to this approach
would be to wait up to fifteen seconds (instead of the five hardcoded into the above
client) for a signal before surrendering.

HeartbeatListenerClient and HeartbeatListener

Because coding something like the foregoing could get repetitious and awkward after the
second or third time recoding it, let’s work to make it into a single reusable component.

The key to a successful reusable component will be its ability to operate in either
an asynchronous or synchronous fashion. Under most circumstances, clients will want
the HeartbeatListenerClient component to handle the details of listening for the
heartbeat signals without blocking, but occasionally a client will want to block. The
casiest way to accomplish this sort of dual-sided behavior is to have the client object
implement the Runnable interface—that way, clients can either pass the Client
object into a Thread for asynchronous execution, or call its run method directly for
synchronous behavior.

The second part to the asynchronous nature of the HeartbeatListenerClient is to
establish a method by which the HeartbeatListenerClient (listing 17.2) can notify its
owner/client of the pings. It does this by creating an “event” interface, which interested
parties must implement in order to receive Heartbeat events, just as interested parties
must implement an AWT/Swing EventListener to receive Java’s GUI messages. The
HeartbeatListener event interface is simple:

public interface HeartbeatListener

{
public void onHeartbeatPing(String msg);
public void onHeartbeatFail(String msg);

CHAPTER 17 MONITORING

The first method, onPing , is called with the ping message each time a ping comes in
from the HeartbeatService; normally, clients solely watching for heartbeat failure will
simply ignore this call. Clients listening to more than one heartbeat will need to
examine the String parameter in onPing to determine which HeartbeatService sent
it, while clients listening on multicast HeartbeatServices will need to examine it as
well to determine which heartbeat the ping is for.

In the event the Heartbeat is determined to have failed (that is, interval seconds
went by retryCount times without a signal from the source), the Listener’s onHeart-
beatFail method is called. Note that the Heartbeat message that should have arrived
is passed in as the msg parameter to onHeartbeatFail ~ , again so as to give imple-
mentations a chance to differentiate one heartbeat failure from another (listing 17.2).

Listing 17.2 Coding for HeartbeatListenerClient

public class HeartbeatListenerClient
implements Runnable

/I Internal members

1

private String m_host;

private int m_port;

private String m_pingMsg;

private int m_interval;

private int m_giveUpCount;

private Thread m_thread = null;

private Vector m_listeners = new Vector();

/**

* "Complete" constructor--initialize with all given values

*/

public HeartbeatListenerClient(String host, int port,
String msg, int interval,
int giveUpCount, Thread thread)

{
m_host = host;
m_port = port;
m_pingMsg = msg;
m_interval = interval;
m_giveUpCount = giveUpCount;
m_thread = thread;

}

/**

* Convenience constructor--assumes defaults of "PING", 15
* seconds, and 3 attempts

*
public HeartbeatListenerClient(String host, int port)
{
this(host, port, "PING", 15 * 1000, 3, null);
}

IMPORTANCE GROWS 519

520

/**

* Add a HeartbeatListener to the list of interested parties
*/

public void addListener(HeartbeatListener listener)

{

m_listeners.addElement(listener);

}

[x*

* Remove a HeartbeatListener from the list of notification
* targets on heartbeat pings or failures

*/

public void removelListener(HeartbeatListener listener)

{

m_listeners.remove(listener);
}
/**
* Start listening for heartbeat messages
*/
public void startListening()

{

if (m_thread == null)

{

m_thread = new Thread(this);

}

m_thread.start();

}

/**

* Cease listening for heartbeat messages

*/
public void stopListening()
{ m_thread.interrupt();
}
/**
*
*/
public void run()
{
Socket socket = null;
try
{

socket = new Socket(m_host, m_port);
BufferedReader fromSocket = new BufferedReader(
new InputStreamReader(socket.getIinputStream()));

/I We want to block for only 5 seconds waiting for input
/I (this would be programmatically controlled in other

/I more flexible systems)

socket.setSoTimeout(m_interval);

/I Wait for up to three missed pings before giving up

CHAPTER 17

MONITORING

int giveUpCount = 0;
while (giveUpCount < m_giveUpCount)

{
try
{
String line = fromSocket.readLine();
if (line == null)
giveUpCount++;
else if (line.equals(m_pingMsg))
{
/I Reset giveUpCount; we got a message
giveUpCount = 0;
/I Broadcast the message on to our listeners
for (Enumeration enum =
m_listeners.elements();
enum.hasMoreElements();)
{
HeartbeatListener | =
(HeartbeatListener)enum.nextElement();
l.onHeartbeatPing(line);
}
}
}
catch (java.io.InterruptedlOException ex)
{
giveUpCount++;
}
}

/I If we got here, it's because we gave up
for (Enumeration enum = m_listeners.elements();
enum.hasMoreElements();)

{
HeartbeatListener | =
(HeartbeatListener)enum.nextElement();
l.onHeartbeatFail();
}
}
catch (Exception ex)
{

/I Not a very reusable option, but the only way to know
/I when an Exception is thrown, since we can't throw it
/I out of run (Runnable.run has no "throws" clause)
ex.printStackTrace();

}

/**

* Test driver; for testing purposes only.
*/

public static void main(String[] args)

IMPORTANCE GROWS 521

522

if (args.length < 1)
{
System.out.printin("Usage: java HeartbeatListenerClient"
+ " <hostname:port>");
return;

}

/I Parse out hostname and port
String host = args[0].substring(0, args[0].indexOf(":"));
Integer port =
new Integer(args[0].substring(args[0].indexOf(":")+1,
args[0].length()));

System.out.printin("Connecting t o " + host + ™" + port);

HeartbeatListenerClient client =
new HeartbeatListenerClient(host, port.intValue(),
"PING", 15 * 1000, 3, null);

client.addListener(new HeartbeatListener()

{
public void onHeartbeatPing(String pingMsg)
{
System.out.printin("PING! ;" + pingMsg);
}
public void onHeartbeatFail()
{
System.out.printin("Heartbeat's stopped!");
}
P&

client.startListening();

There are a couple of items to note in this implementation.

First, HeartbeatListenerClient is Thread friendly. Because it implements Runnable
as an interface, users can place the HeartbeatListenerClient instance into their own
Thread instance, let HeartbeatListenerClient create its own Thread to use, or call the
run method directly. This flexibility means that users can control the circumstances
in which the component does its work.

Secondly, HeartbeatListenerClient provides two methods, startListening
and stopListening , to encapsulate the start and termination of the listening
Thread. We use the Thread interrupt ~ method to break the infinite loop in Heart-
beatListenerClient’s run method, instead of the deprecated stop method, as discussed
in chapter 4. Take care when using HeartbeatListenerClient for repeated start-stop
cycles; although the Win32 and Solaris implementations of the JVM permit this, other
JVMs may not be so forgiving. Since an application usually wishes to listen for a Heart-
beat source for the duration of the client’s lifetime, this normally won’t be a problem.

CHAPTER 17 MONITORING

Thirdly, HeartbeatListenerClient is inherently unicast—a single Heartbeat-
ListenerClient can only listen for heartbeats from a single source. This could be modi-
fied, allowing HeartbeatListenerClient to listen for multiple heartbeats, by having
multiple Threads, each one listening to a single heartbeat. (One Thread couldn’t listen
to more than one heartbeat, since the interval times may be different, and the Thread
will block the entire time listening for a message, thus serializing the heartbeat-listening
process. This means that if Thread One is listening to Heartbeats A and B, while lis-
tening for A, it can’t simultaneously be listening for B—it can only listen for B once
it has received the message from A, or A has timed out.) Implementing this properly
would likely require the use of one of Lea’s ThreadFactory implementations from
chapter 4, so as to give users better control over how the HeartbeatListenerClient cre-
ates and manages the Threads.

Lastly, HeartbeatListenerClient, on a heartbeat failure, does not stop listening.
Instead, it will continue to listen, for up to the full interval period, for further heart-
beat messages. Should a HeartbeatListener wish to avoid this, it needs to remove itself
from the HeartbeatListenerClient’s listener list. Correspondingly, HeartbeatListener-
Client also continues to listen for heartbeat messages even if it has no listeners registered
with it. This is a waste of CPU cycles and network bandwidth, but can be modified
easily enough for those who wish to.

17.1.2 Notification

Now that it’s been established that we can monitor the liveness of an application via the
HeartbeatService, we have to decide what to do in the event the Heartbeat fails. The nat-
ural answer is simple: Tell somebody. The problem is, how? What provides the best, asyn-
chronous way by which to notify a human or other process (which will in turn notify a
human, presumably) that there is an issue that needs to be addressed and/or resolved?

A variety of methods are available; the following list is just a partial collection of ideas:

* Event log

The heartbeat failure is simply logged to file (or perhaps, using JNI, NT’s Event-
Log or the UNIX syslog daemon), and left there for an administrator to find later
when perusing the logs. While this is a good second-line option, since it can pro-
vide as much detail as the log can handle, it’s not an ideal candidate as the only
notification option, since it requires the administrator to proactively look in the
logs every X minutes/hours/days. System administrators are just like developers—
usually too much to do with not enough time to do it in. Asking them to faith-
fully check a logfile at a regular interval is usually a recipe for disaster, either for
the administrators, the developers, or, more often, both.

o File, database, etc.
This is a cheaper version of the Event log approach. Instead of writing the failure
to the system event log, the notification is written to a standard text file, or a
database row, or some other form of permanent storage. This, like the Event log

IMPORTANCE GROWS 523

524

approach, results in a passive system—administrators must actively poll the
storage system (look at the file, query the database for new rows, etc.) for any
notifications posted. Where it has an advantage over the Event log approach is in
its ability to use the same storage system the software system is using for other
purposes. For example, an RDBMS-centralized application may want to store
notifications to the RDBMS in order to keep all system-related information, both
data and these notification (and other administrative) messages, in a single place.

Email

Sending an email to a system administrator is probably one of the most effective
ways of getting attention. The SMTP protocol for sending email is relatively sim-
ple to use, and Java’s recent JavaMail extension makes it even simpler. The email
can contain as much information as the notification client can handle, and sys-
tem administrators can react immediately or not, depending on their priority
schedule at the time. The problem with email, however, is that it’s not a guaran-
teed service—email is never guaranteed to arrive at its destination (owing to lost
packets or down mail gateways in between), so it’s possible that a system admin-
istrator would never receive a critical warning. Further, unless a generic account
is set up, the target email account must be kept updated as personnel enter and
leave the IT group, change responsibilities, or even change names due to mar-
riage or legal proceedings. All of this means a bit more administrative work to
keep everything running smoothly.

Alphanumeric pager

With many pager systems having online access for sending messages to the pager,
it becomes relatively feasible to access the online pager-send system from within
Java code, building a short message, and firing it off to the pager. This has the
advantage of being somewhat more reliable, but it’s still not an absolute guarantee
that the message will be received by the individual wearing the pager. What's
more, most pagers are somewhat limited in the information they can receive, so
full details of the problem can’t be sent. Still, in conjunction with an email, this
can be a very effective, yet not-so-intrusive, solution.

Phone call

With the advent of the Java Sound API, and the forthcoming Java Telephony
AP, this isn’t as farfetched as it might first sound. The JTAPI would be used to
open a phone circuit to the system administrator’s mobile, work, or home
phone, and the Java Sound API could play a prerecorded message describing the
problem. This has the advantage of being almost completely reliable, since the
phone call is, for the most part, a guaranteed service, and the system will know
when the call has been successfully received, either by a human or phone-mail
recording system. Depending on the sophistication of JTAPI and the phone sys-
tem, it might actually demand a code response entered by touch-tone keypad, to
ensure a human received the message.

CHAPTER 17 MONITORING

* Screen pop

The phone call option might be technically interesting, but of more practical use
is the screen pop technique. In a nutshell, when a heartbeat listener realizes the
heartbeat it’s been listening for has faltered, it can simply pop up a dialog box or
other window, perhaps playing a sound at the same time, describing the problem.
Novell’s Netware is by far the best example of this approach, slapping up a dialog
box on every machine attached to the network in the event that an attached vol-
ume runs low on disk space. The recipients of the message can choose to take
whatever action is feasible for them, from simply clicking OK to make the dialog
go away, to acknowledging the dialog and then fixing the problem. It’s more
intrusive than the email approach (since the dialog pops up on top of whatever
applications are currently running, demanding a bit more attention than just
email), but still less intrusive than a page or a phone call.

These certainly aren’t the sum total of ideas, but they give us a good place from
which to start working.

All of the following example demonstrated Services use the standard socket-based
HeartbeatService; it would therefore be relatively simple to adapt these to use RMI,
CORBA, or DCOM, as necessary.

LogListener

This is a simple HeartbeatListener that writes the failure messages to a text file, and
optionally writes out the date/time of each heartbeat message received (listing 17.3).
Most clients won’t want the heartbeat written to file; if the heartbeat interval is every
five seconds, over the period of a single day the log file will be filled with 17,280 mes-
sages! Having to wade through all of these every day (or, more likely, 720 every hour)
is error-prone as eyes glaze over seeing only what they expect to see. More likely, how-
ever, the log file will never be looked at until a failure, at which point administrators
can consult it to determine the time (approximate, to the nearest “interval” seconds)

the heartbeat failed.

Listing 17.3 Code for LogListener

public class LogListener
implements HeartbeatListener
{
/I Internal members
1
private PrintWriter m_writer;
private boolean m_verbose = false;

/**

* Constructor

*/

public LogListener(String filename, boolean verbose)
throws java.io.lOException

{

IMPORTANCE GROWS 525

526

m_writer =
new PrintWriter(
new FileOutputStream(filename));
m_verbose = verbose;

}
/~k~k
* Return the verbosity of the Listener; if set to true, the
* LogListener will write out onHeartbeatPing messages to the log
*/
public boolean getVerbose()
{
return m_verbose;
}
/~k~k
* Set the verbosity of the Listener; if set to true, the
* LogListener will write out onHeartbeatPing messages to the log

*/
public void setVerbose(boolean verbose)
{
m_verbose = verbose;
}
/**

* HeartbeatListener method. Received each time a 'ping' is
* received from the HeartbeatService
*/
public void onHeartbeatPing(String msg)
{
if (m_verbose)
{
m_writer.printin(new Date() + " ;" + msg + " received.");
m_writer.flush();

}

[x*

* HeartbeatListener method. Called when the
* HeartbeatListenerClient determines the heartbeat has failed

*/
public void onHeartbeatFail(String msg)
{
m_writer.printin(new Date() + " ***Heartbeat failure: " +
msg);
m_writer.flush();
}

As you can see, the implementation is fairly simple: open a FileOutputStream on con-
struction (creating the file if necessary), create the HeartbeatListenerClient, and regis-
ter itself with the HeartbeatListenerClient. If the HeartbeatListenerClient is provided

CHAPTER 17 MONITORING

in the constructor, then it doesn’t create a HeartbeatListenerClient instance, but
instead uses the one passed in.

We can also create a LogListenerService (listing 17.4), which is a GJAS Service-
implementing class that simply creates a LogListener, using the properties given to the
LogListenerService, creates a HeartbeatListenerClient private to itself on start , and
starts listening for messages.

Listing 17.4 Code for LogListenerService

public class LogListenerService
implements com.javageeks.gjas.Service
{
/I Internal members
1
private HeartbeatListenerClient m_hcl;
private String m_state = STOPPED;
private ConfigProperty m_file =
new ConfigProperty(“file", ™,
"Filename to write messages to");
private ConfigProperty m_verbose =
new ConfigProperty(“verbose", new Boolean(false),
"Write all messages, or just failures?");
private ConfigProperty m_host =
new ConfigProperty(*host", ",
"Host to listen to");
private ConfigProperty m_port =
new ConfigProperty("port", new Integer(0),
"Port on host to connect to");
private ConfigProperties m_configinfo =
new ConfigProperties(new ConfigProperty[]
{

m_file, m_verbose, m_host, m_port
i
/**
* Start the Service.
*/
public void start()
throws Exception

{
m_state = STARTING;
if (m_hcl == null)
{

/I Get ConfigProperty values

String file = (String)m_file.getValue();

boolean verbose =
((Boolean)m_verbose.getValue()).booleanValue();

String host = (String)m_host.getValue();

int port = ((Integer)m_port.getValue()).intValue();

m_hcl = new HeartbeatListenerClient(host, port);

IMPORTANCE GROWS 527

528

m_hcl.addListener(new LogListener(file,

}

m_hcl.startListening();

m_state = RUNNING;
}
/~k~k
* Stop the Service.
*/
public void stop()
throws Exception

{ m_state = STOPPING
m_hcl.stopListening();
m_hcl = null;
m_state = STOPPED;

}

[

* Pause the Service.

*/

public void pause()
throws Exception

{1}

/**

* Resume the Service.

*/

public void resume()
throws Exception

{}

/**

verbose));

* Get the current state of the Service; must be one of the
* following types: STOPPED, STARTING, RUNNING, STOPPING,

* PAUSING, PAUSED, or
*/

public String getState()

{

return m_state;

}

RESUMING.

* Return a String uniquely identifying this instance of the

* Service; this String must be unique not just to the Service
* class, but to the Service instance itself. Suggested return
* format is something like:

* String instancelD = this
* getClassVersion() + ™"

.getClass().getName() + "" +

+ System.currentTimeMillis();

* Note that maintaining an “instance count" of the number of
* instances of this class will fail, since all instances will
* be maintained within their own ClassLoader, and static

CHAPTER 17

MONITORING

* members are stored on a per-ClassLoader basis.
*/
public String getinstancelD()

throws Exception

{
return “LogListenerService:1.0.0:" +
System.currentTimeMillis();
}
/**
*
public ConfigProperties getConfiginfo()
{
return m_configinfo;
}
/**
*/
public void setConfiginfo(ConfigProperties props)
{
/I Read the settings if they've changed
if (!((String)m_configinfo.get("host").getValue()).equals(
((String)props.get("host").getValue())) ||
((Integer)m_configinfo.get("port").getValue()).intValue() !=
((Integer)props.get("port").getValue()).intValue() ||
I((String)m_configinfo.get("file").getValue()).equals(
((String)props.get(“file").getValue())) ||
((Boolean)m_configinfo.get(
"verbose").getValue()).booleanValue() =
((Boolean)props.get("verbose").getValue()).booleanValue())
{
try
{
/I Stop the Service
ServerManager.log("Stopping Service: reconfigure");
stop();
/I Read the new values
ServerManager.log("Re-reading config values");
m_configInfo.set(props);
/I Restart the Service
ServerManager.log("Restarting Service");
start();
}
catch (Exception ex)
{
ServerManager.error(ex);
}
}
}

IMPORTANCE GROWS 529

530

The Service itself is very simple: create a HeartbeatListenerClient, register a LogListener
with it, and start listening on start , stop listening on stop . It is not overly complex
as Services go, and it provides us with persistent storage of the heartbeat’s liveness.

OutputStreamListener

In truth, LogListener is really a specific form of listener—one that listens for heart-
beats and writes the results to a file. Since a file is a specific form of OutputStream
(remember, FileOutputStream extends OutputStream), we can create a more generic
form of LogListener by taking in an OutputStream instance instead of a filename to
open. This then allows OutputStreamListener (listing 17.5) to write its output mes-
sages to any output sink to which Java can write, including the console.

Listing 17.5 Code for OutputStreamListener

public class OutputStreamListener
implements HeartbeatListener

/I Internal members

1

private PrintWriter m_writer;

private boolean m_verbose = false;

/**

* Constructor

*/

public OutputStreamListener(OutputStream out, boolean verbose)
throws java.io.|lOException

{
m_writer = new PrintWriter(out);
m_verbose = verbose;

}

/**

* Constructor

*/

public OutputStreamListener(PrintStream outStream, boolean verbose)
throws java.io.lOException

{
m_writer = new PrintWriter(outStream);
m_verbose = verbose;

}

/**

* Constructor

*/

public OutputStreamListener(PrintWriter writer, boolean verbose)
throws java.io.lOException

m_writer = writer;
m_verbose = verbose;

CHAPTER 17 MONITORING

/**
* Return the verbosity of the Listener; if set to true, the
* listener will write out onHeartbeatPing messages to the log
*/
public boolean getVerbose()
{
return m_verbose;
}
/**
* Set the verbosity of the Listener; if set to true, the
* listener will write out onHeartbeatPing messages to the log

*/
public void setVerbose(boolean verbose)
{
m_verbose = verbose;
}
/**

* HeartbeatListener method. Received each time a 'ping' is
* received from the HeartbeatService
*/
public void onHeartbeatPing(String msg)
{
if (m_verbose)
{
m_writer.printin(new Date() + " "+ msg + " received.");
m_writer.flush();

}

[x*

* HeartbeatListener method. Called when the
* HeartbeatListenerClient determines the heartbeat has failed

*/
public void onHeartbeatFail(String msg)
{
m_writer.printin(new Date() + ": ***Heartbeat failure: " +
msg);
m_writer.flush();
}

Note how OutputStreamListener takes three forms: one constructor taking an Ouput-
Stream instance, one taking a PrintStream instance, and one taking a PrintWriter
instance. This is to permit the maximum flexibility in the OutputStream addressed.

We could probably drop LogListener in favor of this more generic class, or at
least make LogListener extend this one and provide file-specific behaviors and/or
methods. This is an implementation detail, however, and has no real bearing on its
usage by clients.

IMPORTANCE GROWS 531

532

The real advantage in this class is that because it deals with OutputStream
instances, we can do the standard Java Stream-chaining approach to provide additional
functionality—for example, we could use a TeeOutputStream (in com.javageeks.io)
to send the output to multiple sinks, or a FilterOutputStream to add additional output
to the written message, and so on.! For example, using the OutputStreamListener to
write to console would be as simple as:

HeartbeatListenerClient hcl = ...;
hcl.addListener(new OutputStreamListener(System.out, false));
hcl.startListening();

OutputStreamListenerService is given, since the complexities of constructing an Out-
putStream to set into the OutputStreamListener are too complex for the configuration-
management system; any such construction has to come from within Java code.

NTEventLogListener

This is the native version of the Event log option from above. When the onHeart-
beatPing and onHeartbeatFail messages are received, we use JNI code to
write to the NT Event Log. The code is remarkably similar (at least at the Java lay-
ers) to the above LogListener or OutputStreamListener classes, so it’s not shown
here; in the same vein, the code for NTEventLogListenerService is also not displayed
here. Both classes are given in the source code available on the publisher's website:
www.manning.com/neward3.

MailNotificationService

Another approach is to send an SMTP mail message to a system administrator (or
other designated support email account) when a Heartbeat fails. Sending an email via
SMTP is actually a straightforward application of sending text over a socket to an
SMTP server, but, again, the JavaMail API, is by far the better way to go. Email target
address, subject line, and body of the message can all be specified as parameters to the
Service, or the Service might be developed with the appropriate properties hard-
coded. The first approach allows for greater reuse of the MailNotificationService, the
second permits greater customization of the message.

Using JavaMail is beyond the scope of this book; using straight sockets is simpler,
but numerous Java classes and components (including the undocumented”
sun.net.smtp.SmtpClient class) abound for simplifying this task. Unless the emails
being sent include MIME attachments, it’s about equal between using a home-grown

! For example, wrap an HTMLFilterOutputStream (one that translates each line of text into an HTML
paragraph by placing <P> and </P> before and after each line/carriage-return) around a FileOutput-
Stream, and point the FileOutputStream to write to a file in a Web-server’s HTML repository, and you
have a crude but effective form of Web-browser-based monitoring.

2 FElliott Rusty Harold covers its use in his book Java Secrets, from IDG Press.

CHAPTER 17 MONITORING

17.2

SUMMARY

SMTP client class, and using JavaMail. But if there’s a choice, go with JavaMail—it’s
the new Java standard for doing any form of electronic messaging from within Java,
and spending the time to learn it will pay off later.

Concluding thoughts

All of the above listeners use a standard socket approach; each one could also, in turn,
be written to use RMI, CORBA, or DCOM as the transport mechanism by which the
heartbeat message is broadcast to the listeners. There will be times, in fact, especially as
regards CORBA or DCOM, when this sort of multiplicity of transport will be useful—
for example, we may want a notification client to be written in Visual Basic, or in C++.

Writing a parallel group of Listeners and ListenerServices, however, can be
extremely tiring and error-prone. If a bug is found in one and fixed, then that same
fix needs to be applied to its peer using a different protocol. In fact, the only difference
between a LogListener and a LogRMIListener or LogCORBAListener or LogDCOM-
Listener is the actual transport mechanism used to receive the ping from the Heartbeat
producer; alternatively, the listener itself could be distributed, meaning the transport
mechanism is what is used to make the onHeartbeatPing or onHeartbeatFail
call. In fact, these two could be combined, so a given HeartbeatListenerClient could
receive the pings via RMI and inform its registered HeartbeatListeners via CORBA.
Typically, variation in both the ping transport and the listener transport will be unnec-
essary, but not inconceivable.

Should this be the case, the actual protocols involved should be broken out into
separate class hierarchies, with the actual protocol used passed in at run time:

HeartbeatListenerClient hcl =
new HeartbeatListenerClient(
new HeartbeatSocketTransport(“localhost”, 8080),
new HeartbeatListenerRMITransport());

In the above snippet, for example, we create a HeartbeatListenerClient that would
attempt to receive pings from a socket-based server listening on port 8080, and
would send notifications out to listeners via RMI.

SUMMARY

The need to monitor applications, both for their liveness and their current statistical
numbers, is a necessary part of most server-side applications. With a client-side appli-
cation, liveness is easy to detect—if the application is running, the client can see it
and interact with it. The server-side is a different story—the server typically runs in
stand-alone fashion, with no human feedback to indicate failure or death.
Developing a system that provides this information in as generic a fashion as
possible serves two aims: zero administration and zero development. By reducing the
amount of work required to administer the application by providing mechanisms by

533

534

which administrators can check the liveness of the application, we make it easier to
check, as well as somewhat proactive in notifying necessary personnel in the event
of a failure.

By no means are the discussed techniques the only, or even the best, available for
monitoring of your application. In some cases, simple “is it alive?” questions are not
sufficient—statistical numbers must be generated and tracked to allow for a measure-
ment of the application’s performance. This is where embedding an HTTP/servlet
engine into your application pays off. Your server application simply opens a Server-
Socket, receives the HTTP requests from across the system, gathers the statistics, and
reports them. (Ideally, the report format would be in XML, with an XSL stylesheet to
transform the XML to HTML for human consumption, so that automated processes
could also gather the data.) Nevertheless, in many cases, a simple heartbeat ping will
go a long way toward making your system administrators like you—and as a result,
is something that should rank high on your list of extras to deliver.

CHAPTER 17 MONITORING

epilogue

Whew! It’s been a long ride, one which I hope you enjoyed as much as I did in the
writer’s seat. Java as an enterprise development tool is an exciting concept, one which
offers us, as developers, incredible opportunities. Just take a look at the laundry list of
Java Enterprise APIs available at the end of 1999 (the items not explained here are
covered thoroughly in this book):

* Enterprise Java Beans

The EJB specification is, if we measure by the amount of material written on it,
the most interesting one within the J2EE system. Offering the ability to factor all
of our business logic into a common area, EJB also was the first to differentiate
between the roles people play during the development of a project: component
designer, application assembler, and so on. In many ways, however, EJB was sim-
ply an outgrowth of the Servlet specification, as people began to realize ways of
using servlets (and the accompanying load-balancing features offered by some
servlet engines) to encapsulate business logic away from the client tier.

* Java Transaction API and Java Transaction Service

We’re not dealing with relational databases anymore. Object databases, CORBA
object systems, RMI object systems, even the odd COM component all find their
way into the heterogeneous system found in many environments today. Unfortu-
nately, the need for guaranteed transactions within the system has grown with the
numbers of storage and logic systems within the enterprise. It’s not enough to
guarantee that the transaction will either entirely succeed or entirely fail within
just the RDBMS portion. Now, systems are requiring that the transactions to both
the CORBA and the RMI system, as well as the RDBMS, be either entirely success-
ful or entirely rolled back. JTA and JTS work to provide that. JTA/JTS, for example,
would make it possible for the business objects layer to store/update changes to
both the HashtableModel and RDBMSModel instances, or throw those changes
away, without requiring extensive coding on the part of the developer.

535

CORBA (through JavalDL)
* RMI
JDBC

o Servlets and Java Server Pages (JSP)
In many ways, this is where people really began to consider Java as a server-side
enterprise development tool. RMI, JDBC, and the other APIs from 1.1 were all
slanted toward using applets as the working environment, until Servlets became
available as part of the Sun Jeeves web server. Once people began to realize the
capability of the thin-client model, Servlets became more and more popular. It is
safe to say that servlets reinvented the entire client/server model.

o JavaMail

JavaMail provides messaging access—email, basically, both sending and receiv-
ing—to Java. Now your enterprise systems can send and receive email, opening
up entirely new options in the handling and routing of information. Client
application in the enterprise system crashes? Have a try /catch block around
all the code in main, and mail the developers the stack trace from the Exception
object. Users (internal or external) want to be notified as their request is handled
each step of the way? Fire an email. The options are endless.

* JavaHelp

Having a good help system is even more important in an enterprise system than in
a commercial off-the-shelf package. Because of the close proximity of developers
to the customers for whom this system is intended, training and user documen-
tation tend to be shelved, in favor of contacting the developers directly when a
problem occurs. By providing a well-written, well-machined help system, enter-
prise developers can avoid phone calls from “stupid” users and get back to doing
what they do best—writing code.

¢ Java Activation Framework

* Java Naming and Directory Interface (JNDI)

* Java Messaging Service (JMS)

o Java2 Enterprise Edition (J2EE) specification
This is, of course, the document that tries to tie all of the above into a single,
unified whole. Whether or not it will succeed is still the subject of some debate,

and will be for some time, but to ignore it entirely would be the same as writing
off the Internet as a passing fad.

And all this is on top of the list of functionality found within the Java2 Standard
Edition environment, such as CORBA, Reflection, Threads, and so on.

The point of all this is simple—even before the J2EE specification, even before
the EJB specification, Java was a useful server-side application platform. As we've
proved ithin these pages, it’s possible to build fully functional, highly componentized

536 EPILOGUE

applications without J2EE or EJB. Does that imply that all applications will not want
to use EJB? Absolutely not. EJB is a highly useful technology, and to dismiss it out-
of-hand would be as much of a crime as to blindly utilize it everywhere.

Remember, my four goals for readers of this book:

* Understand some of the basic concepts that go into an application server

By demonstrating how Threads and ClassLoaders can work together to provide a
dynamic Service-loading/executing capability, you can now understand how the
core parts of an EJB or J2EE Application Server works. It’s also easy to see now
how Servlet Engines can do dynamic updating of servlets—by maintaining a
separate ClassLoader per servlet, per web application, per virtual host, or what-
ever. It’s also easy to see how you could roll that functionality into a system
which doesn’t currently have it—by having the servlet in turn create a new Class-
Loader to load the actual servlet class, and reload if the date/time of the .class file
on disk is newer than what it was when you loaded it.

* Be able to incorporate some of those concepts into your own code

As an enterprise developer, I get called on to do all sorts of things that don’t fit in
with the traditional client/server model. I've coded clients that acted more like
servers and servers that acted more like clients. I've coded peer-to-peer systems,
where everyone is both a client and a server. I've coded servers that had no clients,
and clients that had no servers. All of these would break under the traditional
J2EE model, but I'm not ready to give up the functionality offered by those sys-
tems, such as remote configuration and/or control. By building those concepts
into a lightweight application server framework (think GJAS), I can have those
features, and still be different.

o Use the code that comes with the book in your own systems
Much of this code grew out of my own experience, and I fully expect that it will
continue to change and develop as time goes by. I encourage you to do the same.
Use it where appropriate, change it to fit your needs, and discard it when some-
thing else works more appropriately. It’s just code. There’s nothing mysterious or
mystical about it.

o Prepare you for the coming changes in server development

You’re now in a position to solidly evaluate forthcoming J2EE Application Server
products, and better understand precisely what they offer, and what they don’t.
The application server you're using doesn’t support JNI-dependent classes? Use a
socket to communicate to another Java process that performs the JNI work for
you. Having problems accessing classes loaded from your database inside of the
application server? It’s probably a ClassLoader-parentage problem. You’re now
better equipped to understand what the forces are, and how to deal with them.

It may still come as a surprise, however, that this book wasn’t more about J2EE
and/or more of the buzzword technologies such as EJB, or servlets or JSP. Looking back

EPILOGUE 537

538

at what was covered, let’s examine the relevance of each of the topics to the J2EE plat-
form and how it all relates:

o ClassLoaders

ClassLoaders still play a fundamental part of any application server, and J2EE will
be no different. As programmers, we need to know about separate ClassLoaders
and the name spaces they define, so that we understand why the Servlet 2.2 speci-
fication prevents us from directly calling methods on another servlet. It represents
a security hole, because servlet engines would be extremely hard-pressed to sup-
port on-the-fly servlet upgrades if all servlets had to be loaded through a single
ClassLoader (in order to support the calling of servlet methods across servlet
instances). Furthermore, now that we have a thorough grounding in how the
parent-child ClassLoader relationship works, it’s easy to see where we could get into
namespace troubles if our code is loaded from one ClassLoader, but third-party
code used in our application is loaded by a different (peer) ClassLoader.

Extensions

The Java2 Extension mechanism and the Java Archive (.jar) mechanism define
the basis for Java componentry in the J2EE system—servlet applications are now
called web applications, and are to be deployed in .war files that contain all of
the web application’s code and resources. Having examined this in chapter 3, it’s
fairly easy to see how this is (or could be) simply a .jar file with some extra tags
defining particular behavior.

Threads

Again, knowledge of how the Java Threading mechanism works provides some
useful insight into how application servers may help to prevent rogue servlets or
EJBs from taking over the CPU and hanging the system. Furthermore, it’s also
somewhat easier to see why the EJB specification itself prohibits the creation of
Threads from within an EJB Bean—if the EJB server/container wants to provide
some kind of ThreadPool architecture, to best balance responsiveness with scal-
ability (too few threads, and we have bottlenecks; too many threads, and the
overhead of switching between the threads will leave us with no real work time),
it needs to make sure that any Threads being created are under its control. The
same can be said for servlet engines—if a servlet spins off its own Thread within
its code, then when the servlet is unloaded, what do we do with the Thread it
created? This also impacts clustering and machine-independence in a big way. If
the servlet is unloaded on one machine (in a cluster), and then later reloaded on
a different machine, will it start the Thread all over again? What should happen
to the old Thread on the original machine? By preventing client code (namely,
servlets and/or EJBs) from creating Threads, these issues never arise.

Control
In the current specification, J2EE says very little about how applications are con-
trolled and/or configured by system administrators; this is more or less left up to

EPILOGUE

EPILOGUE

the vendors or developers to provide. J2EE does provide for a deployment descrip-
tor, an XML file that describes the Enterprise ARchive (.ear) file’s type (ejb, java
or web), along with other deployment information, but this is primarily baseline-
level information necessary, and not in any way able to configure the server
application’s context-specific configuration properties. For that, the application
needs to either configure itself, or provide an interface allowing system adminis-
trators to configure it. By creating a single generic system for configuration and/or
control, we can make the system adminstrator’s life much, much easier as we roll
out application after application.

Sockets

The fundamental backbone of J2EE, Java, even the Internet itself, is the TCP/IP
socket. Just about everything ultimately travels over either TCP/IP or UDP/IP
sockets from client to server and back again. As we discussed in chapter 6, not all
protocols are so complex as to require RMI or CORBA as the underlying protocol.
In many cases, a simple text-based protocol can be used to allow clients written in
all sorts of languages to communicate with our Java server. More importantly,
many legacy systems don’t understand RMI or CORBA, but speak just Plain Old
Socket; to communicate with them, we need to have our system speak the same.

Persistence

J2EE doesn’t address persistence, except to provide JDBC as an API for developers to
use. As of late 1999 Sun was working to provide the Java Data Object specification,
which will provide a default object-relational mapping, but JDO will only address
storing objects to an RDBMS; not all persistence needs to be to an RDBMS, but can
instead be Serialized to disk, across a socket, or even to a column within the RDBMS.

Business Objects

As mentioned before, Sun is working to provide a default object-relational map-
ping, but until it becomes available (and standardized), developers will continue
to need to provide their own mapping between the object model and the under-
lying storage model, be it an RDBMS, object-database, or a shared-object system.
More importantly, by building the business object model, developers are able to
switch between underlying storage models when necessary, and perform optimi-
zations within the storage layer that wouldn’t be possible if the layer of encapsu-
lation provided by the Business Object layer weren’t present.

Middleware

Communicating across processes is, and will be for some time to come, a key
component in enterprise systems. We're no longer dealing with stand-alone PCs
that can share data only via the floppy drive. Everything is interconnected, and
the enterprise is all about getting data to the farthest corners of the universe in
the shortest amount of time.

539

540

* JNI

As much as Sun might like to daydream, Java is not the answer to everything.
Believing that every software system should be rewritten in Java is as ludicrous as
believing that every building should be torn down just so we can rebuild it using
modern power tools. More importantly, Java’s emphasis on “Write once, run
anywhere” means that there will always be specific features of the underlying
operating system or environment that are unique to one particular platform that
Java won’t natively support. Providing that access—and access to legacy systems
outside of Java—through JNI is a win-win situation for all.

As you can see, all of these concepts map directly back into the J2EE specification
and technology base in direct fashion. Granted, one can use J2EE (or any of its indi-
vidual technologies) without having a clear understanding of its underpinnings. With-
out that knowledge of the fundamentals developers will be, at best, left in the dark when
trying to develop an application that doesn’t fit the J2EE model perfectly.

More importantly, there will be applications and systems that won’t fit the J2EE
model, either because they challenge the traditional notion of enterprise systems, or
because the developers will simply be unable to use the technologies offered by the J2EE
system. In those situations, a knowledge of what the J2EE system does behind the
scenes, and why, will provide an invaluable aid in building these home-grown systems.

Sometimes, however, developers and corporations will choose to build a home-
grown system instead of making use of an existing application server. Reasons for
doing this include:

* Control

Vendors come, vendors go. It’s a fact of life in the enterprise computing field that
the vendor on which you standardize today may not be in business tomorrow. Or
that vendor will have been bought out by a competitor or partner and have their
technology deprecated in favor of the purchaser’s. Or will simply not have the fea-
tureset you require, when you require it, and so on. Vendor failure is a major risk
in software development that must be assessed when determining the buy versus
build decision. If you build the system from scratch, you have control, and so
long as your business remains afloat, so does the software on which you rely.

* Technical capability

If you use an OpenSource or home-grown system, you can tailor the technical
capability of the system to your specific needs. For example, if security is of high
concern or priority, EJB will fall down completely; it still lacks good security con-
trols. Or, if you need to develop active server implementations that poll on a
database or perform scheduled tasks, EJB will fail you—all of its Beans are pas-
sive, requiring activation by another process or client to function. By developing
a server-side framework and generic server, you retain the ability to add whatever
technical capability you require.

EPILOGUE

EPILOGUE

o Technical flexibility

Despite the rush to OpenSource solutions, most server-side systems are still
closed-source systems, meaning you don’t have the ability to access or modify the
source to suit your needs. Sometimes a full-fledged server system isn’t what you
require, but a lighter version of one that can be embedded inside a larger applica-
tion or system. For example, in order to determine how well computers are
working across the enterprise, the IT staff may want to place a lightweight GJAS
instance on each machine, running a HeartbeatService to monitor the machine’s
up- and down-time. From there, a more sophisticated diagnostic service might
be feasible, using JNI to call down to OS-specific routines and offer the IT staff
some proactive ability in dealing with help-desk requests.

EJB immaturity

Let’s face it: EJB, despite its tremendous hype and enormous market backing, is
still an immature technology. This is not to say it’s not useful, but that it still has
a number of warts to work out before it begins to settle down. For example, the
EJB 1.1 draft specification was released less than six months after the 1.0 specifi-
cation was finalized, and the 1.1 draft already defers a number of points, including
JMS support, to the forthcoming 2.0 specification. This means that vendors will
be scrambling to catch up on the new features required by the new specifica-
tions. What’s more, EJB 1.1 made a significant change to the 1.0 specification,
requiring that Deployment Descriptors now be specified in XML, where 1.0 left
those details up to the vendor. This is a major change, requiring porting time on
the part of any clients accustomed to using the vendors’ 1.0 approach, and now
must adjust to using the 1.1 approach.

Certainly, most vendors will seek to provide necessary backward compatibil-
ity, but that delays the inevitable; it doesn’t solve the porting problem. CORBA
addresses some of this immaturity problem, but it also suffers from some of the
same problems. For example, the CORBA Persistence Service, defined a few years
ago, has recently been completely tossed and started over on a 2.0 Persistence
Service. The reason? “It was based on a two-level storage model and was extremely
complex. In addition, it was not integrated with other services that deal with
persistence-related topics like transactions and concurrency.”! The point? If a
group of the finest minds on object persistence can get it wrong the first time
around, then it can happen to anybody, any technology, at any time. Rushing out
to embrace a technology during its hype period can sometimes lead to fatal
results, as the technology moves and shifts to better accommodate its users’” needs.

Strategic Acceptance
Many companies, for some or all of the reasons cited above, are still leery of EJB and
other new-fangled technologies; getting approval to use EJB or CORBA may be more

1 Enterprise CORBA, p. 36

541

542

difficult than getting approval to build something from scratch. In turn, building the
system from scratch can incorporate ideas and concepts from EJB and/or CORBA,
which can in turn lead into use of EJB and/or CORBA technologies directly.

WHERE TO GO FROM HERE?

By no means have we exhausted every possible topic in this area; in fact, this has been
merely an introduction to the wide possibilities available to Java developers when writing
server code. GJAS itself has a long way to go before it begins to offer the kind of func-
tionality that a viable commercial product would or should offer. Examples include:

* Better location transparency

Right now, Services are buried underneath the IServer interface, and if a Service
provides specialized methods, they are inaccessible outside of the JVM in which
they were instantiated. Ideally, we’d be able to access those methods, regardless of
the JVM we're in. This is possible by dynamically generating the Server instance
when the Service is loaded into the JVM, building shim methods that simply pass
the information on to the encapsulated Service target transparently. With RMI this
would be a bit trickier, but not impossible. The RMI Server could provide a
“generic_call ” method that takes a String for the name of the method, and an
array of Serializable objects that would represent the individual arguments. This
would limit the Service to Serializable-only calls, but that would still make it better
than what's currently there.? Alternatively, we could build the complete RMI stub
and skeleton code on the fly, perhaps invoking rmic from within the GJAS code, in
something of the same manner as we did for the CompilerClassLoader.

* Better services
It would be relatively trivial to implement the more common TCP/IP socket ser-
vices in GJAS using SocketServer or ConnectionManager—FTD, TFTR Telnet, and
so on. Once GJAS is Servlet-compliant, it can then run Java Server Pages, as well.

* EJB server/container support
We could build EJB support into GJAS by creating an EJBService, or even breaking
it out into an EJBEntityService, an EJBStatefulSessionService, and an EJBStateless-
SessionService. It would certainly be a project of some magnitude, but would defi-
nitely be easier to attempt within the GJAS framework than by building everything
from scratch. Doing so would offer the benefits provided by the standardization
EJB promises, as well as the functionality discussed above that EJB lacks.

* JNDI integration
GJAS is a natural candidate as a JNDI service provider—each GJAS instance
becomes a Context, and the individual Services running within it are entries

2 In fact, any argument passed into the RMIServerManager to be passed on to the RMIServerManager-
Server needs to be Serializable anyway, so no functionality from the current system is lost.

EPILOGUE

EPILOGUE

therein. Because JNDI is protocol-independent, we’d need to decide upon a par-
ticular protocol to use to communicate from the client to the GJAS server, but
that could easily be specified via a property in the JNDI Initial Context construc-
tor, much as JSDT uses its type field.

CORBA integration

Although it’s possible to fire off CORBA server implementations from within a
Service, it would be gratifying if GJAS had some slightly better integration with
CORBA, perhaps by using the CORBA Naming Service or Trading Service to
provide services to other CORBA applications, or use them in turn.

Clustering support

GJAS, as with any application server, is a natural candidate for basic clustering
support, even something as basic as designating a group of JVMs as available
nodes for work, and farming out GJAS Services to the JVMs as each new Service
comes in. Alternatively, we could also introduce a clustering at the Service level;
a Service could spin off multiple instances of itself into other JVMs as its load
increased; for example the HttpConnectionManager could, if its Thread pool
were exhausted, forward the request on to an HttpConnectionManager instance
running on a separate machine, « /z RedirectorConnection.

Activation support

A number of these Services will simply sit idle, waiting for clients to connect and
use them; for rarely used Services, such as the ControlServices, we could provide
an ActivationService, which would listen on a number of ports, and when a
request came in, create the Service instance to handle the request. Once the Ser-
vice is activated the ActivationService would then bow out, until the Service
determined that no further requests were coming in and notified the Activation-
Service of its imminent shutdown. This permits optimal CPU usage when Ser-
vices aren’t being used, while still providing complete availability of a Service.

Load balancing support

Once the clustering support is present within GJAS, the system could use JNI
methods to obtain real-time or near-real-time statistics on the individual CPUs
on each node, and make better decisions about where to farm out the next
request, rather than doing so in a blind round-robin fashion.

Better administrative front-ends

Right now, GJAS has only the single front-end to administer and run the GJAS
instance. Certainly, more sophisticated and feature-rich implementations are
imaginable and feasible.

This is just a partial list; more ideas are certainly possible.

543

544

PARTING ADVICE

Don Box, “COM Guy Extraordinaire” and one of the co-authors of Effective COM,
offers at the back of that book, some of the best parting advice I've ever heard. Para-
phrased to be more appropriate to our Java-centric word, they read like this:

Be a skeptic

Like it or not, our industry is filled with wild marketing hype, erroneous technical
summaries, and thinly-veiled propaganda in the form of “factual reports.” Don’t
believe a thing you hear, see, or read, until you can prove it to yourself. Vendor A’s
AppServer is ten times faster than Vendor B’s, according to Vendor A’s marketing
material? Ask for an eval CD of both and the code they ran to generate the bench-
marks. Read an article that claims Enterprise JavaBeans can’t scale? Create a simple
test and run it for a week; compare the statistics against a similarly-structured test in
some other technology. Be skeptical even when reading this book, or any other—
authors, like most people, are human, too, and we’ll generally be the first to admit it.
We make mistakes. Technology changes. If something you read doesn’t jibe with what
you've seen or experienced firsthand, don’t simply assume you were wrong and I'm
right, or vice versa—prove it to yourself. Then drop me an email and show me; I don’t
want to be wrong any more than you do.

Read all about COM, DCOM, and MTS

COM/DCOM is another object broker. Understanding COM/DCOM will help you to
better understand the Java object broker you end up using, EJB or CORBA (or both).
MTS is another scalable-application-server technology; understanding MTS will give
you insights into EJB.

Read all about EJB

Enterprise Java Beans are the future direction of enterprise applications. Understanding
EJB (and by that, I mean reading the EJB specification itself) will give you insights
into when and where EJB technology will be applicable or relevant to your project.

Read all about CORBA

Java has been hailed as CORBA’s saving grace within the realm of distributed object
development. Java needs CORBA almost as much as CORBA needs Java. CORBA pro-
vides Java with an easy gate to the software bus of CORBA objects, and Java’s similar
syntax to C++ means that CORBA (which drew much of its inspiration from C++)
maps well into Java with only a few stumbles. More importantly, CORBA provides a
number of defined services—such as the CosEvent service, the CosTrader service, the
CosNaming service, and so on—that Java applications can now make use of, without
having to recode them. More importantly, CORBA developers have much richer con-
trols and understanding over distributed object concepts than most Java-RMI devel-
opers. RMI tries to provide some of that with Activation, but falls short of some of the

EPILOGUE

EPILOGUE

functionality provided by CORBA ORBs; in fact, much of the EJB activation/passiva-
tion logic is already incorporated into the ORB 2.3 portable object adapter.

Participate

Join a mailing list. Post to the list, both questions and answers, even if you're not sure
you're correct. Nothing will drive a point home more forcefully than to post to a
mailing list with a possible answer, only to have somebody else correct you with docu-
mented fact. Just as participating in a group discussion on a hot topic, such as politics
or economics, will expose you to new ideas and perspectives, so will being a part of a
mailing list.

SUMMARY

You came, you read, you conquered. You know how to integrate ClassLoaders,
Threads, Sockets, NI, and middleware into a unified whole. You have a fundamental
grounding in the construction of business object models. You are ready to go forth,
code like crazy and reap the rewards of a successful project.

And one more element from the parting advice.

Have fun.

545

index

Symbols

.class 37

.class, keyword 46

NI files 225

Jar 110

.properties files 225

.Thread 240

war 104

_JAVA_LAUNCHER_DEBUG
491,501

_JAVAGEEKS_DEBUG 501

Numerics

16-bit Windows 147
4006245 139

A

AbstractEmployeeModel 375
Activation

RMI 412
activation support 543
ActiveX 31,432
adapter methods 217
addService 178
administration 405
administrative 464
administrative front-ends 543
Adobe Photoshop 108
Aglets 338,411, 439

Aglets Transport Protocol
(ATP) 440

annotated codebase 413, 417

annotated codebase URL 219

anonymous class xvi

AppClassLoader 144

applet 46,99

AppletClassLoader 48, 57

Appleton, Brad 10

application ClassLoader 58, 65

application control 175

application home 492

application security 175

application server xvii, xxvii, 4, 8,
273

application shell 105

Assembler 19

assembly 344

assumptions 2

asynchronous notification 158

attributes 111

availability 324

B

back-end server 295

background tasks 127, 142

backplane 183,208

backward compatibility 309,
363

bank teller 407

benchmark 18

547

better services 542

black-box reuse 133

bootstrap ClassLoader 28,46, 57

Bridge pattern 476

build time 103

business layer 360

business logic 343, 375

business object model 346

business objects 341, 346, 539

business objects layer 348, 370,
400,418

business rules 56, 391

business tier 344

BusinessLayerException
349-350, 361

busy-wait loop 160

buy-versus-build 4

buzzwords 341

bytecode 322,330

c

C 428,431, 463, 465

C++ 17,1920, 24, 108, 126,
219, 424,428,431, 463, 465

C++Builder 342

caching 370, 404

Café 342

CAFEBABE 39

callable instance 170

callback 155,262

capitalism 5

censorship 281
centralization 324
centralization of data 317
chaining 289
change 309
ClassCastExceptions 29, 49
see also java.lang.ClassCast-
Exception
classic object design 406
ClassLoader xxi, 17, 28, 39, 44,
61,102,273,317, 336, 338,
538
API 47
Java 2 44
JDK 1.1 43
namespaces 48
relationship to Class 48
synchronization in 46
ClassLoaderStrategy 220, 277
ClassLoading 219, 438
ClassNotFoundException 40
see also java.lang.ClassNot-
FoundException
CLASSPATH 27,58, 103-104,
125,223,322, 330, 414, 492
Class-Path header 100
cleanup 262
client/server xvi, 410
JMS Hybrid model 450
clientToken 408
closed systems 463
CloseHandle 505
clustered 405, 433
clustering 226,272,279
clustering support 543
CODEBASE 57
CodeServlet 285-286
collection 22
Collections library xvii
colocation, appearance of 436
COM 19, 365, 432
see also Component Object
Model
COM/DCOM 420,511

communication 272, 402

548

compatibility 425
compile-time 153
Component Object Model

432433

see also COM
componentry 10, 132
components 104, 203
compression 280
concurrency 16, 126, 149

danger in 393
concurrent execution 149
concurrent library 168
ConfigProperties 232,236
ConfigProperty 252
configuration 14, 510

Applet 231

HTML 231

settings 174
connection 255, 336, 409
ConnectionManager 255,281

threading policy 261
consistent 218
ConsoleControlService 201
constant pool 39, 102
context ClassLoader 144
context switch 129
ContextInfo 226
control 174,538, 540
Control Panel 233, 235
Coplien, James O. xxv

CORBA xvii, xxiii, 31,215, 365,
402, 406,410—411, 420, 433,

448, 477,494,511, 533,536
CORBA 2.2 429
CORBA 2.3 428
CORBA Event Service 412
CORBA IDL 424
CORBA integration 543
CORBA Naming Service 423,
429
CORBA NamingService 189
CORBA ORB, MICO 432
CORBA ORB, omniORB 432
CORBA ORB, ORBacus 432
CORBA Trading Service 412

CORBA, Collections 431

CORBA, NamingContext 430

CORBA, Persistence 431

CORBA, Security 431

CORBA, Trading 431

CORBA, Transaction 431

CORBA/RMI/DCOM
Hybrid 448

corrections xxvi

CosNaming 423

CPU power 404

crash protection 481

Created-By 111

CreateProcess 137

CreateThread 126

creating objects 361

credibility 13

critical sections 484

cron 163

cross-linguistic 431

crown jewels 13

Crystal Reports 20, 380

custom Serialization 308

D

daemon 15
daemon servlets 295
see also servlets
data 330, 332
data access layer 345, 371
data consistency 390
data storage 341
data warehouse 346, 380
data-aware control 342
database denormalization
381-382
database tuning 346, 382, 385
date service 238
DBA 345
DBE 345
DCOM 411, 431, 448, 533
DDE 432,496
debugging support 506
Decorator pattern 110

INDEX

decryption 280
dedicated 246
default parameters 21
defensive coding 234
defineClass 336
DelayedFire 163
delegating ClassLoader

model 41
Delphi 342
deployment 337
design 347
Design Patterns xxv
design patterns 474
design-by-interface 400
development 464
development speed 19, 344, 471
DevelopMentor xxviii
DGC 420
diagnostic controls 481
disconnected clients 434
disconnected operations 438
Distributed Component Object

Model 432

see also DCOM
Distributed Factory 323
distributed garbage

collection 420
distributed job system 405
distributed make 405
distributed object design 406
distributed object lifetimes 420
distributed object systems 402
distributed objects xxiii
distribution approach

drawbacks 412

mobile objects 411

ORB 411

raw access 410

RPC 410

sockets 412
DLL 97, 465
DllEntryPoint 108, 469, 492
DIIMain 108, 492
download extensions 100, 103
downtime 406
drop-in JIT 488

INDEX

DuplicateObjectException 377
duplication 382

dynamic class-loading 144
dynamic code download 420
Dynamic Data Exchange 432
dynamic linking 101

E

Echo 238,243

EchoService 243

e-commerce 408

economics 402

efficient 246

EJB 4,14,34,46,104,272, 365,
421,431,433
see also Enterprise Java Beans

EJB immaturity 541

Emacs 108

email 524

email conversation 433

embedded systems 4

employee system 448

encapsulation 105, 129, 133,
212,214,262,318, 324, 340,
345, 361, 365, 374, 400,419
counterproductive 374
drawbacks 400

encapsulation layer 370

encryption 280, 303

end-user 2

enhancement 363

enterprise development 1

Enterprise Java Beans xvii, 535
see also E]B

entity-relationship 346

error 183

Event log 523

event management 16

events 484

evolution (of Java) 20

examples 415-416, 418, 426
ConfigProperty 227
ConnectionAdapter 256
creating objects 375, 392
CreationExample 439

examples (continued)
CustomSerialization 307
DerivedClassLoader 45
download 99
DynamicArray
(synchronized) 151
DynamicArray
(unsynchronized) 150
DynamicCode 29-30
Echo2Service 254
EchoConnection 262
employee 451
employee system 346
Employee test driver 354
Employee.Hashtable-
Employee 374
Employee.HashtableManager
374
Employee.HashtableModel
375,378-379
Employee.HashtablePerson
374
Employee.IAddress 352
Employee.IContactlnfo 352
Employee.IDepartment 353
Employee. IEMail 352
Employee.IEmployee 349
Employee.IEmployee
Model 356
Employee.IManager 350
Employee.IPerson 348
Employee.IPhone 353
Employee.IPosition 351
Employee.JSDTModel 453
Employee.OrgTree 400
Employee. RDBMSModel
380, 382, 392, 394-397
Employee. RDBMSPerson
385
evolution 311-312
ExceptionListener 156
ExceptionRunnable 154
ExRunnable 157
FileSystemClassLoader 63
FiletURLClient 50
finding objects 378, 394

549

examples (continued)
first 30
flaws 379, 397
FTPURLClient 53
FutureRunnable 165
FutureThread 165
HashtableClassLoader 66
HashtableModel 372
HeartbeatClient 517
HeartbeatListener 518
HeartbeatListenerClient 519
Hello 28
HelloDownload 99
HeepConnection 265
HttpConnectionConstant

264
HTTPURLClient 51
IIOPNameServer 421
JarLister 110
JDBCClassLoader 334
JNItest 485
JPrimes 466
JPrimes.cpp 469
Languagelnterpreter 106
LogListener 525
LogListenerService 527
NameServer 414
NameServerImpl2 416
NetworkClassLoader 42
OrgTree (Employee
system) 366

OutputStreamListener 530
PeriodicThread 135, 161
PluginApp 118
PluginClassLoader 112
PrimeCalculator 474
ReflectingDynamicCode 31
RemoteStorageService 318
removing objects 379,395
replacement 316
RMI implementation 451
RunnableObject 132
ScheduledThread 163
schema 382
ScriptingEngine 106

550

examples (continued)
second 30
signal 479
signal handler 478
SocketClassLoader 274
SocketClassLoaderConnec-
tion 277
stateful vs. stateless 407
StoppableThreadObject
140-141
TestSuite 35
ThreadGroupEx 156
ThreadSubclass 132
TimeService 245
wait 142-143
exception handling 153, 481
exception propagation 3061
ExceptionlnlnitializerError 40
exceptions 153, 253, 361, 481
ExecService 189
execution speed 344-345, 471
Executor 261
exit 138
extensions 330, 414, 538
extensions ClassLoader 58,223
externalization 310,317

F

Fagade 130, 365

Factory 172

Factory Method 47
failover 437
fault-tolerance 272,279
federated-system model 449
FileInputStream 110
FileOutputStream 232
filesystem 464
FileSystemClassLoader 189
filtering 289, 437
FilterInputStream 280
FilterOutputStream 280
FilterService 280
FilterSocket 285

findClass 336-337

finite state machines 130
firewall 2,279, 294,298,318
five-nines 8
flexibility 105, 425
foreign keys 394, 397
fork 137
FTP 53
FTP servlet 292

see also servlets
future implementation 363
Future pattern 167
FutureReplies 164
FutureResult 170
Futures 164

G

garbage collection 17

GET 297

getConlfiglnfo 233

getlnstancelD 179

getService 180-181

GJ 24

GJAS 45-46,102-103, 159,
166, 175,281, 318,495, 515,
518

glue 261

Gosling, James 20

green threads 147

GZIPInputStream 303

GZIPOutputStream 303

H

handle 408

handleEvent 133

HashtableClassLoader 222

HashtableModel 451

heap-allocation 483

HeartbeatService 515

HelloAgainService 193

HelloService 186

HORB 411

Hotspot 18

HTML 57,99, 263,273, 334,
534

INDEX

HTML editor 342

HTTP xvii, 164, 263, 281, 323,
407,494, 534

HTTP return codes 264

HTTP server 51,219,418

HttpConnection 273

IBM’s MQSeries 411
iBus 411
IDE 24
idioms 158
IDL 428
IDL compiler 429
IIOP 419, 421
see also Internet InterOpera-
bility Protocol
[llegalAccessException 40
IllegalSalaryException 350
IllegalStateException 143
implementation 413
implementation inheritance 132
implementation interface 418
implementation
optimization 363
implementing security 365
information channels 441
inheritance 347, 384, 397
inheritance for reuse 132
inheritance-as-reuse 10
InitialContext 423
initialization of
ConnectionManager 261
Inner class xvi
InputStream 242, 503
instance 176
InstandationException 40
intelligent agent 435
interface 432
Interface Definition
Language 428
interface-based design 348
Internet 61, 237,338,370
Internet InterOperability
Protocol 419

INDEX

internetwork
communication 281
interprocess
communication 281, 496
interrupt 140, 146, 154
InterruptedException 140, 154
Intuit xxviii
Invocation 490
Invocation API 472
IP shuffling 279
IPC 494
IServer 233
IServerManager 175
IT 345
iterative 3
IUnknown 432

J

J2EE xxvii, 4, 14, 272,536
see also Java2 Enterprise
Edition
JAR xvi, 97
JarInputStream 110
java 484
Java Activation Framework 536
Java calling native code 472
Java cryptography
extensions 175
Java Message Service 434, 536
see also JMS
Java name-mangling 39
Java Naming and Directory
Interface 536
see also JNDI
Java Native Interface 464
see also JNI
Java Remote Method
Protocol 419
Java Server Pages 536
see also JSP
Java Shared Data Toolkit 281,
411, 442, 473
Java Sound API 524
Java Transaction API 535
Java Transaction Service 535

Java Virtual Machine Debugger
Interface 507

Java Virtual Machine Profiler
Interface 508

Java Virtual Machine
Specification 38

java.class.path 58

java.io.File 50

java.io.FileSystem 147

java.io.InterruptedIOException
518

java.lang.Class 29, 325

java.lang.ClassCastException
33,65

java.lang.ClassLoader 37
see also ClassLoader

java.lang.ClassNotFound Excep-
tion 65, 322

java.lang.Method 232

javalang.reflect. Method 32, 35

java.lang.Runnable 131

java.lang. Thread 131

java.lang. ThreadGroup 144

java.lang.ThreadLocal 152

java.naming.factory.initial 423

java.naming.provider.url 423

java.net package 237

java.net.ConnectException 253

java.net. URLClassLoader 49,
110

java.rmi.Remote 413

java.rmi.RemoteException 215,
413

java.rmi.server.codebase 414

java.rmi.server. RMIClassLoader

57

java.rmi.server.UnicastRemote-
Object 415, 427

java.rmi.server.Unreferenced
452

java.security.SecureClassLoader
49

java.sql.Connection 383

java.util.jar 110

java.util. Properties 232

java.util.zip 110

551

Java/COM 432

Java2 xvii

Java2 Enterprise Edition xviii,
104, 536
see also J2EE

Java2 Enterprise Edition
specification xvi

Java2 Micro Edition xviii

Java2 Standard Edition xvii

JavaBeans xvi, 34, 225, 302

javac 103

javadoc 483

javageeks.com 52

JavaHelp 536

JavalDL 428, 536

JavaMail 533, 536

JavaSpaces 281,411,473

JavaVMOption 493

JavaVMOptions 487

javax.rmi.PortableRemoteObject

427

JBuilder 342

JDBC xvi, 300, 324, 339, 380,
395,421,536

JDBC Connection-pool 409

JDBCClassLoader 222,279,
331

JDK 104, 487
-jar 98

JDK 1.1 xvi, 302

JDK 1.2 xvii

JEC xvii, 343

Jikes 507

Jini 281,411, 442, 473

JIT 18,471,507

JMS 215, 402, 411, 433434,
449,511, 536
see also Java Message Service

JNDI xvii, 214, 421, 429430,
536
see also Java Naming and

Directory Interface

JNDI integration 542

JNT xvi, 15, 19, 24, 62, 98, 219,
233,539

552

JNI costs 464

JNI drawbacks 487

JNI invocation 484

JNI Specification 465,478
JNI_OnLoad 492
JNI_OnUnload 492
JNIEny 480

join 156, 240

JPrimes 472

JRE 104

JRMP 419

JRMP incompatibility 419
JRun 273

JSDT 443, 460

JSDT Channels 446
JSDT Client 455

JSDT Registry 443
JSDT Session 447

JSDT SessionManager 455
JSDT Tokens 446

JSP 14, 536

JSWDK 273

JTA xvii

JTable 134

JTAPI 524

JTree 134,369

JTS xvii

Jurassic Park 22
just-in-time compilers 18
JVMDI 507

JVMPI 508

K

killService 180
knowledge 6

L

languages.properties file 107
laptop 208

last error 154

layers 284

lazy 108

lazy evaluation 387, 395
LDAP xvii

Lea, Doug 158

lease 420

legacy code 471

legacy system 15

legitimacy 362

lifetime management 413

link table 382

liveness 523

LiveWire 290

load balancing 226,272, 437,
543

LoadJavaVM 489

LocalServer 178,183,213, 233

LocalServerManager 175, 213

location transparency 218, 226,
542

log 183

LogCORBAListener 533

LogDCOMListener 533

logic 289

LogRMIListener 533

lookup 214,413

loose coupling 41

M

MacOS’s AppleEvents 219
mail server servlet 292
see also servlets
mailslot 496
main 183,488
Main-Class 104, 111, 491
maintenance 405
managing 510
Manifest 97-99, 110, 491
Class-Path 97-98
Created-By 98
Main-Class 98
Manifest-Version 98
MANIFEST.MF 98
many-to-many relationships 382
marker data 333
marketing 125
marshaling 211, 412
MAX_PRIORITY 131

INDEX

memory-mapped files 473, 496
message of the day 333
Message-Oriented
Middleware 411, 433
see also MOM
message-tracking 333
metadata 34
META-INF 98
metamodel 34
Method 33
see also java.lang.reflect.
Method
Meyers, Scott 345
Microsoft 19, 363
Microsoft Access 380
Microsoft named pipes 219
Microsoft RPC 478
Microsoft Visual C++ 5.0 470
Microsoft/DCE RPC 209
Microsoft’s MSMQ 411
Microsoft’s RPC 410
middleware 298, 402, 448, 539
middleware layer 294
middleware protocol 294
middleware system 295
MIME 533
MIN_PRIORITY 131
miniapplication servers 4
mobile agents, difference from
mobile objects 435
mobile object design 440441
mobile objects 108, 435
simple 438
uses of 437
mobile transaction object 436
mobile-object model 449
Model 134, 343
modularization 203, 345
MOM 411, 434
monitoring 510
MQSeries 434
MSMQ 434
MTS 431
multiple JDK environments 104
multiple threads 516
multiprocessing 127

INDEX

multi-thread exception
handling 153

mutexes 484

N

name space 65

Naming class 413

native 463

native calling Java code 472
native code 101

native library 464

native threads 147

needs 1,6
NestedRuntimeException 217
Netscape 19

network bandwidth 338
network rerouting 279
New Atlanta 272
NORM_PRIORITY 131
NT service 495

n-tier 341-343, 365
NullObject 113

(o)

object linking and
embedding 432
see also OLE
Object Management Group 428
see also OMG
object model 340
object purists 212
Object Serialization
specification 306
object tree 301
ObjectOutputStream 301
object-relational mapping 381
objects
serialized 297
ObjectSpaces’s Subspace 442
OCI 403
ODBC 380, 403
ODMG 338
OK 264
OLE 108,432
OMG 494

ONC RPC 209, 478

OneMoreHelloService 200

OODBMS 400

Open Source 5, 10

OPTIONS 297

ORB 432

ORB vs. mobile object 435

ORBacus 428

OSF/DCE RPC 410

OutputStream 242

OutputStreamListener 532

OutputStreamListenerService
532

overhead 344, 436

overloaded operators 22

overserver 175

ownership semantics 17

P

Pacific Bell xxviii
package 39
java.net 237
pager 524
parallel development 105
parseArg 177
parselnputStream 177
pass-by-reference 412
pass-by-value 412
PATH 471
patterns 10, 158, 384
Abstract Factory 365, 384
Active Object 160
Adapter 157
Bridge 365,375,474
Client-Dispatcher-
Server 158
Facade 434
Factory Method 41, 365, 384
Fire-and-forget 159
Model 365
Model-View-Controller 365
Polling 161
Singleton 176, 365, 384
SpinLoop 160
View 365

553

PDA 208

PDF 263

peek 172

peer 455

performance 127,129, 324,382,
402, 465, 494

performance monitoring 412

performance tuning 391

PeriodicThread 511

Perllnterpreter 109

perpetual employment, principle
of 133

persistence 300, 539

phone call 524

phone conversation 433

physical object model 346

ping 237

Pizza 24

platform 464

Plugin-Class 111

PluginClassLoader 111

plug-ins 105, 107

point-of-failure 4

policy decision 174

POP3 437

portability 465

POS 215

POSIX 147

POST 264,297

PostScript 263

premature optimization 345

presentation 341

presentation layer 344

presentation logic 343

primary key 301, 386, 392

prime numbers 404

priority 131

procedural development 128

process independence 128-129

Process object 192

processes 464,495

product ID 344

proof of concept 168

properties 107

property 225

554

property opacity 226
PropertyDescriptor 225
PropertyDialog 225
protocol-independent 218
prototype 372

proxy 412

Proxy pattern 209

ps 510

publish/subscribe 411
Python 431, 494

Q

query 301
quick releases 489

R

RAD 9, 342
Rapid Application Development
(RAD) tools 463
RDBMS
ODBC 332
vendor evolution 345
RDBMSModel 360, 451
Reader 244
readObject 306,309-310
readResolve 310, 313
readResolve() 314
RedirectorService 279
RedirectorSocket 285
redundancy 373
reference-counting 432
referential integrity 395
Reflection xvi, 19, 28, 31, 105,
298, 313, 325,493, 536
Registry 174,225,477, 488
relational databases 317
reliabilicy 402
Remote 210
remote method invocation
412417
remote-enabled 14
RemoteStorageClient 272
RemoteStorageServer 272
RemoteStorageServlet 297

RemoteStorageServletClient
297

RemoteUnicastObject 200

removeService 177

request 323

request-response 433, 436

request-response protocol 295

resource management 128

response 323

resume 141

reusability 7

ripple effect 233

RMI xvi, xxiii, 144, 208, 272,
302,317,323, 402, 406, 410,
412,431, 448, 460,477,511,
533,536
see also Remote Method

Invocation

RMI registry 189,223, 414, 429

RMI Specification 419

RMI/IIOP 14,272,421, 452

RMI/JRMP 419

RMI/JRMP, isolation of 428

rmic 413,416,419, 424

RMIClassLoader 46, 57

RmiJdbc 2-tier
RDBMSModel 449

RMIServer 233

RMIServerManager 209, 218

RMIServerManagerServer 209

robustness 464

roles 347

RPC 412

RPC vs. mobile object 435

RTF 334

RTTI 483

run time 103, 153

Runnable 157, 165

Runtime.exec 189

S

scaffolding 281
scalability 127,211, 245, 404,
420, 424, 452

INDEX

scalable 246

scheduler 129

SCM 495

screen pop 525

screen saver 405

script languages 124

ScriptingEngine 107-108

ScriptingServlet 290

SDO (Shared Data Objects) 442

security xxiv,235,303, 306,324,
337,418,437, 460, 464

security hole 496

security model 383

security zone 279

SecurityException 41

SecurityManager 141

semaphores 484

Serializable 67,212,223,232,
301, 310, 455

Serialization xvi, 272, 300, 317,
412,438, 457458

serialized objects 297

serializedPersistentFields 306

serialver 311

server 102

server application 293

Server.start 168

ServerManager 102, 175, 209,
253,255,516

servers
back-end 295

servers.loader 177

server-side Java xvii

ServerSocket 237,244

Service 232

service 167,232,516

Service class 102, 104

Service Control Manager 495

Service instances 255

servlet API specification 4, 285

servlet chaining 287-288

servlet code 289

servlet interface 291

servlet specification xvii

ServletClassLoader 144

ServletDebugger 272

INDEX

ServletExec 272

ServletRequest 297

servlets 124,225,272,283,285,
287,292-299, 536
HTTP 235

session ID 410

setConfiglnfo 233,253

setDaemon 142-143

setDaemon(true) 166

setRunnable 200

setThread 200

shared object basics 441442

shared object design 447448

shared object model 449

shared objects 441

shared objects, vs. mobile
objects 441

Shelllnterpreter 109

shopping cart 408

short cycle 2

shutdown 177

SIGINT 480

signal handler 478

silent failure 511

silver bullet 381

single-instance restrictions 383

Singleton 109, 152

skeletons 413

Smalltalk 424,428

SMTP 532

sneakernet 403

SOAP 298

SocketClassConnection 273

SocketClassLoader 273, 330,
337

SocketClient 238

SocketControlService 208

socket-oriented server 291

sockets 159, 237, 285, 402,
410411, 448, 464, 494, 539
stateful 412
stateless 412

SocketServer 247,255, 281

software bus 406, 494

Solaris 522

spam 437

specification 306
SQL 280, 336
standard socket 496
standard template library xvii, 22
start 137,167,253
stateful 406407, 451
stateful sockets 412
stateless 246, 263, 406, 408, 451
stateless protocols
benefits 409
drawbacks 409
stateless sockets 412
static initializer block 474
static linking 101
stop 140, 179
Strategic Acceptance 541
Strategy pattern 476
streams 302
StringBuffer 471
Stroustrup, Bjarne 20
structured exception
handling 479
stubs 298,413
Sun 19
sun.applet. AppletClassLoader
57
sun.boot.class.path 58
sun.tools.javac.Main 103
supercomputer 405
superscripting 487
suspend 141
Swing xvii, 123, 134, 343
TreeModel 366
synchronization 150-153, 393,
441, 480481
cross-JVM 393
debugging 151
synchronization monitors 484
synchronized 151
syslog 523
system administrators 3, 13
system architecture 403
system ClassLoader 4445, 58
system data 333
system hook 496
system properties 423

555

-

TaskManager 510
TCP/IP 237
Tech Support 218
technical capability 540
technical flexibility 540
TeeOutputStream 532
templates 22, 30
testing 105
thin client 11,52
third-party tools 380
Thread 242,516, 522
Thread API 130
Thread constructor 131
Thread.stop 139
ThreadDeath 140, 154
ThreadedExecutor 172
ThreadedPipeStream 240
ThreadedServer 244,248
ThreadFactory 172,261
ThreadGroup 132, 154, 200,

516
ThreadGroup, activeCount 145
ThreadGroup, enumerate 145
thread-local storage 152
ThreadPool 261
threads 126, 536, 538
thread-safe 150
ThreadServer 196
three zeroes xxi, 1, 8
three-part chain 289
three-tier 340
tnameserv 423
TRACE 297
transaction 398
transactional semantics 384
transactioning 437
transient xvi, 232, 300
transition 428
translation 373

see also object-relational

mapping

trips 370

556

try block 483
two-tier 341-342
type-safety 16,23, 323

U

UML 347
UNC 498
uncaughtException 154
uncompression 280
Undocumented Windows 363
unicast 523
Unicode 500
UNIX shared memory 219
UNIX signals 477
unmarshaling 211,413
upgrades 101
URL 51, 53,100, 214
custom 56
FTP 53
URLClassLoader 57-58, 112,
460
URLStreamHandler 56
URLStreamHandlerFactory 56
URLString 445
use-case knowledge 362
user reactive 3
user roles 54,418

\'%

validation 343
vendor-independence 383
vendors 5

versioning 5

Visual Basic 34, 342, 431, 494
Visual J++ 342

Voyager 338,411, 439-440, 442
vulnerability 438

w

wait 156
wasted clock cycles 405

Web 263

web page 289

web server 159, 263

web-server functionality 287

white papers xxvi

Win32 473,522

Win32 IPC 477

wire protocol 422

WM_COPYDATA 496

WORA xviii

workflow 332

workflow applications 14

workflow state 332

Write Once, Run
Anywhere 148, 150

writeObject 306, 309-310

Writer 244

writeReplace 310, 313

writeReplace() 314

X

-X 508
XML 302, 494, 534
XSL 534

Y
Y2K 25

z

zero administration xxi, 12-14,
56,127,208,223,235, 489,
492,511,534

zero deployment xxi, 11-12, 52,
56-58, 208, 219, 223,
413414, 464, 489
lack of 425

zero development xxi, 9-11, 56,
126, 243, 424, 464, 471,511,
534

INDEX

	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	goals of this book
	about the author
	about the cover illustration
	Enterprise Java
	1.1 Enterprise development
	1.1.1 What is enterprise development?
	1.1.2 Developing the enterprise application
	1.1.3 Reinventing the wheel

	1.2 Three zeroes
	1.2.1 Zero development
	1.2.2 Zero deployment
	1.2.3 Zero administration

	1.3 Java in the enterprise
	1.3.1 Sun’s view
	1.3.2 Alternate views

	1.4 Why Java?
	1.4.1 Criticisms of Java as a server-side language

	1.5 Summary
	1.6 Additional reading

	ClassLoaders
	2.1 Dynamic linking
	2.1.1 Run-time dynamic loading
	2.1.2 Reflection

	2.2 ClassLoaders: rules and expectations
	2.2.1 Java .class file format
	2.2.2 Using ClassLoader
	2.2.3 java.lang.ClassLoader
	2.2.4 Java name spaces

	2.3 Java’s built-in ClassLoaders
	2.3.1 java.security.SecureClassLoader
	2.3.2 java.net.URLClassLoader
	2.3.3 sun.applet.AppletClassLoader
	2.3.4 java.rmi.server.RMIClassLoader
	2.3.5 Bootstrap ClassLoader
	2.3.6 sun.misc.Launcher$ExtClassLoader

	2.4 Summary
	2.5 Additional reading

	Custom ClassLoaders
	3.1 Extending ClassLoader
	3.1.1 FileSystemClassLoader
	3.1.2 HashtableClassLoader
	3.1.3 CompilerClassLoader
	3.1.4 StrategyClassLoader and ClassLoaderStrategy
	3.1.5 CompositeClassLoader
	3.1.6 Other ClassLoader tricks
	3.1.7 Other ClassLoaders

	3.2 On-the-fly code upgrades
	3.3 GJAS: first steps
	3.3.1 Goals
	3.3.2 Service
	3.3.3 Server
	3.3.4 ServerManager

	3.4 Summary

	Extensions
	4.1 Types of extensions
	4.1.1 Installed extensions
	4.1.2 Building an installed extension
	4.1.3 Download extensions
	4.1.4 Building a download extension

	4.2 Implications of the extensions mechanism
	4.2.1 Distributed libraries through download extensions
	4.2.2 Java EXEs; relation to C++ static linking

	4.3 Packaging extensions
	4.3.1 The build-time vs. run-time dilemma

	4.4 The plug-in
	4.4.1 The plug-in concept
	4.4.2 Enter plug-ins
	4.4.3 Marking a .jar file as a plug-in
	4.4.4 PluginClassLoader
	4.4.5 Example: PluginApp
	4.4.6 Uses for plug-ins

	4.5 Summary

	Threads
	5.1 Why threads?
	5.1.1 Concurrent processing
	5.1.2 Scalability per machine
	5.1.3 Encapsulation
	5.1.4 Design and implementation

	5.2 Java threads
	5.2.1 java.lang.Thread and java.lang.Runnable
	5.2.2 Starting threads
	5.2.3 Stopping threads
	5.2.4 Daemon threads
	5.2.5 Threads and ClassLoaders
	5.2.6 java.lang.ThreadGroup

	5.3 Thread implementations in Java
	5.3.1 Green threads
	5.3.2 Native threads
	5.3.3 Hybrids
	5.3.4 Implications

	5.4 Summary
	5.5 Additional reading

	Threading issues
	6.1 Synchronization
	6.1.1 Thread-local storage

	6.2 Exception-handling with multiple threads
	6.3 Thread idioms and patterns
	6.3.1 Client-Dispatcher-Server
	6.3.2 Fire-and-forget
	6.3.3 ActiveObject
	6.3.4 SpinLoop
	6.3.5 Polling (PeriodicThread)
	6.3.6 DelayedFire (ScheduledThread)
	6.3.7 Futures

	6.4 GJAS
	6.4.1 Adding thread support to GJAS

	6.5 Summary
	6.6 Additional reading

	Control
	7.1 GJAS
	7.1.1 Local implementation
	7.1.2 Example: HelloService

	7.2 T�esting the LocalServer implementation
	7.3 ExecService
	7.4 HelloAgainService
	7.4.1 ThreadServer
	7.4.2 Example: ConsoleControlService

	Remote control
	8.1 RMI implementation
	8.1.1 Analysis

	8.2 Other implementations
	8.3 Necessary improvements
	8.4 Additional reading

	Configuration
	9.1 Java models
	9.1.1 Interface: ConfigProperty and ConfigProperties
	9.1.2 Usage
	9.1.3 Configuration front ends

	9.2 Summary

	Sockets
	10.1 Simple socket services
	10.1.1 SocketClient
	10.1.2 EchoService
	10.1.3 TimeService
	10.1.4 Analysis

	10.2 Encapsulation and refactoring
	10.2.1 SocketServer
	10.2.2 Example: Echo2Service

	10.3 Connection and ConnectionManager
	10.3.1 Example: EchoConnection
	10.3.2 Example: HTTPConnection
	10.3.3 Servlets

	10.4 Advanced Socket services
	10.4.1 SocketClassLoader and SocketClassService
	10.4.2 Concept: RedirectorService
	10.4.3 Concept: FilterService
	10.4.4 Other types

	10.5 Summary
	10.6 Additional reading

	Servlets
	11.1 Relationship to sockets
	11.1.1 CodeServlet: A filtering servlet
	11.1.2 HeaderFooter: a redirecting servlet
	11.1.3 Server-side scripting capabilities
	11.1.4 Servlets: Not just about HTML anymore

	11.2 Servlets and the n-tier application
	11.2.1 Separating logic from content

	11.3 Servlets as a poor man’s RMI
	11.3.1 Example: RemoteStorageServlet
	11.3.2 Concept: poor man’s RMI
	11.3.3 Concept: SOAP

	11.4 Summary
	11.5 Additional reading

	Persistence
	12.1 Java Serialization
	12.1.1 Serialization to other places
	12.1.2 Security and Serialization
	12.1.3 Customized Serialization
	12.1.4 Serialization and evolution
	12.1.5 Replacement

	12.2 Beyond the specification
	12.2.1 Remote storage of objects
	12.2.2 Example: RemoteStorageService and RemoteStorageClient
	12.2.3 Remote construction of objects
	12.2.4 Example: RemoteObjectFactory

	12.3 JDBC
	12.3.1 Transient data, state data, data that isn’t data
	12.3.2 Example: JDBCClassLoader

	12.4 Summary
	12.5 Additional reading

	Business objects
	13.1 Modeling data
	13.1.1 Two-tier systems vs. n-tier systems
	13.1.2 One-tier systems
	13.1.3 Two-tier systems
	13.1.4 n-tier systems
	13.1.5 Benefits of an n-tier model
	13.1.6 Business objects, entity relationships
	13.1.7 Example: employee directory
	13.1.8 Business objects layer interface layer

	13.2 Using the Business Object layer
	13.2.1 Classic presentation code: GUIs
	13.2.2 Example: OrgTree
	13.2.3 Feeling cheated?

	13.3 Summary
	13.4 Additional reading

	Business object models
	14.1 Example: HashtableModel
	14.1.1 Overview
	14.1.2 HashtablePerson, HashtableEmployee, HashtableManager
	14.1.3 HashtableModel: Creating objects
	14.1.4 HashtableModel: Finding objects
	14.1.5 HashtableModel: Removing objects
	14.1.6 Conclusion

	14.2 Example: RDBMSModel
	14.2.1 RDBMSModel: Storing Business Objects in an RDBMS
	14.2.2 Overview
	14.2.3 RDBMSPerson, RDBMSEmployee, RDBMSManager
	14.2.4 RDBMSModel: Creating objects
	14.2.5 RDBMSModel: Finding objects
	14.2.6 RDBMSModel: Removing objects
	14.2.7 Conclusion

	14.3 Summary
	14.4 Additional reading

	Middleware
	15.1 Why distribute?
	15.1.1 Communication
	15.1.2 Performance
	15.1.3 Economics (clustering/fault-tolerance)
	15.1.4 Reliability (clustering/load-balancing)

	15.2 Distributed object design vs. classic object design
	15.2.1 Stateful vs. stateless

	15.3 Technologies
	15.3.1 Raw access: Sockets
	15.3.2 Java RPC: remote method invocation
	15.3.3 Analysis
	15.3.4 RMI/JRMP
	15.3.5 Object Request Brokers: CORBA
	15.3.6 Object Request Brokers: Distributed Component Object Model
	15.3.7 Message-Oriented Middleware: JMS
	15.3.8 Objects across the wire: Mobile objects
	15.3.9 Objects across the wire: shared objects

	15.4 Employee middleware models
	15.4.1 RMI implementation
	15.4.2 JSDTModel: Shared-object implementation
	15.4.3 Analysis

	15.5 Additional reading

	Java Native Interface
	16.1 Java Native Interface
	16.1.1 Native code on the server

	16.2 JNI essentials
	16.2.1 Java calling native
	16.2.2 Native calling Java
	16.2.3 JNI invocation
	16.2.4 JNI changes in JDK 1.2

	16.3 Other methods of Java-to-native interaction
	16.3.1 Sockets
	16.3.2 CORBA

	16.4 Integrating the server: GJAS goes native
	16.4.1 Making GJAS an NT service
	16.4.2 Using NT IPC mechanisms: Named pipe

	16.5 Other JNI uses
	16.5.1 Debugging support
	16.5.2 JVMDI
	16.5.3 JVMPI

	16.6 Summary
	16.7 Additional reading

	Monitoring
	17.1 Importance grows
	17.1.1 Liveness
	17.1.2 Notification

	17.2 Summary

	epilogue
	Where to go from here?
	Parting advice
	Read all about COM, DCOM, and MTS
	Read all about EJB
	Read all about CORBA
	Participate

	Summary

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

